Rice Science
  • 首页
  • 期刊介绍
  • 编委会
  • 学术伦理
  • 投稿指南
  • 期刊订阅
  • 联系我们
  • English

Rice Science ›› 2023, Vol. 30 ›› Issue (4): 348-358.DOI: 10.1016/j.rsci.2023.02.003

• • 上一篇    

  • 收稿日期:2022-11-08 接受日期:2023-02-23 出版日期:2023-07-28 发布日期:2023-05-26

RichHTML

PDF

补充材料

1

可视化

0
  • 1. supplemental data for 2022-0190.pdf(477KB)

摘要/Abstract

引用本文

. [J]. Rice Science, 2023, 30(4): 348-358.

使用本文

0
    /   推荐

导出引用管理器 EndNote|Ris|BibTeX

链接本文: http://www.ricesci.org/CN/10.1016/j.rsci.2023.02.003

               http://www.ricesci.org/CN/Y2023/V30/I4/348

图/表 5

Fig. 1. Typical structures of arbuscular mycorrhizal fungi (AMF) in rice roots and their colonization levels. A, Typical structures of AMF in rice roots: extra- and intra-radical hyphae (a), hyphopodia (b) and arbuscules (c). Scale bars are 80 μm. B, AMF colonization levels in six rice cultivars. Data are Mean ± SD (n = 4).

Fig. 1. Typical structures of arbuscular mycorrhizal fungi (AMF) in rice roots and their colonization levels. A, Typical structures of AMF in rice roots: extra- and intra-radical hyphae (a), hyphopodia (b) and arbuscules (c). Scale bars are 80 μm. B, AMF colonization levels in six rice cultivars. Data are Mean ± SD (n = 4).

Fig. 2. Arbuscular mycorrhizal virtual taxa abundance. A, Overall count. B, Relative compartment abundance (soil and root). Operational taxonomic units with less than 50 reads were merged as ‘Other’.

Fig. 2. Arbuscular mycorrhizal virtual taxa abundance. A, Overall count. B, Relative compartment abundance (soil and root). Operational taxonomic units with less than 50 reads were merged as ‘Other’.

Table 1. Virtual taxa (VT) identified in Vercelli (Italy) rice fields under alternate wetting and drying management.
Virtual taxa No. of OTUs MaarjAM taxonomy a Current taxonomy b Abundance Relative frequency (%)
VTX00065 3 Glomus Funneliformis 2 162 35.06
VTX00225 4 Claroideoglomus Claroideoglomus 1 056 17.12
VTX00143 2 Glomus Glomus sensu lato 1 040 16.86
VTX00193 3 Claroideoglomus Claroideoglomus 556 9.02
VTX00054 3 Diversispora Diversispora 362 5.87
VTX00093 1 Glomus Glomus sensu lato 335 5.43
VTX00069 3 Glomus Sclerocystis 259 4.20
VTX00067 2 Glomus Funneliformis 190 3.08
VTX00281 1 Paraglomus Paraglomus 79 1.28
VTX00005 3 Archaeospora Archaeosporales 33 0.54
VTX00418 2 Glomus Glomus sensu lato 33 0.54
VTX00114 1 Glomus Rhizoglomus 25 0.41
VTX00380 1 Diversispora Diversispora 17 0.28
VTX00004 2 Archaeospora Archaeospora 11 0.18
VTX00278 1 Claroideoglomus Claroideoglomus 8 0.13
VTX00280 1 Glomus Rhizoglomus 1 0.02

Table 1. Virtual taxa (VT) identified in Vercelli (Italy) rice fields under alternate wetting and drying management.

Virtual taxa No. of OTUs MaarjAM taxonomy a Current taxonomy b Abundance Relative frequency (%)
VTX00065 3 Glomus Funneliformis 2 162 35.06
VTX00225 4 Claroideoglomus Claroideoglomus 1 056 17.12
VTX00143 2 Glomus Glomus sensu lato 1 040 16.86
VTX00193 3 Claroideoglomus Claroideoglomus 556 9.02
VTX00054 3 Diversispora Diversispora 362 5.87
VTX00093 1 Glomus Glomus sensu lato 335 5.43
VTX00069 3 Glomus Sclerocystis 259 4.20
VTX00067 2 Glomus Funneliformis 190 3.08
VTX00281 1 Paraglomus Paraglomus 79 1.28
VTX00005 3 Archaeospora Archaeosporales 33 0.54
VTX00418 2 Glomus Glomus sensu lato 33 0.54
VTX00114 1 Glomus Rhizoglomus 25 0.41
VTX00380 1 Diversispora Diversispora 17 0.28
VTX00004 2 Archaeospora Archaeospora 11 0.18
VTX00278 1 Claroideoglomus Claroideoglomus 8 0.13
VTX00280 1 Glomus Rhizoglomus 1 0.02
Fig. 3. Heatmap of presence/absence of arbuscular mycorrhizal fungus taxa retrieved from six rice cultivars. Main tree nodes with related phylogenetic assignment (in brackets) are reported. RFLP, Restriction fragment length polymorphism.

Fig. 3. Heatmap of presence/absence of arbuscular mycorrhizal fungus taxa retrieved from six rice cultivars. Main tree nodes with related phylogenetic assignment (in brackets) are reported. RFLP, Restriction fragment length polymorphism.

Table 2. Arbuscular mycorrhizal fungus diversity (H) and equitability (E) in six rice cultivars.
Rice cultivar Shannon diversity
index (H)
Shannon equitability
index (E)
Centauro 0.56 0.81
JSendra 1.65 0.84
Loto 1.36 0.85
Puntal 0.83 0.60
Selenio 1.58 0.88
Vialone nano 1.09 0.56

Table 2. Arbuscular mycorrhizal fungus diversity (H) and equitability (E) in six rice cultivars.

Rice cultivar Shannon diversity
index (H)
Shannon equitability
index (E)
Centauro 0.56 0.81
JSendra 1.65 0.84
Loto 1.36 0.85
Puntal 0.83 0.60
Selenio 1.58 0.88
Vialone nano 1.09 0.56

参考文献 72

[1] Abadi S, Azouri D, Pupko T, Mayrose I. 2019. Model selection may not be a mandatory step for phylogeny reconstruction. Nat Commun, 10(1): 934.
PMID
[2] Arnault G, Mony C, Vandenkoornhuyse P. 2023. Plant microbiota dysbiosis and the Anna Karenina Principle. Trends Plant Sci, 28: 18-30.
[3] Bago B, Pfeffer P E, Shachar-Hill Y. 2000. Carbon metabolism and transport in arbuscular mycorrhizas. Plant Physiol, 124(3): 949-958.
PMID
[4] Bao X Z, Wang Y T, Olsson P A. 2019. Arbuscular mycorrhiza under water: Carbon-phosphorus exchange between rice and arbuscular mycorrhizal fungi under different flooding regimes. Soil Biol Biochem, 129: 169-177.
[5] Berger S A, Krompass D, Stamatakis A. 2011. Performance, accuracy, and Web server for evolutionary placement of short sequence reads under maximum likelihood. Syst Biol, 60(3): 291-302.
PMID
[6] Bernaola L, Cange G, Way M O, Gore J, Hardke J, Stout M. 2018. Natural colonization of rice by arbuscular mycorrhizal fungi in different production areas. Rice Sci, 25(3): 169-174.
[7] Bin Rahman A N M R, Zhang J H. 2023. Trends in rice research: 2030 and beyond. Food Energy Secur, 12: e390.
[8] Błaszkowski J, Kozłowska A, Niezgoda P, Goto B T, Dalpé Y. 2018a. A new genus, Oehlia with Oehlia diaphana comb. nov. and an emended description of Rhizoglomus vesiculiferum comb. nov. in the Glomeromycotina. Nova Hedwigia, 107(3/4): 501-518.
[9] Błaszkowski J, Niezgoda P, Goto B T, Kozłowska A. 2018b. Halonatospora Gen. nov. with H. pansihalos comb. nov. and Glomus bareae sp. nov. (Glomeromycota; Glomeraceae). Botany, 96(11): 737-748.
[10] Błaszkowski J, Jobim K, Niezgoda P, Meller E, Malinowski R, Milczarski P, Zubek S, Magurno F, Casieri L, Bierza W, Błaszkowski T, Crossay T, Goto B T. 2021. New Glomeromycotan taxa, Dominikia glomerocarpica sp. nov. and Epigeocarpum crypticum gen. nov. et sp. nov. from Brazil, and Silvaspora gen. nov. from New Caledonia. Front Microbiol, 12: 655910.
[11] Bouman B A M, Tuong T P. 2001. Field water management to save water and increase its productivity in irrigated lowland rice. Agric Water Manag, 49(1): 11-30.
[12] Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden T L. 2009. BLAST+: Architecture and applications. BMC Bioinformatics, 10: 421.
PMID
[13] Campo S, Martín-Cardoso H, Olivé M, Pla E, Catala-Forner M, Martínez-Eixarch M, Segundo B S. 2020. Effect of root colonization by arbuscular mycorrhizal fungi on growth, productivity and blast resistance in rice. Rice, 13(1): 42.
PMID
[14] Campos-Soriano L, García-Martínez J, Segundo B S. 2012. The arbuscular mycorrhizal symbiosis promotes the systemic induction of regulatory defence-related genes in rice leaves and confers resistance to pathogen infection. Mol Plant Pathol, 13(6): 579-592.
PMID
[15] Caporaso J G, Kuczynski J, Stombaugh J, Bittinger K, Bushman F D, Costello E K, Fierer N, Peña A G, Goodrich J K, Gordon J I, Huttley G A, Kelley S T, Knights D, Koenig J E, Ley R E, Lozupone C A, McDonald D, Muegge B D, Pirrung M, Reeder J, Sevinsky J R, Turnbaugh P J, Walters W A, Widmann J, Yatsunenko T, Zaneveld J, Knight R. 2010. QIIME allows analysis of high-throughput community sequencing data. Nat Methods, 7(5): 335-336.
PMID
[16] Carballar-Hernández S, Hernández-Cuevas L V, Montaño N M, Larsen J, Ferrera-Cerrato R, Taboada-Gaytán O R, Montiel- González A M, Alarcón A. 2017. Native communities of arbuscular mycorrhizal fungi associated with Capsicum annuum L. respond to soil properties and agronomic management under field conditions. Agric Ecosyst Environ, 245: 43-51.
[17] Cardoso C, Zhang Y X, Jamil M, Hepworth J, Charnikhova T, Dimkpa S O N, Meharg C, Wright M H, Liu J W, Meng X B, Wang Y H, Li J Y, McCouch S R, Leyser O, Price A H, Bouwmeester H J, Ruyter-Spira C. 2014. Natural variation of rice strigolactone biosynthesis is associated with the deletion of two MAX1 orthologs. Proc Natl Acad Sci USA, 111(6): 2379-2384.
[18] Casazza G, Lumini E, Ercole E, Dovana F, Guerrina M, Arnulfo A, Minuto L, Fusconi A, Mucciarelli M. 2017. The abundance and diversity of arbuscular mycorrhizal fungi are linked to the soil chemistry of screes and to slope in the Alpic paleo-endemic Berardia subacaulis. PLoS One, 12(2): e0171866.
[19] Chen X W, Wu F Y, Li H, Chan W F, Wu S C, Wong M H. 2017. Mycorrhizal colonization status of lowland rice (Oryza sativa L.) in the southeastern region of China. Environ Sci Pollut Res, 24(6): 5268-5276.
[20] Chialva M, Ghignone S, Cozzi P, Lazzari B, Bonfante P, Abbruscato P, Lumini E. 2020. Water management and phenology influence the root-associated rice field microbiota. FEMS Microbiol Ecol, 96(9): fiaa146.
[21] Chiu C H, Choi J, Paszkowski U. 2018. Independent signalling cues underpin arbuscular mycorrhizal symbiosis and large lateral root induction in rice. New Phytol, 217(2): 552-557.
PMID
[22] Corazon-Guivin M A, Cerna-Mendoza A, Guerrero-Abad J C, Vallejos-Tapullima A, Carballar-Hernández S, Alves da Silva G, Oehl F. 2019a. Nanoglomus plukenetiae, a new fungus from Peru, and a key to small-spored Glomeraceae species, including three new genera in the ‘Dominikia complex/clades’. Mycol Prog, 18(12): 1395-1409.
[23] Corazon-Guivin M A, Mendoza A C, Guerrero-Abad J C, Vallejos- Tapullima A, Carballar-Hernández S, da Silva G A, Oehl F. 2019b. Funneliglomus gen. nov., and Funneliglomus sanmartinensis, a new arbuscular mycorrhizal fungus from the Amazonia region in Peru. Sydowia, 71: 17-24.
[24] Czech L, Barbera P, Stamatakis A. 2020. Genesis and Gappa: Processing, analyzing and visualizing phylogenetic (placement) data. Bioinformatics, 36(10): 3263-3265.
PMID
[25] da Silva K J G, Fernandes J A L, Magurno F, Leandro L B A, Goto B T, Theodoro R C. 2022. Phylogenetic review of Acaulospora (Diversisporales, Glomeromycota) and the homoplasic nature of its ornamentations. J Fungi, 8(9): 892.
[26] Davidson H, Shrestha R, Cornulier T, Douglas A, Travis T, Johnson D, Price A H. 2019. Spatial effects and GWA mapping of root colonization assessed in the interaction between the rice diversity panel 1 and an arbuscular mycorrhizal fungus. Front Plant Sci, 10: 633.
PMID
[27] Diedhiou A G, Mbaye F K, Mbodj D, Faye M N, Pignoly S, Ndoye I, Djaman K, Gaye S, Kane A, Laplaze L, Manneh B, Champion A. 2016. Field trials reveal ecotype-specific responses to mycorrhizal inoculation in rice. PLoS One, 11(12): e0167014.
[28] Edwards J, Johnson C, Santos-Medellín C, Lurie E, Podishetty N K, Bhatnagar S, Eisen J A, Sundaresan V. 2015. Structure, variation, and assembly of the root-associated microbiomes of rice. Proc Natl Acad Sci USA, 112(8): E911-E920.
[29] Fiorilli V, Vallino M, Biselli C, Faccio A, Bagnaresi P, Bonfante P. 2015. Host and non-host roots in rice: Cellular and molecular approaches reveal differential responses to arbuscular mycorrhizal fungi. Front Plant Sci, 6: 636.
PMID
[30] Genre A, Lanfranco L, Perotto S, Bonfante P. 2020. Unique and common traits in mycorrhizal symbioses. Nat Rev Microbiol, 18(11): 649-660.
[31] Gewaily S. 2019. Influence of arbuscular mycorrhizal (AMF) inoculation on the performance of Sakha 107 rice cultivar under different irrigation intervals. Environ Biodivers Soil Secur, 3: 119-130.
[32] Goncharova J K, Kharitonov E M. 2016. Genetic control of traits associated with phosphorus uptake in rice (Oryza sativa L.) varieties. Russ J Genet Appl Res, 6(3): 270-278.
[33] Hart M M, Reader R J. 2002. Taxonomic basis for variation in the colonization strategy of arbuscular mycorrhizal fungi. New Phytol, 153(2): 335-344.
[34] Hempel S, Renker C, Buscot F. 2007. Differences in the species composition of arbuscular mycorrhizal fungi in spore, root and soil communities in a grassland ecosystem. Environ Microbiol, 9(8): 1930-1938.
PMID
[35] Huang R L, Li Z, Shen X H, Choi J, Cao Y R. 2022. The perspective of arbuscular mycorrhizal symbiosis in rice domestication and breeding. Int J Mol Sci, 23(20): 12383.
[36] Ibne Baki M Z, Suzuki K, Takahashi K, Chowdhury S A, Asiloglu R, Harada N. 2021. Molecular genetic characterization of arbuscular mycorrhizal fungi associated with upland rice in Bangladesh. Rhizosphere, 18: 100357.
[37] Jobim K, Błaszkowski J, Niezgoda P, Kozłowska A, Zubek S, Mleczko P, Chachuła P, Ishikawa N K, Goto B T. 2019. New sporocarpic taxa in the phylum Glomeromycota: Sclerocarpum amazonicum gen. et sp. nov. in the family Glomeraceae (Glomerales) and Diversispora sporocarpia sp. nov. in the Diversisporaceae (Diversisporales). Mycol Prog, 18(3): 369-384.
[38] Katoh K, Standley D M. 2013. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol Biol Evol, 30(4): 772-780.
PMID
[39] Keymer A, Pimprikar P, Wewer V, Huber C, Brands M, Bucerius S L, Delaux P M, Klingl V, Röpenack-Lahaye E V, Wang T L, Eisenreich W, Dörmann P, Parniske M, Gutjahr C. 2017. Lipid transfer from plants to arbuscular mycorrhiza fungi. eLife, 6: e29107.
[40] Kozlov A M, Darriba D, Flouri T, Morel B, Stamatakis A. 2019. RAxML-NG: A fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics, 35(21): 4453-4455.
PMID
[41] Krüger M, Krüger C, Walker C, Stockinger H, Schüßler A. 2012. Phylogenetic reference data for systematics and phylotaxonomy of arbuscular mycorrhizal fungi from phylum to species level. New Phytol, 193(4): 970-984.
PMID
[42] Lampayan R M, Rejesus R M, Singleton G R, Bouman B A M. 2015. Adoption and economics of alternate wetting and drying water management for irrigated lowland rice. Field Crops Res, 170: 95-108.
[43] Lancashire P D, Bleiholder H, van den Boom T, Langelüddeke P, Stauss R, Weber E, Witzenberger A. 1991. A uniform decimal code for growth stages of crops and weeds. Ann Appl Biol, 119(3): 561-601.
[44] Lanfranco L, Fiorilli V, Venice F, Bonfante P. 2018. Strigolactones cross the kingdoms: Plants, fungi, and bacteria in the arbuscular mycorrhizal symbiosis. J Exp Bot, 69(9): 2175-2188.
PMID
[45] Lee J, Lee S S. 2008. Improved PCR primers for the detection and identification of arbuscular mycorrhizal fungi. FEMS Microbiol Ecol, 65(2): 339-349.
PMID
[46] Luginbuehl L H, Menard G N, Kurup S, van Erp H, Radhakrishnan G V, Breakspear A, Oldroyd G E D, Eastmond P J. 2017. Fatty acids in arbuscular mycorrhizal fungi are synthesized by the host plant. Science, 356: 1175-1178.
PMID
[47] Lumini E, Vallino M, Alguacil M M, Romani M, Bianciotto V. 2011. Different farming and water regimes in Italian rice fields affect arbuscular mycorrhizal fungal soil communities. Ecol Appl, 21(5): 1696-1707.
PMID
[48] McMurdie P J, Holmes S. 2013. Phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One, 8(4): e61217.
[49] Miller M A, Pfeiffer W, Schwartz T. 2010. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. 2010 Gateway Computing Environments Workshop (GCE). November 14-14, 2010. New Orleans, LA, USA: IEEE: 1-8.
[50] Oliver V, Cochrane N, Magnusson J, Brachi E, Monaco S, Volante A, Courtois B, Vale G, Price A, Teh Y A. 2019. Effects of water management and cultivar on carbon dynamics, plant productivity and biomass allocation in European rice systems. Sci Total Environ, 685: 1139-1151.
[51] Öpik M, Vanatoa A, Vanatoa E, Moora M, Davison J, Kalwij J M, Reier U, Zobel M. 2010. The online database MaarjAM reveals global and ecosystemic distribution patterns in arbuscular mycorrhizal fungi (Glomeromycota). New Phytol, 188(1): 223-241.
[52] Parvin S, van Geel M, Yeasmin T, Lievens B, Honnay O. 2019. Variation in arbuscular mycorrhizal fungal communities associated with lowland rice (Oryza sativa) along a gradient of soil salinity and arsenic contamination in Bangladesh. Sci Total Environ, 686: 546-554.
[53] Parvin S, van Geel M, Ali M M, Yeasmin T, Lievens B, Honnay O. 2021. A comparison of the arbuscular mycorrhizal fungal communities among Bangladeshi modern high yielding and traditional rice varieties. Plant Soil, 462(1): 109-124.
[54] Price A H, Norton G J, Salt D E, Ebenhoeh O, Meharg A A, Meharg C, Islam M R, Sarma R N, Dasgupta T, Ismail A M, McNally K L, Zhang H, Dodd I C, Davies W J. 2013. Alternate wetting and drying irrigation for rice in Bangladesh: Is it sustainable and has plant breeding something to offer? Food Energy Secur, 2(2): 120-129.
[55] R Core Team. 2021. R: A language and environment for statistical computing [2022-10-20]. https://www.R-project.org/.
[56] Santos-Medellín C, Edwards J, Liechty Z, Nguyen B, Sundaresan V. 2017. Drought stress results in a compartment-specific restructuring of the rice root-associated microbiomes. mBio, 8(4): e00764-17.
[57] Sarkodee-Addo E, Yasuda M, Gyu Lee C, Kanasugi M, Fujii Y, Ansong Omari R, Oppong Abebrese S, Bam R, Asuming- Brempong S, Mohammad Golam Dastogeer K, Okazaki S. 2020. Arbuscular mycorrhizal fungi associated with rice (Oryza sativa L.) in Ghana: Effect of regional locations and soil factors on diversity and community assembly. Agronomy, 10(4): 559.
[58] Sawers R J H, Gutjahr C, Paszkowski U. 2008. Cereal mycorrhiza: An ancient symbiosis in modern agriculture. Trends Plant Sci, 13(2): 93-97.
PMID
[59] Schreiner R P, Mihara K L. 2009. The diversity of arbuscular mycorrhizal fungi amplified from grapevine roots (Vitis vinifera L.) in Oregon vineyards is seasonally stable and influenced by soil and vine age. Mycologia, 101(5): 599-611.
PMID
[60] Suzuki S, Kobae Y, Sisaphaithong T, Tomioka R, Takenaka C, Hata S. 2015. Differential growth responses of rice cultivars to an arbuscular mycorrhizal fungus, Funneliformis mosseae. J Hortic, 2(3): 142.
[61] Tedersoo L, Sánchez-Ramírez S, Kõljalg U, Bahram M, Döring M, Schigel D, May T, Ryberg M, Abarenkov K. 2018. High-level classification of the fungi and a tool for evolutionary ecological analyses. Fungal Divers, 90(1): 135-159.
[62] Trouvelot A, Kough J L, Gianinazzi-Pearson V. 1986. Rate measurement of VA mycorrhization of a root system: Search for estimation methods with functional significance. In: Gianinazzi-Pearson V, Gianinazzi S. Mycorrhizae: Physiology and Genetics. Paris, France: INRA-Press: 217-221.
[63] Vallino M, Greppi D, Novero M, Bonfante P, Lupotto E. 2009. Rice root colonisation by mycorrhizal and endophytic fungi in aerobic soil. Ann Appl Biol, 154(2): 195-204.
[64] Vallino M, Fiorilli V, Bonfante P. 2014. Rice flooding negatively impacts root branching and arbuscular mycorrhizal colonization, but not fungal viability. Plant Cell Environ, 37(3): 557-572.
[65] Wang Y T, Li T, Li Y W, Björn L O, Rosendahl S, Olsson P A, Li S S, Fu X L. 2015. Community dynamics of arbuscular mycorrhizal fungi in high-input and intensively irrigated rice cultivation systems. Appl Environ Microbiol, 81(8): 2958-2965.
[66] Wang Y T, Bao X Z, Li S S. 2021. Effects of arbuscular mycorrhizal fungi on rice growth under different flooding and shading regimes. Front Microbiol, 12: 756752.
[67] Watanarojanaporn N, Boonkerd N, Tittabutr P, Longtonglang A, Teaumroong N. 2013. Effect of rice cultivation systems on indigenous arbuscular mycorrhizal fungal community structure. Microbes Environ, 28(3): 316-324.
PMID
[68] White T J, Bruns T, Lee S, Taylor J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis M A, Gelfand D H, Sninsky J J, White T J. PCR Protocols:A Guide to Methods and Applications. San Diego, USA: Academic Press: 315-322.
[69] Wickham H, Averick M, Bryan J, Chang W, McGowan L, François R, Grolemund G, Hayes A, Henry L, Hester J, Kuhn M, Pedersen T, Miller E, Bache S, Müller K, Ooms J, Robinson D, Seidel D, Spinu V, Takahashi K, Vaughan D, Wilke C, Woo K, Yutani H. 2019. Welcome to the tidyverse. J Open Source Softw, 4(43): 1686.
[70] Wijayawardene N N, Hyde K D, Dai D Q, Sánchez-García M, Goto B T, Saxena R K, Erdoğdu M, Selçuk F, Rajeshkumar K C, Aptroot A, Błaszkowski J, Boonyuen N, da Silva G A, de Souza F A, Dong W, Ertz D, Haelewaters D, Jones E, Karunarathna S C, Kirk P M, Kukwa M, Kumla J, Leontyev D V, Lumbsch H T, Maharachchikumbura S, Marguno F, Martínez-Rodríguez P, Mešić A, Monteiro J S, Oehl F, Pawłowska J, Pem D, Pfliegler W P, Phillips A, Pošta A, He M Q, Li J X, Raza M, Sruthi O P, Suetrong S, Suwannarach N, Tedersoo L, Thiyagaraja V, Tibpromma S, Tkalčec Z, Tokarev Y S, Wanasinghe D N, Wijesundara D, Wimalaseana S, Madrid H, Zhang G Q, Gao Y, Sánchez-Castro I, Tang L Z, Stadler M, Yurkov A, Thines M. 2022. Outline of fungi and fungus-like taxa: 2021. Mycosphere, 13(1): 53-453.
[71] Xavier Martins W F, Rodrigues B F. 2020. Identification of dominant arbuscular mycorrhizal fungi in different rice ecosystems. Agric Res, 9(1): 46-55.
[72] Yoneyama K, Yoneyama K, Takeuchi Y, Sekimoto H. 2007. Phosphorus deficiency in red clover promotes exudation of orobanchol, the signal for mycorrhizal symbionts and germination stimulant for root parasites. Planta, 225(4): 1031-1038.
PMID

相关文章 0

No related articles found!

编辑推荐

Metrics

阅读次数
全文


摘要

  • 摘要
  • 图/表
  • 参考文献
  • 相关文章
  • 编辑推荐
  • Metrics
回顶部
浙ICP备05004719号-15   公安备案号:33010302003355
版权所有 © 《Rice Science》编辑部
地址:浙江省杭州市体育场路359号 邮编:310006 电话:0571-63371017 E-mail:crrn@fy.hz.zn.cn; cjrs278@gmail.com
本系统由北京玛格泰克科技发展有限公司设计开发
总访问量: 今日访问: 在线人数: