Rice Science
  • 首页
  • 期刊介绍
  • 编委会
  • 学术伦理
  • 投稿指南
  • 期刊订阅
  • 联系我们
  • English

Rice Science ›› 2025, Vol. 32 ›› Issue (4): 472-474.DOI: 10.1016/j.rsci.2025.04.008

• • 上一篇    下一篇

  • 收稿日期:2024-12-25 接受日期:2025-04-18 出版日期:2025-07-28 发布日期:2025-08-06

RichHTML

PDF

可视化

0

摘要/Abstract

引用本文

. [J]. Rice Science, 2025, 32(4): 472-474.

使用本文

推荐

导出引用管理器 EndNote|Ris|BibTeX

链接本文: http://www.ricesci.org/CN/10.1016/j.rsci.2025.04.008

               http://www.ricesci.org/CN/Y2025/V32/I4/472

图/表 1

Table 1. Information of dispersed repeats (DRs) on each chromosome (Chr.) in the Oryza sativa genome.
Chr. Size (bp) Forward strand (bp) Reverse strand (bp) Sum strand (bp) Coverage length by DR (bp) Coverage percentage by DR (%)
1 43 270 923 58 622 57 948 116 570 28 506 833 65.9
2 35 937 250 46 078 46 875 92 953 23 016 863 64.0
3 36 413 819 47 082 46 919 94 001 23 406 275 64.3
4 35 502 694 47 810 48 794 96 604 24 046 268 67.7
5 29 958 434 41 084 41 227 82 311 20 261 347 67.6
6 31 248 787 42 039 41 226 83 265 21 116 089 67.6
7 29 697 621 39 747 38 891 78 638 19 851 381 66.8
8 28 443 022 38 406 37 968 76 374 19 077 932 67.1
9 23 012 720 30 346 30 227 60 573 15 143 124 65.8
10 23 207 287 31 599 32 542 64 141 15 890 885 68.5
11 29 021 106 38 552 37 491 76 043 19 485 282 67.1
12 27 531 856 35 397 35 869 71 266 18 111 191 65.8
Total 373 245 519 496 762 495 977 992 739 247 913 470 66.4

Table 1. Information of dispersed repeats (DRs) on each chromosome (Chr.) in the Oryza sativa genome.

Chr. Size (bp) Forward strand (bp) Reverse strand (bp) Sum strand (bp) Coverage length by DR (bp) Coverage percentage by DR (%)
1 43 270 923 58 622 57 948 116 570 28 506 833 65.9
2 35 937 250 46 078 46 875 92 953 23 016 863 64.0
3 36 413 819 47 082 46 919 94 001 23 406 275 64.3
4 35 502 694 47 810 48 794 96 604 24 046 268 67.7
5 29 958 434 41 084 41 227 82 311 20 261 347 67.6
6 31 248 787 42 039 41 226 83 265 21 116 089 67.6
7 29 697 621 39 747 38 891 78 638 19 851 381 66.8
8 28 443 022 38 406 37 968 76 374 19 077 932 67.1
9 23 012 720 30 346 30 227 60 573 15 143 124 65.8
10 23 207 287 31 599 32 542 64 141 15 890 885 68.5
11 29 021 106 38 552 37 491 76 043 19 485 282 67.1
12 27 531 856 35 397 35 869 71 266 18 111 191 65.8
Total 373 245 519 496 762 495 977 992 739 247 913 470 66.4

参考文献 18

[1] Bao W D, Kojima K K, Kohany O. 2015. Repbase Update, a database of repetitive elements in eukaryotic genomes. Mob DNA, 6: 11.
[2] Bariah I, Keidar-Friedman D, Kashkush K. 2020. Where the wild things are: Transposable elements as drivers of structural and functional variations in the wheat genome. Front Plant Sci, 11: 585515.
[3] Crooks G E, Hon G, Chandonia J M, et al. 2004. WebLogo: A sequence logo generator. Genome Res, 14(6): 1188-1190.
[4] Durán-Meza G, López-García J, del Río-Correa J L. 2019. The self-similarity properties and multifractal analysis of DNA sequences. Appl Math Nonlinear Sci, 4(1): 267-278.
[5] Flynn J M, Hubley R, Goubert C, et al. 2020. RepeatModeler2 for automated genomic discovery of transposable element families. Proc Natl Acad Sci USA, 117(17): 9451-9457.
[6] Gu W J, Castoe T A, Hedges D J, et al. 2008. Identification of repeat structure in large genomes using repeat probability clouds. Anal Biochem, 380(1): 77-83.
[7] Jeong H H, Yalamanchili H K, Guo C W, et al. 2018. An ultra-fast and scalable quantification pipeline for transposable elements from next generation sequencing data. Pac Symp Biocomput, 23: 168-179.
[8] Kohany O, Gentles A J, Hankus L, et al. 2006. Annotation, submission and screening of repetitive elements in Repbase: RepbaseSubmitter and Censor. BMC Bioinformatics, 7: 474.
[9] Korotkov E, Suvorova Y, Kostenko D, et al. 2023. Search for dispersed repeats in bacterial genomes using an iterative procedure. Int J Mol Sci, 24(13): 10964.
[10] Li R Q, Ye J, Li S G, et al. 2005. ReAS: Recovery of ancestral sequences for transposable elements from the unassembled reads of a whole genome shotgun. PLoS Comput Biol, 1(4): e43.
[11] Nicolas J, Tempel S, Fiston-Lavier A S, et al. 2022. Finding and characterizing repeats in plant genomes. Methods Mol Biol, 2443: 327-385.
[12] Orozco-Arias S, Isaza G, Guyot R. 2019. Retrotransposons in plant genomes: Structure, identification, and classification through bioinformatics and machine learning. Int J Mol Sci, 20(15): 3837.
[13] Rudenko V, Korotkov E. 2024. Study of dispersed repeats in the Cyanidioschyzon merolae genome. Int J Mol Sci, 25(8): 4441.
[14] Schnable P S, Ware D, Fulton R S, et al. 2009. The B73 maize genome: Complexity, diversity, and dynamics. Science, 326: 1112-1115.
[15] Storer J, Hubley R, Rosen J, et al. 2021. The Dfam community resource of transposable element families, sequence models, and genome annotations. Mob DNA, 12(1): 2.
[16] Storer J M, Hubley R, Rosen J, et al. 2022. Methodologies for the de novo discovery of transposable element families. Genes, 13(4): 709.
[17] Sun X P, Xiang Y L, Dou N N, et al. 2023. The role of transposon inverted repeats in balancing drought tolerance and yield-related traits in maize. Nat Biotechnol, 41: 120-127.
[18] Yin C C. 2017. Identification of repeats in DNA sequences using nucleotide distribution uniformity. J Theor Biol, 412: 138-145.

相关文章 0

No related articles found!

编辑推荐

Metrics

阅读次数
全文


摘要

  • 摘要
  • 图/表
  • 参考文献
  • 相关文章
  • 编辑推荐
  • Metrics
回顶部
浙ICP备05004719号-15   公安备案号:33010302003355
版权所有 © 《Rice Science》编辑部
地址:浙江省杭州市体育场路359号 邮编:310006 电话:0571-63371017 E-mail:crrn@fy.hz.zn.cn; cjrs278@gmail.com
本系统由北京玛格泰克科技发展有限公司设计开发
总访问量: 今日访问: 在线人数: