Rice Science
  • 首页
  • 期刊介绍
  • 编委会
  • 学术伦理
  • 投稿指南
  • 期刊订阅
  • 联系我们
  • English

Rice Science ›› 2024, Vol. 31 ›› Issue (3): 251-268.DOI: 10.1016/j.rsci.2024.02.002

• • 上一篇    下一篇

  • 收稿日期:2023-10-16 接受日期:2024-02-02 出版日期:2024-05-28 发布日期:2024-06-04

RichHTML

PDF

可视化

0

摘要/Abstract

引用本文

. [J]. Rice Science, 2024, 31(3): 251-268.

使用本文

推荐

导出引用管理器 EndNote|Ris|BibTeX

链接本文: http://www.ricesci.org/CN/10.1016/j.rsci.2024.02.002

               http://www.ricesci.org/CN/Y2024/V31/I3/251

图/表 6

Fig. 1. Schematic diagram of the review article.

Fig. 1. Schematic diagram of the review article.

Table 1. Comparison of nutritional content of different glutinous rice.
Glutinous rice Country Main nutritional composition (Content) Reference
Black glutinous rice Indonesia Ash (1.19%), amylose (10.32%), and amylopectin (89.67%) Rini et al, 2019
Black glutinous rice Indonesia Amylopectin (95.27%) Amrinola et al, 2021
Black glutinous rice Thailand Anthocyanins (0.26 to 2.54 mg/g) Phonsakhan and Kong-Ngern, 2015
Brown glutinous rice China Total phenol (278.4 mg/g) Xu et al, 2021
Burirum Sahasin Thai Thailand Total anthocyanin (112.1 mg/kg) and total phenolic (1.148 mg/kg) Sompong et al, 2011
Dongjinchal Korea Potassium (44.5 mg/L) and calcium (3029.5 mg/L) Kang et al, 2010
Hwasunchal and Dongjinchal Korea Amylose (0%-2%), crude protein (13%), and fibre (11%) Kang et al, 2010; Gul et al, 2015
RD6 Thailand Protein (7.6%) and ash (0.1%) Anupapsamosorn and Charoenrein, 2015
Red glutinous rice Indonesia Amylopectin (94.94%) Amrinola et al, 2021
Tenuo 2072 China Total phenolic compounds (5.370 mg/g) and ferulic acid (0.194 mg/g) Wang et al, 2022
White glutinous rice Indonesia Amylopectin (94.38%) Amrinola et al, 2021
Yangzinuo 2101 China Calcium (44.94%) Xiong et al, 2022
Zinuo 18 China Calcium (29.65%) Xiong et al, 2022

Table 1. Comparison of nutritional content of different glutinous rice.

Glutinous rice Country Main nutritional composition (Content) Reference
Black glutinous rice Indonesia Ash (1.19%), amylose (10.32%), and amylopectin (89.67%) Rini et al, 2019
Black glutinous rice Indonesia Amylopectin (95.27%) Amrinola et al, 2021
Black glutinous rice Thailand Anthocyanins (0.26 to 2.54 mg/g) Phonsakhan and Kong-Ngern, 2015
Brown glutinous rice China Total phenol (278.4 mg/g) Xu et al, 2021
Burirum Sahasin Thai Thailand Total anthocyanin (112.1 mg/kg) and total phenolic (1.148 mg/kg) Sompong et al, 2011
Dongjinchal Korea Potassium (44.5 mg/L) and calcium (3029.5 mg/L) Kang et al, 2010
Hwasunchal and Dongjinchal Korea Amylose (0%-2%), crude protein (13%), and fibre (11%) Kang et al, 2010; Gul et al, 2015
RD6 Thailand Protein (7.6%) and ash (0.1%) Anupapsamosorn and Charoenrein, 2015
Red glutinous rice Indonesia Amylopectin (94.94%) Amrinola et al, 2021
Tenuo 2072 China Total phenolic compounds (5.370 mg/g) and ferulic acid (0.194 mg/g) Wang et al, 2022
White glutinous rice Indonesia Amylopectin (94.38%) Amrinola et al, 2021
Yangzinuo 2101 China Calcium (44.94%) Xiong et al, 2022
Zinuo 18 China Calcium (29.65%) Xiong et al, 2022
Fig. 2. Main cultivars of glutinous rice. A, Japonica glutinous rice. B, Indica glutinous rice.

Fig. 2. Main cultivars of glutinous rice. A, Japonica glutinous rice. B, Indica glutinous rice.

Table 2. Main volatiles and key odorants in different glutinous rice.
Glutinous rice Main volatile Key odorant Reference
Black glutinous rice Aldehydes and alcohols Pentanal, hexanal, heptanal, 2-pentylfuran, octanal, nonanal, (E)-2-octenal, nonanal, 1-octen-3-ol, decanal, (E)-2-nonenal, 1-octanol, and vanillin Sansenya and Wechakorn, 2021
Thai black glutinous rice Pyroline 2-Acetyl-1-pyrroline Sansenya et al, 2017
Thai glutinous rice Alcohols and aldehydes Hexanal, heptanal, and 3-methylbutanal Loyda et al, 2021
Thai glutinous rice Esters and alcohols Ethyl hexadecanoate, ethyl tetradecanoate, β-phenylethyl alcohol, and 3-(methylthio)-1-propanol Zou et al, 2022
White glutinous rice Aldehydes and alcohols iso-Amyl-alcohol, benzyl-alcohol, phenylethyl-alcohol, and 3-hydroxy-2-butanone Sulieman et al, 2019
White glutinous rice Esters and alcohols 2-Methoxy-4-vinylphenol, palmitic acid ethyl ester, and 4-ethyl-2-methoxyphenol Xu et al, 2020
White glutinous rice Esters and alcohols 2,3-Butanediol, 2-fenchanol, phenethyl alcohol, and terpinen-4-ol Liu et al, 2020
White glutinous rice Aldehydes and alcohols Hexanal, octanal, non-anal, (E)-2-octenal, 1-octen-3-ol, guaiacol, and vanillin Mohidem et al, 2022
White glutinous rice Aldehydes Hexanal, nonanal, octanal, trans-2-octenal, trans-2-nonenal, heptanal, decanal, (E,E)-2,4-nonadienal, (E,E)-2,4-decadienal, 2-pentyl-furan, 2-n-butylfuran, 1-octen-3-ol, 2-ethylhexyl acrylate, 2-decanone, and 2-nonen-4-one Hu et al, 2023
White and black glutinous rice, and Japanese rice Aldehydes and esters 1-Propanal, 1-propanol-2-methyl, 1-butanal-3-methyl, and acetic acid ethyl ester Wongsa et al, 2018

Table 2. Main volatiles and key odorants in different glutinous rice.

Glutinous rice Main volatile Key odorant Reference
Black glutinous rice Aldehydes and alcohols Pentanal, hexanal, heptanal, 2-pentylfuran, octanal, nonanal, (E)-2-octenal, nonanal, 1-octen-3-ol, decanal, (E)-2-nonenal, 1-octanol, and vanillin Sansenya and Wechakorn, 2021
Thai black glutinous rice Pyroline 2-Acetyl-1-pyrroline Sansenya et al, 2017
Thai glutinous rice Alcohols and aldehydes Hexanal, heptanal, and 3-methylbutanal Loyda et al, 2021
Thai glutinous rice Esters and alcohols Ethyl hexadecanoate, ethyl tetradecanoate, β-phenylethyl alcohol, and 3-(methylthio)-1-propanol Zou et al, 2022
White glutinous rice Aldehydes and alcohols iso-Amyl-alcohol, benzyl-alcohol, phenylethyl-alcohol, and 3-hydroxy-2-butanone Sulieman et al, 2019
White glutinous rice Esters and alcohols 2-Methoxy-4-vinylphenol, palmitic acid ethyl ester, and 4-ethyl-2-methoxyphenol Xu et al, 2020
White glutinous rice Esters and alcohols 2,3-Butanediol, 2-fenchanol, phenethyl alcohol, and terpinen-4-ol Liu et al, 2020
White glutinous rice Aldehydes and alcohols Hexanal, octanal, non-anal, (E)-2-octenal, 1-octen-3-ol, guaiacol, and vanillin Mohidem et al, 2022
White glutinous rice Aldehydes Hexanal, nonanal, octanal, trans-2-octenal, trans-2-nonenal, heptanal, decanal, (E,E)-2,4-nonadienal, (E,E)-2,4-decadienal, 2-pentyl-furan, 2-n-butylfuran, 1-octen-3-ol, 2-ethylhexyl acrylate, 2-decanone, and 2-nonen-4-one Hu et al, 2023
White and black glutinous rice, and Japanese rice Aldehydes and esters 1-Propanal, 1-propanol-2-methyl, 1-butanal-3-methyl, and acetic acid ethyl ester Wongsa et al, 2018
Fig. 3. Potential health benefits of glutinous rice.

Fig. 3. Potential health benefits of glutinous rice.

Table 3. Development of glutinous rice-based food products.
Food product Country of origin Description Processing method Reference
Ampiang Indonesia Flakes glutinous rice Roasting, flattening Amrinola et al, 2022
Butter cake Thailand Mixed with Hom-Mali and glutinous rice flours Pasting, gelatinisation Chueamchaitrakun et al, 2011
Dandelion wine China Mixed with dandelion powder, dried schisandra fruit, and glutinous rice Fermentation Wu et al, 2016
Dumpling China Made with glutinous rice flour and water Pasting, freezing Wang et al, 2019
Dumpling China Made from glutinous rice flour Annealing, freezing Shi et al, 2021
Hong Qu glutinous rice wine China Brewed from glutinous rice with fermentation starters Fermentation Lv et al, 2012
Hong Qu glutinous rice wine China Alcoholic beverage by fermenting cooked rice using starters Fermentation Huang et al, 2021
Hong Qu glutinous rice wine China Brewed from glutinous rice with fermentation starters Fermentation Liu et al, 2022
Jiu-niang China Sweet fermented glutinous rice Steaming, fermentation Huang et al, 2017
Khao Mao Thailand Pounded unripe glutinous rice Pounding, shredding Sattaka, 2019
Khao-Mak Thailand Sweetened glutinous rice with fermentation starter Fermentation Mongkontanawat and Lertnimitmongkol, 2015
Khao-Mak Thailand Fermented sweet rice with Look Pang (starter) Fermentation Wongsa et al, 2018
Kimchi South Korea Fermentation of vegetables with seasoning components Fermentation Baek et al, 2023
Kirimochi, arare, okaki, okowameshi, wagashi Japan Rice cakes, rice crackers, steamed rice with red beans, and rice pastries Hardening, heat gelatinisation Kobayashi and Nishimura, 2007
Ombus-ombus Indonesia Glutinous rice flour dough filled with sugar and coconut Pasting Sigalingging et al, 2021
Pulut serunding, tepung gomak, kuih dangai, pulut berinti, badak berendam Malaysia Sweet or savoury kuih or cakes Boiling, steaming, frying, baking Mahmood et al, 2018
Pyracantha rice wine China Glutinous rice fermented with Pyracantha fortuneana fruit Fermentation Wang et al, 2021
Rice noodle, rice cracker, rice snack Thailand Pregelatinised rice flour Extrusion cooking Sompong et al, 2011
Tang-yuan China Made of glutinous rice shaped into ball Hardening Wang et al, 2022
Vinasse China Alcoholic beverages fermented with glutinous rice Fermentation Situ et al, 2019
Waxy rice flour South Korea Thickener for sauces and gravies, tenderising agent in frozen foods Starch gelatinisation Kang et al, 2010

Table 3. Development of glutinous rice-based food products.

Food product Country of origin Description Processing method Reference
Ampiang Indonesia Flakes glutinous rice Roasting, flattening Amrinola et al, 2022
Butter cake Thailand Mixed with Hom-Mali and glutinous rice flours Pasting, gelatinisation Chueamchaitrakun et al, 2011
Dandelion wine China Mixed with dandelion powder, dried schisandra fruit, and glutinous rice Fermentation Wu et al, 2016
Dumpling China Made with glutinous rice flour and water Pasting, freezing Wang et al, 2019
Dumpling China Made from glutinous rice flour Annealing, freezing Shi et al, 2021
Hong Qu glutinous rice wine China Brewed from glutinous rice with fermentation starters Fermentation Lv et al, 2012
Hong Qu glutinous rice wine China Alcoholic beverage by fermenting cooked rice using starters Fermentation Huang et al, 2021
Hong Qu glutinous rice wine China Brewed from glutinous rice with fermentation starters Fermentation Liu et al, 2022
Jiu-niang China Sweet fermented glutinous rice Steaming, fermentation Huang et al, 2017
Khao Mao Thailand Pounded unripe glutinous rice Pounding, shredding Sattaka, 2019
Khao-Mak Thailand Sweetened glutinous rice with fermentation starter Fermentation Mongkontanawat and Lertnimitmongkol, 2015
Khao-Mak Thailand Fermented sweet rice with Look Pang (starter) Fermentation Wongsa et al, 2018
Kimchi South Korea Fermentation of vegetables with seasoning components Fermentation Baek et al, 2023
Kirimochi, arare, okaki, okowameshi, wagashi Japan Rice cakes, rice crackers, steamed rice with red beans, and rice pastries Hardening, heat gelatinisation Kobayashi and Nishimura, 2007
Ombus-ombus Indonesia Glutinous rice flour dough filled with sugar and coconut Pasting Sigalingging et al, 2021
Pulut serunding, tepung gomak, kuih dangai, pulut berinti, badak berendam Malaysia Sweet or savoury kuih or cakes Boiling, steaming, frying, baking Mahmood et al, 2018
Pyracantha rice wine China Glutinous rice fermented with Pyracantha fortuneana fruit Fermentation Wang et al, 2021
Rice noodle, rice cracker, rice snack Thailand Pregelatinised rice flour Extrusion cooking Sompong et al, 2011
Tang-yuan China Made of glutinous rice shaped into ball Hardening Wang et al, 2022
Vinasse China Alcoholic beverages fermented with glutinous rice Fermentation Situ et al, 2019
Waxy rice flour South Korea Thickener for sauces and gravies, tenderising agent in frozen foods Starch gelatinisation Kang et al, 2010

参考文献 88

[1] Ahmad Shakri A N, Kasim K F, Rukunudin I B. 2021. Chemical compositions and physical properties of selected Malaysian rice: A review. IOP Conf Ser: Earth Environ Sci, 765(1): 012024.
[2] Amrinola W, Sitanggang A B, Kusnandar F, Budijanto S E. 2021. Characterization of three cultivars of Indonesian glutinous rice: A basis for developing rice-based functional food. Ann Univ Dunarea Jos Galati, F VI-Food Technol, 45(1): 141-156.
[3] Amrinola W, Sitanggang A B, Kusnandar F, Budijanto S. 2022. Characterization of pigmented and non-pigmented flakes glutinous rice (ampiang) on chemical compositions, free fatty acids compositions, amino acids compositions, dietary fiber content, and antioxidant properties. Food Sci Technol, 42: e86621.
[4] Anupapsamosorn S, Charoenrein S. 2015. Physicochemical properties of glutinous rice in the presence of alkali and borax. Starch-Starke, 67(11/12): 930-936.
[5] Baek J H, Kim K H, Han D M, Lee S H, Jeon C O. 2023. Effects of glutinous rice paste and fish sauce on kimchi fermentation. LWT, 173: 114253.
[6] Baudoin W, Nono-Womdim R, Lutaladio N, Hodder A, Castilla N, Leonardi C, Pascale S, Qaryouti M, Duffy R. 2013. Good Agricultural Practices for greenhouse vegetable crops: Principles for Mediterranean climate areas. In: FAO Plant Production and Protection Paper. Rome, Italy: Agricultural and Food Sciences, Environmental Science.
[7] Behera G, Sutar P P. 2018. A comprehensive review of mathematical modeling of paddy parboiling and drying: Effects of modern techniques on process kinetics and rice quality. Trends Food Sci Technol, 75: 206-230.
[8] Chueamchaitrakun P, Chompreeda P, Haruthaithanasan V, Suwonsichon T, Kasemsamran S. 2011. Physical properties of butter cake made from mixed hom-mali and glutinous rice flours. Kasetsart J, 45(2): 295-304.
[9] Custodio M C, Cuevas R P, Ynion J, Laborte A G, Velasco M L, Demont M. 2019. Rice quality: How is it defined by consumers, industry, food scientists, and geneticists? Trends Food Sci Technol, 92: 122-137.
[10] Fuloria S, Mehta J, Talukdar M P, Sekar M, Gan S H, Subramaniyan V, Rani N N I M, Begum M Y, Chidambaram K, Nordin R, Maziz M N H, Sathasivam K V, Lum P T, Fuloria N K. 2022. Synbiotic effects of fermented rice on human health and wellness: A natural beverage that boosts immunity. Front Microbiol, 13: 950913.
[11] Gong M, Zhou Z L, Liu S P, Zhu S H, Li G Q, Zhong F, Mao J. 2021. Dynamic changes in physico-chemical attributes and volatile compounds during fermentation of Zhenjiang vinegars made with glutinous and non-glutinous japonica rice. J Cereal Sci, 100: 103246.
[12] Gul K, Yousuf B, Singh A K, Singh P, Wani A A. 2015. Rice bran: Nutritional values and its emerging potential for development of functional food: A review. Bioact Carbohydr Diet Fibre, 6(1): 24-30.
[13] Hanifa A P, Millner J P, Mc Gill C R M, Sjahril R. 2020. Total anthocyanin, flavonoid and phenolic content of pigmented rice landraces from South Sulawesi. IOP Conf Ser: Earth Environ Sci, 484(1): 012036.
[14] Hapsari A H, Eun J B. 2016. Microstructure of olbyeossal, partially milled parboiled glutinous rice made by modified parboiling method. Food Sci Biotechnol, 25(2): 503-507.
[15] Hapsari A H, Kim S J, Eun J B. 2016. Physical characteristics of parboiled Korean glutinous rice (Olbyeossal) using a modified method. LWT Food Sci Technol, 68: 499-505.
[16] Hu K, Chen D Y, Sun Z D. 2022. Structures, physicochemical properties, and hypoglycemic activities of soluble dietary fibers from white and black glutinous rice bran: A comparative study. Food Res Int, 159: 111423.
[17] Hu X Q, Lu L, Guo Z L, Zhu Z W. 2020. Volatile compounds, affecting factors and evaluation methods for rice aroma: A review. Trends Food Sci Technol, 97: 136-146.
[18] Hu X Q, Fang C Y, Zhang W X, Lu L, Guo Z L, Li S M, Chen M X. 2023. Change in volatiles, soluble sugars and fatty acids of glutinous rice, japonica rice and indica rice during storage. LWT, 174: 114416.
[19] Huang L, Chen X H, Rui X, Li W, Li T, Xu X, Dong M S. 2017. Use of fermented glutinous rice as a natural enzyme cocktail for improving dough quality and bread staling. RSC Adv, 7(19): 11394-11402.
[20] Huang Y Y, Liang Z C, Lin X Z, He Z G, Ren X Y, Li W X, Molnár I. 2021. Fungal community diversity and fermentation characteristics in regional varieties of traditional fermentation starters for Hong Qu glutinous rice wine. Food Res Int, 141: 110146.
[21] Jayaprakash G, Bains A, Chawla P, Fogarasi M, Fogarasi S. 2022. A narrative review on rice proteins: Current scenario and food industrial application. Polymers, 14(15): 3003.
[22] Jiang W, Zhu M, Li Y, Wei J L. 2019. Research on the digestibility of glutinous rice starch based on high hydrostatic pressure technology. IOP Conf Ser: Earth Environ Sci, 295(4): 042096.
[23] Kang M Y, Rico C, Lee S C. 2010. Physicochemical properties of eight popular glutinous rice varieties in Korea. Plant Prod Sci, 13(2): 177-184.
[24] Kasote D, Tiozon R N, Sartagoda K J D, Itagi H, Roy P, Kohli A, Regina A, Sreenivasulu N. 2021. Food processing technologies to develop functional foods with enriched bioactive phenolic compounds in cereals. Front Plant Sci, 12: 771276.
[25] Kobayashi K, Nishimura M. 2007. Waxy rice mutants with unique processing properties for waxy rice breeding. Breed Sci, 57(2): 175-180.
[26] Laokuldilok T, Kanha N. 2015. Effects of processing conditions on powder properties of black glutinous rice (Oryza sativa L.) bran anthocyanins produced by spray drying and freeze drying. LWT Food Sci Technol, 64(1): 405-411.
[27] Li C M, You Y X, Chen D, Gu Z B, Zhang Y Z, Holler T P, Ban X F, Hong Y, Cheng L, Li Z F. 2021. A systematic review of rice noodles: Raw material, processing method and quality improvement. Trends Food Sci Technol, 107: 389-400.
[28] Li H Y, Yan S, Yang L, Xu M H, Ji J Y, Mao H J, Song Y J, Wang J, Sun B G. 2021. Starch gelatinization in the surface layer of rice grains is crucial in reducing the stickiness of parboiled rice. Food Chem, 341: 128202.
[29] Liu A Q, Yang X, Guo Q Y, Li B G, Zheng Y, Shi Y Z, Zhu L. 2022. Microbial communities and flavor compounds during the fermentation of traditional Hong Qu glutinous rice wine. Foods, 11(8): 1097.
[30] Liu Z B, Wang Z Y, Sun J Y, Ni L. 2020. The dynamics of volatile compounds and their correlation with the microbial succession during the traditional solid-state fermentation of Gutian Hong Qu glutinous rice wine. Food Microbiol, 86: 103347.
[31] Loyda C, Singanusong R, Jaranrattanasri A, Tochampa W. 2021. Physicochemical characterization of broken rice and analysis of its volatile compounds. Walailak J Sci Technol, 18(6): 9136.
[32] Loypimai P, Moongngarm A, Chottanom P, Moontree T. 2015. Ohmic heating-assisted extraction of anthocyanins from black rice bran to prepare a natural food colourant. Innov Food Sci Emerg Technol, 27: 102-110.
[33] Lv X C, Weng X, Zhang W, Rao P F, Ni L. 2012. Microbial diversity of traditional fermentation starters for Hong Qu glutinous rice wine as determined by PCR-mediated DGGE. Food Control, 28(2): 426-434.
[34] Mahmood A, Mei L Y, Md Noh M F, Yusof H M. 2018. Nutrient composition of five selected glutinous rice-based traditional Malaysian kuih. Malays Appl Biol, 47(4): 71-77.
[35] Mapoung S, Semmarath W, Arjsri P, Thippraphan P, Srisawad K, Umsumarng S, Phromnoi K, Jamjod S, Prom-U-Thai C, Dejkriengkraikul P. 2023. Comparative analysis of bioactive-phytochemical characteristics, antioxidants activities, and anti-inflammatory properties of selected black rice germ and bran (Oryza sativa L.) varieties. Eur Food Res Technol, 249(2): 451-464.
[36] Mohidem N A, Hashim N, Shamsudin R, Man H C. 2022. Rice for food security: Revisiting its production, diversity, rice milling process and nutrient content. Agriculture, 12(6): 741.
[37] Mongkontanawat N, Lertnimitmongkol W. 2015. Product development of sweet fermented rice (Khao-Mak) from germinated native black glutinous rice. J Agric Technol, 11(2): 501-515.
[38] Müller A, Nunes M T, Maldaner V, Coradi P C, de Moraes R S, Martens S, Leal A F, Pereira V F, Marin C K. 2022. Rice drying, storage and processing: Effects of post-harvest operations on grain quality. Rice Sci, 29(1): 16-30.
[39] Ngamdee P, Jiamyangyuen S, Parkin K L. 2016. Phase II enzyme induction and anti-inflammatory effects of crude extracts and secondary fractions obtained from bran from five black glutinous rice cultivars. Int J Food Sci Technol, 51(2): 333-341.
[40] Oupathumpanont O, Wisansakkul S. 2021. Development of modified glutinous rice powder by the pregelatinization method to improve the quality of cooked high amylose rice. J Food Nutr Res, 9(7): 375-381.
[41] Paosila C, Rumpagaporn P, Na Jom K. 2020. Investigation of hydrolyzed ceramide in Thai color rice (Oryza sativa L.) and by-products. Food Res, 4: 56-64.
[42] Peanparkdee M, Iwamoto S. 2019. Bioactive compounds from by-products of rice cultivation and rice processing: Extraction and application in the food and pharmaceutical industries. Trends Food Sci Technol, 86: 109-117.
[43] Pereira J, Hu H Y, Xing L J, Zhang W G, Zhou G H. 2019. Influence of rice flour, glutinous rice flour, and tapioca starch on the functional properties and quality of an emulsion-type cooked sausage. Foods, 9(1): 9.
[44] Phonsakhan W, Kong-Ngern K. 2015. A comparative proteomic study of white and black glutinous rice leaves. Electron J Biotechnol, 18(1): 29-34.
[45] Poomanee W, Wattananapakasem I, Panjan W, Kiattisin K. 2021. Optimizing anthocyanins extraction and the effect of cold plasma treatment on the anti-aging potential of purple glutinous rice (Oryza sativa L.) extract. Cereal Chem, 98(3): 571-582.
[46] Qiu S, Abbaspourrad A, Padilla-Zakour O I. 2022. Prevention of the retrogradation of glutinous rice gel and sweetened glutinous rice cake utilizing pulsed electric field during refrigerated storage. Foods, 11(9): 1306.
[47] Ramos M, Laveriano E, San Sebastián L, Perez M, Jiménez A, Lamuela-Raventos R M, Garrigós M C, Vallverdú-Queralt A. 2023. Rice straw as a valuable source of cellulose and polyphenols: Applications in the food industry. Trends Food Sci Technol, 131: 14-27.
[48] Rattanamechaiskul C, Junka N, Wongs-Aree C. 2017. Textural property improvement of black sticky rice during postharvest drying by a fluidization technique. Int Food Res J, 24(3): 1192-1198.
[49] Rini, Yenrina R, Anggraini T, Chania N E. 2019. The effects of various way of processing black glutinous rice (Oryza sativa L. processing var glutinosa) on digestibility and energy value of the products. IOP Conf Ser: Earth Environ Sci, 327(1): 012013.
[50] Saleh A S M, Wang P, Wang N, Yang L, Xiao Z G. 2019. Brown rice versus white rice: Nutritional quality, potential health benefits, development of food products, and preservation technologies. Compr Rev Food Sci Food Saf, 18(4): 1070-1096.
[51] Sansenya S, Hua Y L, Chumanee S, Winyakul C. 2017. Effect of gamma irradiation on the 2-acetyl-1-pyrroline content during growth of Thai black glutinous rice (Upland rice). Aust J Crop Sci, 11(5): 631-637.
[52] Sansenya S, Wechakorn K. 2021. Effect of rainfall and altitude on the 2-acetyl-1-pyrroline and volatile compounds profile of black glutinous rice (Thai upland rice). J Sci Food Agric, 101(14): 5784-5791.
[53] Sattaka P. 2019. Potential development of glutinous rice community towards new agricultural culture tourisms in upper northeastern Thailand. J Int Soc Southeast Asian Agric Sci, 25(1): 92-103.
[54] Sen S, Chakraborty R, Kalita P. 2020. Rice - not just a staple food: A comprehensive review on its phytochemicals and therapeutic potential. Trends Food Sci Technol, 97: 265-285.
[55] Seow E K, Gan C Y, Tan T C, Lee L K, Easa A M. 2019. Influence of honey types and heating treatment on the rheological properties of glutinous rice flour gels. J Food Sci Technol, 56(4): 2105-2114.
[56] Setyaningsih W, Hidayah N, Saputro I E, Lovillo M P, Barroso C G. 2015. Study of glutinous and non-glutinous rice (Oryza Sativa) varieties on their antioxidant compounds. Internationl Conference on Plant, Marine and Environmental Sciences (PMES-2015). Jannary 1-2, 2015. Kuala Lumpur, Malyaysia.
[57] Setyawati Y D, Ahsan S F, Ong L K, Soetaredjo F E, Ismadji S, Ju Y H. 2016. Production of glutinous rice flour from broken rice via ultrasonic assisted extraction of amylose. Food Chem, 203: 158-164.
[58] Shahidi F, Yeo J. 2018. Bioactivities of phenolics by focusing on suppression of chronic diseases: A review. Int J Mol Sci, 19(6): 1573.
[59] Shi C M, Zhu S, Ding G Q, Du C D, Huang D J, Li Y. 2021. Modulating structure and properties of glutinous rice flour and its dumpling products by annealing. Processes, 9(12): 2248.
[60] Sigalingging D, Sinaga H, Yusraini E. 2021. Utilization of purple sweet potato as a partial substitute glutinous rice flour in the ombus-ombus cake from North Tapanuli traditional food. IOP Conf Ser: Earth Environ Sci, 782: 032105.
[61] Situ W B, Song X L, Luo S C, Yang J W. 2019. Digestibility and structures of vinasse starches with different types of raw rice and fermented leaven. Food Chem, 294: 96-103.
[62] So V, Pocasap P, Sutthanut K, Sethabouppha B, Thukhammee W, Wattanathorn J, Weerapreeyakul N. 2020. Effect of harvest age on total phenolic, total anthocyanin content, bioactive antioxidant capacity and antiproliferation of black and white glutinous rice sprouts. Appl Sci, 10(20): 7051.
[63] Sompong R, Siebenhandl-Ehn S, Berghofer E, Schoenlechner R. 2011. Extrusion cooking properties of white and coloured rice varieties with different amylose content. Starch-Starke, 63(2): 55-63.
[64] Srisompun O, Kaoint S, Khongritti W, Songsrirod N. 2013. An analysis on the efficiency of glutinous rice production in different cropping systems: The case of rainfed area in Northeast Thailand. Asian J Agric Res, 7(1): 26-34.
[65] Sulieman A A, Zhu K X, Peng W, Hassan H A, Obadi M, Ahmed M I, Zhou H M. 2019. Effect of Agaricus bisporus polysaccharide flour and inulin on the antioxidant and structural properties of gluten-free breads. J Food Meas Charact, 13(3): 1884-1897.
[66] Summpunn P, Panpipat W, Manurakchinakorn S, Bhoopong P, Cheong L Z, Chaijan M. 2022. Comparative analysis of antioxidant compounds and antioxidative properties of Thai indigenous rice: Effects of rice variety and processing condition. Molecules, 27(16): 5180.
[67] Surin S, You S G, Seesuriyachan P, Muangrat R, Wangtueai S, Jambrak A R, Phongthai S, Jantanasakulwong K, Chaiyaso T, Phimolsiripol Y. 2020. Optimization of ultrasonic-assisted extraction of polysaccharides from purple glutinous rice bran (Oryza sativa L.) and their antioxidant activities. Sci Rep, 10(1): 10410.
[68] Suttiarporn P, Chumpolsri W, Mahatheeranont S, Luangkamin S, Teepsawang S, Leardkamolkarn V. 2015. Structures of phytosterols and triterpenoids with potential anti-cancer activity in bran of black non-glutinous rice. Nutrients, 7(3): 1672-1687.
[69] Thamacharoensuk T, Boonsom T, Tanasupawat S, Dumkliang E. 2020. Optimization of microencapsulated Lactobacillus rhamnosus GG from whey protein and glutinous rice starch by spray drying. Key Eng Mater, 859: 265-270.
[70] Tharanon W, Peerapattana J. 2020. The effects of ball mill processing on the physicochemical properties of glutinous rice starch. Thai J Pharm Sci, 44(2): 91-98.
[71] Thomas R, Bhat R, Kuang Y T, Abdullah W N W. 2014. Functional and pasting properties of locally grown and imported exotic rice varieties of Malaysia. Food Sci Technol Res, 20(2): 469-477.
[72] Verma D K, Srivastav P P. 2020. Bioactive compounds of rice (Oryza sativa L.): Review on paradigm and its potential benefit in human health. Trends Food Sci Technol, 97: 355-365.
[73] Wang H W, Xiao N Y, Wang X T, Zhao X W, Zhang H. 2019. Effect of pregelatinized starch on the characteristics, microstructures, and quality attributes of glutinous rice flour and dumplings. Food Chem, 283: 248-256.
[74] Wang X Y, Yang H Y, Tian R G, Mo Y W, Dong L J, Shen C, Han X Y. 2021. Effect of the joint fermentation of pyracantha powder and glutinous rice on the physicochemical characterization and functional evaluation of rice wine. Food Sci Nutr, 9(11): 6099-6108.
[75] Wang Y, Liu S J, Yang X J, Zhang J, Zhang Y Y, Liu X L, Zhang H, Wang H W. 2022. Effect of germination on nutritional properties and quality attributes of glutinous rice flour and dumplings. J Food Compos Anal, 108: 104440.
[76] Wiruch P, Naruenartwongsakul S, Chalermchart Y. 2019. Textural properties, resistant starch, and in vitro starch digestibility as affected by parboiling of brown glutinous rice in a retort pouch. Curr Res Nutr Food Sci, 7(2): 555-567.
[77] Wongsa J, Rungsardthong V, Yasutomo T. 2018. Production and analysis of volatile flavor compounds in sweet fermented rice (Khao Mak). MATEC Web Conf, 192: 03044.
[78] Wu J X, Sun G R, Cao X L, Han Y T, Sun X S, Zhang H, Zhang L, Dang A. 2016. Optimization of processing technology of compound dandelion wine. MATEC Web Conf, 62: 02005.
[79] Xiong Q Q, Zhang J, Shi Q, Zhang Y H, Sun C H, Li A, Lu W J, Hu J L, Zhou N B, Wei H Y, Wang S, Zhang H C, Zhu J Y. 2022. The key metabolites associated with nutritional components in purple glutinous rice. Food Res Int, 160: 111686.
[80] Xu X, Hu W X, Zhou S D, Tu C H, Xia X D, Zhang J M, Dong M S. 2019. Increased phenolic content and enhanced antioxidant activity in fermented glutinous rice supplemented with Fu brick tea. Molecules, 24(4): 671.
[81] Xu X, Zhou S D, Julian McClements D, Huang L, Meng L, Xia X D, Dong M S. 2020. Multistarter fermentation of glutinous rice with Fu brick tea: Effects on microbial, chemical, and volatile compositions. Food Chem, 309: 125790.
[82] Xu Y, Jin Y M, Su J J, Yang N, Xu X M, Jin Z Y, Cui B, Wu F F. 2021. Changes in the nutritional value, flavor, and antioxidant activity of brown glutinous rice during fermentation. Food Biosci, 43: 101273.
[83] Yan C J, Tian Z X, Fang Y W, Yang Y C, Li J, Zeng S Y, Gu S L, Xu C W, Tang S Z, Gu M H. 2011. Genetic analysis of starch paste viscosity parameters in glutinous rice (Oryza sativa L.). Theor Appl Genet, 122(1): 63-76.
[84] Zhang H, Bai Y H, Zhao X W, Duan R Q. 2016. Probing water desorption mechanism of glutinous rice flour with four theoretical isotherm models: A comparative study. Am J Food Technol, 11(6): 264-272.
[85] Zhao X W, Zhang H, Li W M, Li X K, Fan W, Zhang Y Y. 2020. Langmuir-diffusion model: Its modification and further application to glutinous rice flour particles. J Food Process Eng, 43(9): e13470.
[86] Zhu J Y, Shi Q, Sun C H, Hu J L, Zhou N B, Wei H Y, He H H, Zhou D H, Zhang H C, Xiong Q Q. 2022. Processing affects (decreases or increases) metabolites, flavonoids, black rice pigment, and total antioxidant capacity of purple glutinous rice grains. Food Chem X, 16: 100492.
[87] Zou J, Ge Y N, Zhang Y, Ding M, Li K, Lin Y L, Chang X D, Cao F, Qian Y K. 2022. Changes in flavor- and aroma-related fermentation metabolites and antioxidant activity of glutinous rice wine supplemented with Chinese chestnut (Castanea mollissima blume). Fermentation, 8(6): 266.
[88] Zou J, Hu Y H, Li K, Liu Y, Li M, Pan X Y, Chang X D. 2023. Chestnuts in fermented rice beverages increase metabolite diversity and antioxidant activity while reducing cellular oxidative damage. Foods, 12(1): 164.

相关文章 0

No related articles found!

编辑推荐

Metrics

阅读次数
全文


摘要

  • 摘要
  • 图/表
  • 参考文献
  • 相关文章
  • 编辑推荐
  • Metrics
回顶部
浙ICP备05004719号-15   公安备案号:33010302003355
版权所有 © 《Rice Science》编辑部
地址:浙江省杭州市体育场路359号 邮编:310006 电话:0571-63371017 E-mail:crrn@fy.hz.zn.cn; cjrs278@gmail.com
本系统由北京玛格泰克科技发展有限公司设计开发
总访问量: 今日访问: 在线人数: