Rice Science
  • 首页
  • 期刊介绍
  • 编委会
  • 学术伦理
  • 投稿指南
  • 期刊订阅
  • 联系我们
  • English

Rice Science ›› 2016, Vol. 23 ›› Issue (6): 334-338.DOI: 10.1016/j.rsci.2016.05.004

• • 上一篇    下一篇

  • 收稿日期:2016-02-25 接受日期:2016-05-06 出版日期:2016-12-12 发布日期:2016-08-10

RichHTML

PDF

可视化

0

摘要/Abstract

引用本文

. [J]. Rice Science, 2016, 23(6): 334-338.

使用本文

0
    /   推荐

导出引用管理器 EndNote|Ris|BibTeX

链接本文: http://www.ricesci.org/CN/10.1016/j.rsci.2016.05.004

               http://www.ricesci.org/CN/Y2016/V23/I6/334

图/表 4

Fig. 1. PCR products using four pairs of primers. A, PCR product of 499 bp using primer pair 1 (F1); B, PCR product of 828 bp using primer pair 2 (F2); C, PCR product of 603 bp using primer pair 3 (F3); D, PCR product of 668 bp using primer pair 4 (F4). M, 1 kb ladder marker; Lanes 1 to 9, Nipponbare, Nep Non Tre, Chiem Cu, Re Nuoc, Hom Rau, Nep Oc, Ngoi, Dau An Do and Nep Deo Dang, respectively.

Fig. 1. PCR products using four pairs of primers. A, PCR product of 499 bp using primer pair 1 (F1); B, PCR product of 828 bp using primer pair 2 (F2); C, PCR product of 603 bp using primer pair 3 (F3); D, PCR product of 668 bp using primer pair 4 (F4). M, 1 kb ladder marker; Lanes 1 to 9, Nipponbare, Nep Non Tre, Chiem Cu, Re Nuoc, Hom Rau, Nep Oc, Ngoi, Dau An Do and Nep Deo Dang, respectively.

Fig. 2. Polymorphism in OsHKT1 sequence. A, Schematic representation of polymorphism locations in the protein. The position of changes in amino acid are indicated with a star; MPM, transmembrane-pore loop-transmembrane domain. B, Nucleotide sequence of OsHKT1 was compared among the cultivars with the Nipponbare sequence. Non-synonymous substitutions are indicated in dark grey, and the encoded amino acids are listed above. Synonymous substitutions are indicated in light grey. G17V means that glycine is replaced by valine; D403E means that aspartic acid is replaced by glutamic acid.

Fig. 2. Polymorphism in OsHKT1 sequence. A, Schematic representation of polymorphism locations in the protein. The position of changes in amino acid are indicated with a star; MPM, transmembrane-pore loop-transmembrane domain. B, Nucleotide sequence of OsHKT1 was compared among the cultivars with the Nipponbare sequence. Non-synonymous substitutions are indicated in dark grey, and the encoded amino acids are listed above. Synonymous substitutions are indicated in light grey. G17V means that glycine is replaced by valine; D403E means that aspartic acid is replaced by glutamic acid.

Fig. 3. 3D ribbon model of OsHKT1 protein visualized by Discovery studio 4.5 visualizer. A, 3D ribbon model of Ni-OsHKT1 protein visualized from the top that shows the pore. Four residues in Ser-Gly-Gly-Gly ion selection motif are labeled and Na+ ion is indicated as a black round circle at the center of the pore. B, Visualization of Ho-OsHKT1 transporter from the side that shows the zoom in D403E variance position (green) (G17V substitution belongs to the signal peptide so they are not modeled in 3D structure of OsHKT1 transporter).

Fig. 3. 3D ribbon model of OsHKT1 protein visualized by Discovery studio 4.5 visualizer. A, 3D ribbon model of Ni-OsHKT1 protein visualized from the top that shows the pore. Four residues in Ser-Gly-Gly-Gly ion selection motif are labeled and Na+ ion is indicated as a black round circle at the center of the pore. B, Visualization of Ho-OsHKT1 transporter from the side that shows the zoom in D403E variance position (green) (G17V substitution belongs to the signal peptide so they are not modeled in 3D structure of OsHKT1 transporter).

Table 1 Changes in codon usage bias by nucleotide substitutions in nine rice cultivars
Position of nucleotide variance Former
codon
Usage frequency of former codon (‰) Substituted
codon
Usage frequency of substituted codon (‰) Amino
acid
Cultivar
360 CUA 7.7 CUG 21.0 Leu Nep Non Tre, Dau An Do, Nep Oc, Chiem Cu
645 UCA 12.4 UCG 12.3 Leu Chiem Cu
708 ACA 11.6 ACG 11.4 Thr Nep Non Tre, Dau An Do, Nep Oc, Chiem Cu
744 ACG 11.4 ACA 11.6 Thr Nep Non Tre, Dau An Do, Nep Oc, Chiem Cu
1440 AAG 32.3 CAA 13.5 Lys Nep Non Tre
Values in bold meant that the substituted nucleotide caused an increase in codon usage frequence.

Table 1 Changes in codon usage bias by nucleotide substitutions in nine rice cultivars

Position of nucleotide variance Former
codon
Usage frequency of former codon (‰) Substituted
codon
Usage frequency of substituted codon (‰) Amino
acid
Cultivar
360 CUA 7.7 CUG 21.0 Leu Nep Non Tre, Dau An Do, Nep Oc, Chiem Cu
645 UCA 12.4 UCG 12.3 Leu Chiem Cu
708 ACA 11.6 ACG 11.4 Thr Nep Non Tre, Dau An Do, Nep Oc, Chiem Cu
744 ACG 11.4 ACA 11.6 Thr Nep Non Tre, Dau An Do, Nep Oc, Chiem Cu
1440 AAG 32.3 CAA 13.5 Lys Nep Non Tre
Values in bold meant that the substituted nucleotide caused an increase in codon usage frequence.

参考文献 28

1 Baxter I, Brazelton J N, Yu D, Huang Y S, Lahner B, Yakubova E, Li Y, Bergelson J, Borevitz J O, Nordborg M, Vitek O, Salt D E.2010. A coastal cline in sodium accumulation inArabidopsis thaliana is driven by natural variation of the sodium transporter AtHKT1;1. PLoS Genet, 6: e1001193.
2 Berthomieu P, Conejero G, Nublat A, Brackenbury W J, Lambert C, Savio C, Uozumi N, Oiki S, Yamada K, Cellier F, Gosti F, Simonneau T, Essah P A, Tester M, Very A A, Sentenac H, Casse F.2003. Functional analysis ofAtHKT1 in Arabidopsis shows that Na+ recirculation by the phloem is crucial for salt tolerance. EMBO J, 22(9): 2004-2014.
3 Brady K U, Kruckeberg A R, Bradshaw Jr H D.2005. Evolutionary ecology of plant adaptation to serpentine soils.Annu Rev Ecol Evol Syst, 36: 243-266.
4 Chinnusamy V, Jagendorf A, Zhu J K.2005. Understanding and improving salt tolerance in plants.Crop Sci, 45: 437-448.
5 Corpet F.1988. Multiple sequence alignment with hierarchical clustering.Nucl Acids Res, 16(22): 10881-10890.
6 Do T P, Nguyen T T T.2014. Polymorphism analysis ofOsHKT1 gene in rice(Oryza sativa). VNU J Sci: Natl Sci Technol, 30: 253-259. (in Vietnamese with English abstract)
7 Garciadeblás B, Senn M E, Banuelos M A, Rodriguez-Navarro A.2003. Sodium transport and HKT transporters: The rice model.Plant J, 34: 788-801.
8 Golldack D, Su H, Quigley F, Kamasani U R, Munoz-Garay C, Balderas E, Popova O V, Bennett J, Bohnert H J, Pantoja O.2002. Characterization of a HKT-type transporter in rice as a general alkali cation transporter.Plant J, 31(4): 529-542.
9 Hall T A.1999. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT.Nucl Acids Symp Ser, 41: 95-98.
10 Horie T, Yoshida K, Nakayama H, Yamada K, Oiki S, Shinmyo A.2001. Two types of HKT transporters with different properties of Na+ and K+ transport inOryza sativa. Plant J, 27(2): 129-138.
11 Horie T, Schroeder J I.2004. Sodium transporters in plants: Diverse genes and physiological functions.Plant Physiol, 136: 2457-2462.
12 Jabnoune M, Espeout S, Mieulet D, Fizames C, Verdeil J L, Conéjéro G, Rodríguez-Navarro A, Sentenac H, Guiderdoni E, Abdelly C, Very A A.2009. Diversity in expression patterns and functional properties in the rice HKT transporter family.Plant Physiol, 150(4): 1955-1971.
13 Kelley L A, Mezulis S, Yates C M, Wass M N, Sternberg M J E.2015. The Phyre2 web portal for protein modeling, prediction and analysis.Nat Protoc, 10: 845-858.
14 Maser P, Hosoo Y, Goshima S, Horie T, Eckelman B, Yamada K, Yoshida K, Bakker E R, Shinmyo A, Oiki S, Schroeder J I, Uozumi N.2002. Glycine residues in potassium channel-like selectivity filters determine potassium selectivity in four-loop-per-subunit HKT transporters from plants.Proc Natl Acad Sci USA, 99(9): 6428-6433.
15 Munns R.2002. Comparative physiology of salt and water stress.Plant Cell Environ, 25(2): 239-250.
16 Munns R, James R A, Laeuchli A.2006. Approaches to increasing the salt tolerance of wheat and other cereals.J Exp Bot, 57(5): 1025-1043.
17 Oomen R J F J, Benito B, Sentenac H, Rodrıguez-Navarro A, Talon M, Very A A, Domingo C.2012. HKT2;2/1, a K+-permeable transporter identified in a salt-tolerant rice cultivar through surveys of natural genetic polymorphism.Plant J, 71(5): 750-762.
18 Rains D W, Epstein E.1965. Transport of sodium in plant tissue.Science, 148: 1611.
19 Ren Z H, Gao J P, Li L G, Cai X L, Huang W, Chao D Y, Zhu M Z, Wang Z Y, Luan S, Lin H X.2005. A rice quantitative trait locus for salt tolerance encodes a sodium transporter.Nat Genet, 37: 1141-1146.
20 Rus A M, Bressan R A, Hasegawa P M.2005. Unraveling salt tolerance in crops.Nat Genet, 37: 1029-1030.
21 Schroeder J I, Ward J M, Gassmann W.1994. Perspectives on the physiology and structure of inward rectifying K+ channels in higher plants: Biophysical implications for K+ uptake.Ann Rev Biophys Biomol Struct, 23: 441-471.
22 Tarczynski M C, Jensen R G, Bohnert H J.1993. Stress protection of transgenic tobacco by production of the osmolyte mannitol.Science, 259: 508-510.
23 Tester M, Davenport R.2003. Na+ tolerance and Na+ transport in higher plants.Ann Bot, 91(5): 503-527.
24 Tran X A, Nguyen T N T, Do T P.2015. Evaluation of salt tolerance of some Vietnamese rice varieties.VNU J Sci: Natl Sci Technol, 31: 1-7. (in Vietnamese with English abstract)
25 Uozumi N, Kim E J, Rubio F, Yamaguchi T, Muto S, Tsuboi A, Bakker E P, Nakamura T, Schroeder J I.2000. TheArabidopsis HKT1 gene homolog mediates inward Na+ currents in Xenopus laevis oocytes and Na+ uptake in Saccharomyces cerevisiae. Plant Physiol, 122(4): 1249-1260.
26 Volkmar K M, Hu Y, Steppuhn H.1999. Physiological responses of plants to salinity: A review.Can J Plant Sci, 78: 19-27.
27 Yu C H, Dang Y K, Zhou Z P, Wu C, Zhao F Z, Sachs M S, Liu Y.2015. Codon usage influences the local rate of translation elongation to regulate co-translational protein folding.Mol Cell, 59(5): 744-754.
28 (Managing Editor: Wang Caihong)

相关文章 0

No related articles found!

编辑推荐

Metrics

阅读次数
全文


摘要

  • 摘要
  • 图/表
  • 参考文献
  • 相关文章
  • 编辑推荐
  • Metrics
回顶部
浙ICP备05004719号-15   公安备案号:33010302003355
版权所有 © 《Rice Science》编辑部
地址:浙江省杭州市体育场路359号 邮编:310006 电话:0571-63371017 E-mail:crrn@fy.hz.zn.cn; cjrs278@gmail.com
本系统由北京玛格泰克科技发展有限公司设计开发
总访问量: 今日访问: 在线人数: