Rice Science
  • 首页
  • 期刊介绍
  • 编委会
  • 学术伦理
  • 投稿指南
  • 期刊订阅
  • 联系我们
  • English

Rice Science ›› 2019, Vol. 26 ›› Issue (2): 125-128.DOI: 10.1016/j.rsci.2018.07.002

• • 上一篇    下一篇

  • 收稿日期:2018-06-09 接受日期:2018-07-26 出版日期:2019-03-04 发布日期:2018-12-18

RichHTML

PDF

可视化

0

摘要/Abstract

引用本文

. [J]. Rice Science, 2019, 26(2): 125-128.

使用本文

0
    /   推荐

导出引用管理器 EndNote|Ris|BibTeX

链接本文: http://www.ricesci.org/CN/10.1016/j.rsci.2018.07.002

               http://www.ricesci.org/CN/Y2019/V26/I2/125

图/表 12

Fig. 1. Targeted adenine base editing (ABE) in rice genome.A, Schematic diagrams of rice codon-optimized tools pHUN411-ABE and pHUN411-ABE-sg2.0. B, Schematic illustration of the target site in the Wx gene. The protospacer adjacent motif (PAM) and sgRNA sequences are underlined. The desired point mutation of Wx-mq is indicated in red. C, Representative Sanger sequencing chromatograms of the ABE-edited Wx allele. Arrows mark the T to C substitutions. The protospacer sequence is underlined. D, The base editing efficiency of the different sgRNAs and different targets. E, Schematic illustration of the target site in the GL2 and OsGRF2 genes by the GL2-sg protospacer. The PAM and sgRNA sequences are underlined. The binding sequence of the miR396 is indicated in red. The asterisks show the mutation sites in the wild-type GL2 allele with large grain size. F, Representative Sanger sequencing chromatograms of the ABE-edited GL2 allele. RB, Right border; LB, Left border; NTL, Number of transgenic line; NEL, Number of edited line; BEE, Base editing efficiency.

Fig. 1. Targeted adenine base editing (ABE) in rice genome.A, Schematic diagrams of rice codon-optimized tools pHUN411-ABE and pHUN411-ABE-sg2.0. B, Schematic illustration of the target site in the Wx gene. The protospacer adjacent motif (PAM) and sgRNA sequences are underlined. The desired point mutation of Wx-mq is indicated in red. C, Representative Sanger sequencing chromatograms of the ABE-edited Wx allele. Arrows mark the T to C substitutions. The protospacer sequence is underlined. D, The base editing efficiency of the different sgRNAs and different targets. E, Schematic illustration of the target site in the GL2 and OsGRF2 genes by the GL2-sg protospacer. The PAM and sgRNA sequences are underlined. The binding sequence of the miR396 is indicated in red. The asterisks show the mutation sites in the wild-type GL2 allele with large grain size. F, Representative Sanger sequencing chromatograms of the ABE-edited GL2 allele. RB, Right border; LB, Left border; NTL, Number of transgenic line; NEL, Number of edited line; BEE, Base editing efficiency.

Supplemental Table 1 The primers used in this study.
Element Primer (5′-3′) Function
ecTadA-XTEN-TadA*710 F: TTACGCCAAGCTGCCCTTGGCGGCCGCATGAGCGAAGTGGA ABE710 vector construction
R: GCGGGTCCTCCGGTGGTTCCGACAAGAAGTACTCCATCGG
nSpCas9(D10A) F: GCGGGTCCTCCGGTGGTTCCGACAAGAAGTACTCCATCGGCCTCGCTATCGGCACCAAT ABE710 vector construction
R: GCGAATTGAAGCTGCCCTTGGAGCTCTCACACCTTTCTTTTTTTTTTAGGAGAACCACCAGA
Wx-sg F: GGCATTGTAATCAACTCCAGTGTC sgRNA construction
R: AAACGACACTGGAGTTGATTACAA
GL2-sg F: GGCATTCTTGAACGGTTGCGGCCG sgRNA construction
R: AAACCGGCCGCAACCGTTCAAGAA
Wx F: ACTGGTGATTTCAGGTTTGGGG HRM
R: TGACCTGGCAAAGAAGGCTGA
F: GAGGTTTTTCCATTGCTACAAG PCR sequencing
R: GAAGTATGGGTTGTTGTTGAGG
GL2 F: ACGGACGGCAAGAAATGGCG HRM
R: CGCCGCAGAACCGACAACAG
F: CGGTTGCTACGATGTGCCTGTT PCR sequencing
R: AGAACCCAACGCCGAGCCAAAT
OsGRF3 F: AAGAAGTGGCGGTGCTCCAAGG HRM
R: GAGTGGTTCTGGAAGGCGGTGG
F: TGGCTGTAAAGCGTTCCATTCC PCR sequencing
R: GAGTATTAGACCCCAAGGCGAA
OsGRF5 F: CCGCACCGACGGCAAGAAGT HRM (off-target detection)
R: AGGGACAGACCGTGGGTTTTAG
F: GGATTCAATGTGCCTGTGCT PCR sequencing (off target detection)
R: GTCAATGAGATTAGAGGGGA

Supplemental Table 1 The primers used in this study.

Element Primer (5′-3′) Function
ecTadA-XTEN-TadA*710 F: TTACGCCAAGCTGCCCTTGGCGGCCGCATGAGCGAAGTGGA ABE710 vector construction
R: GCGGGTCCTCCGGTGGTTCCGACAAGAAGTACTCCATCGG
nSpCas9(D10A) F: GCGGGTCCTCCGGTGGTTCCGACAAGAAGTACTCCATCGGCCTCGCTATCGGCACCAAT ABE710 vector construction
R: GCGAATTGAAGCTGCCCTTGGAGCTCTCACACCTTTCTTTTTTTTTTAGGAGAACCACCAGA
Wx-sg F: GGCATTGTAATCAACTCCAGTGTC sgRNA construction
R: AAACGACACTGGAGTTGATTACAA
GL2-sg F: GGCATTCTTGAACGGTTGCGGCCG sgRNA construction
R: AAACCGGCCGCAACCGTTCAAGAA
Wx F: ACTGGTGATTTCAGGTTTGGGG HRM
R: TGACCTGGCAAAGAAGGCTGA
F: GAGGTTTTTCCATTGCTACAAG PCR sequencing
R: GAAGTATGGGTTGTTGTTGAGG
GL2 F: ACGGACGGCAAGAAATGGCG HRM
R: CGCCGCAGAACCGACAACAG
F: CGGTTGCTACGATGTGCCTGTT PCR sequencing
R: AGAACCCAACGCCGAGCCAAAT
OsGRF3 F: AAGAAGTGGCGGTGCTCCAAGG HRM
R: GAGTGGTTCTGGAAGGCGGTGG
F: TGGCTGTAAAGCGTTCCATTCC PCR sequencing
R: GAGTATTAGACCCCAAGGCGAA
OsGRF5 F: CCGCACCGACGGCAAGAAGT HRM (off-target detection)
R: AGGGACAGACCGTGGGTTTTAG
F: GGATTCAATGTGCCTGTGCT PCR sequencing (off target detection)
R: GTCAATGAGATTAGAGGGGA
Supplemental Table 2 Identification of targeted wx mutants induced by ABE tools in transgenic rice
Line Target gene Zygosity* Genotype#
Wx-6 Wx Heterozygous WT/T6toC
Wx-15 Wx Chimeric WT/ T5toC/ T6toC
Wx-sg2.0-2 Wx Chimeric WT/T5toC/T6toC
Wx-sg2.0-7 Wx Heterozygous WT/T5toC
Wx-sg2.0-15 Wx Chimeric WT/T6toC/T9toC
Wx-sg2.0-21 Wx Heterozygous WT/T5T6toCC
Wx-sg2.0-22 Wx Heterozygous WT/T6toC
*, The zygote of the mutant is putatively determined by the results of PCR sequencing and/or clone sequencing. #, WT, wild-type; TxtoC, the T at position x is mutated to C.

Supplemental Table 2 Identification of targeted wx mutants induced by ABE tools in transgenic rice

Line Target gene Zygosity* Genotype#
Wx-6 Wx Heterozygous WT/T6toC
Wx-15 Wx Chimeric WT/ T5toC/ T6toC
Wx-sg2.0-2 Wx Chimeric WT/T5toC/T6toC
Wx-sg2.0-7 Wx Heterozygous WT/T5toC
Wx-sg2.0-15 Wx Chimeric WT/T6toC/T9toC
Wx-sg2.0-21 Wx Heterozygous WT/T5T6toCC
Wx-sg2.0-22 Wx Heterozygous WT/T6toC
*, The zygote of the mutant is putatively determined by the results of PCR sequencing and/or clone sequencing. #, WT, wild-type; TxtoC, the T at position x is mutated to C.
Supplemental Table 3 Identification of targeted gl2 and/or osgrf3 mutants induced by ABE tools in transgenic rice.
Line Target gene Zygosity* Genotype#
GL2-9 GL2 Heterozygous WT/T7toC
OsGRF3 Heterozygous WT/T7toC
GL2-17 GL2 Heterozygous WT/T7toC
OsGRF3 WT WT
GL2-22 GL2 Heterozygous WT/T8toC
OsGRF3 Heterozygous WT/T7toC
GL2-33 GL2 Heterozygous WT/T7toC
OsGRF3 Heterozygous WT/T7toC
GL2-sg2.0-6 GL2 Chimeric WT/ T7toC/ T8toC
OsGRF3 Heterozygous WT/ T7toC
GL2-sg2.0-11 GL2 WT WT
OsGRF3 Heterozygous WT/ T7toC
GL2-sg2.0-14 GL2 WT WT
OsGRF3 Chimeric WT/ T7toC/ T7T8toCC
GL2-sg2.0-23 GL2 Heterozygous WT/ T8toC
OsGRF3 Heterozygous WT/ T7T8toCC
GL2-sg2.0-30 GL2 Heterozygous WT/ T8toC
OsGRF3 Heterozygous WT/ T7toC
GL2-sg2.0-34 GL2 Heterozygous WT/ T7toC
OsGRF3 WT WT
*, The zygote of the mutant is putatively determined by the results of PCR-sequencing and/or clone-sequencing.
#, WT, wild-type; TxtoC, the T at position x is mutated to C.

Supplemental Table 3 Identification of targeted gl2 and/or osgrf3 mutants induced by ABE tools in transgenic rice.

Line Target gene Zygosity* Genotype#
GL2-9 GL2 Heterozygous WT/T7toC
OsGRF3 Heterozygous WT/T7toC
GL2-17 GL2 Heterozygous WT/T7toC
OsGRF3 WT WT
GL2-22 GL2 Heterozygous WT/T8toC
OsGRF3 Heterozygous WT/T7toC
GL2-33 GL2 Heterozygous WT/T7toC
OsGRF3 Heterozygous WT/T7toC
GL2-sg2.0-6 GL2 Chimeric WT/ T7toC/ T8toC
OsGRF3 Heterozygous WT/ T7toC
GL2-sg2.0-11 GL2 WT WT
OsGRF3 Heterozygous WT/ T7toC
GL2-sg2.0-14 GL2 WT WT
OsGRF3 Chimeric WT/ T7toC/ T7T8toCC
GL2-sg2.0-23 GL2 Heterozygous WT/ T8toC
OsGRF3 Heterozygous WT/ T7T8toCC
GL2-sg2.0-30 GL2 Heterozygous WT/ T8toC
OsGRF3 Heterozygous WT/ T7toC
GL2-sg2.0-34 GL2 Heterozygous WT/ T7toC
OsGRF3 WT WT
*, The zygote of the mutant is putatively determined by the results of PCR-sequencing and/or clone-sequencing.
#, WT, wild-type; TxtoC, the T at position x is mutated to C.
Supplemental Table 4 Detection of the putative off-target effects of the rice ABE tools on the high-similarity site of the GL2-sg protospacer.
Off-target locus Transgenic plant Number of detected plants* Number of off-target mutants
HRM Sequencing HRM Sequencing
OsGRF5 miR396 binding site ABE-GL-sg 35 24 0 0
ABE-sg2.0-GL-sg 30 24 0 0

Supplemental Table 4 Detection of the putative off-target effects of the rice ABE tools on the high-similarity site of the GL2-sg protospacer.

Off-target locus Transgenic plant Number of detected plants* Number of off-target mutants
HRM Sequencing HRM Sequencing
OsGRF5 miR396 binding site ABE-GL-sg 35 24 0 0
ABE-sg2.0-GL-sg 30 24 0 0
Fig. 1. Sequence of rice codon-optimized ABE7.10.The sequence of wild type ecTadA, linker, TadA*7.10, nCas9(D10A) and NLS was labeled by blue, orange, red, black and cyan respectively.

Fig. 1. Sequence of rice codon-optimized ABE7.10.The sequence of wild type ecTadA, linker, TadA*7.10, nCas9(D10A) and NLS was labeled by blue, orange, red, black and cyan respectively.

Fig. 2 Genotyping of some targeted wx mutants.The mutations in the target region are indicated in red. The genotype of the wx targeted mutant was analyzed by PCR sequencing. The numbers located far right indicate the ratio of the number of clones with the corresponding genotype to the number of total sequenced clones. WT, wild-type; Tx to C, the T at position x is mutated to C.

Fig. 2 Genotyping of some targeted wx mutants.The mutations in the target region are indicated in red. The genotype of the wx targeted mutant was analyzed by PCR sequencing. The numbers located far right indicate the ratio of the number of clones with the corresponding genotype to the number of total sequenced clones. WT, wild-type; Tx to C, the T at position x is mutated to C.

Fig. 3 The sequence of the extended sgRNA scaffold.The structures of the sgRNA-scaffold-2.0 sequence were generated with RNAfold and visualized using VARNA (Darty et al., 2009). The adapted and extended RNA is shown in red.

Fig. 3 The sequence of the extended sgRNA scaffold.The structures of the sgRNA-scaffold-2.0 sequence were generated with RNAfold and visualized using VARNA (Darty et al., 2009). The adapted and extended RNA is shown in red.

Fig. 4 Sanger sequencing chromatograms of the OsGRF3 target region of representative ABE-Gl2-sg edited lines.The targeted T to C mutation(s) is indicated by arrow(s). The target sequence is underlined.

Fig. 4 Sanger sequencing chromatograms of the OsGRF3 target region of representative ABE-Gl2-sg edited lines.The targeted T to C mutation(s) is indicated by arrow(s). The target sequence is underlined.

Fig. 5 Genotyping of some transgenic plants targeted by ABE-GL2-sg.The mutations within the target region are indicated in red. The genotype of the GL2 and OsGRF3 target regions of the mutant was analyzed by PCR sequencing.

Fig. 5 Genotyping of some transgenic plants targeted by ABE-GL2-sg.The mutations within the target region are indicated in red. The genotype of the GL2 and OsGRF3 target regions of the mutant was analyzed by PCR sequencing.

Fig. 6 Alignment of the miR396 binding region in the rice growth-regulating factor family.The GL2-sg shows 100% sequence identity with GL2 and OsGRF3, whereas there is one base mismatch with that of OsGRF5.

Fig. 6 Alignment of the miR396 binding region in the rice growth-regulating factor family.The GL2-sg shows 100% sequence identity with GL2 and OsGRF3, whereas there is one base mismatch with that of OsGRF5.

Fig. 7 The mutation of protein sequence resulting from the adenine base editor-induced editing.The amino acid of the target region of Wx (A) and GL2/OsGRF3 (B) was indicated. The PAM and protospacer sequence was labeled by blue and orange, respectively.

Fig. 7 The mutation of protein sequence resulting from the adenine base editor-induced editing.The amino acid of the target region of Wx (A) and GL2/OsGRF3 (B) was indicated. The PAM and protospacer sequence was labeled by blue and orange, respectively.

参考文献 16

[1] Che R H, Tong H N, Shi B H, Liu Y Q, Fang S R, Liu D P, Xiao Y H, Hu B, Liu L C, Wang H R, Zhao M F, Chu C C.2015. Control of grain size and rice yield by GL2-mediated brassinosteroid responses.Nat Plants, 2: 15195.
[2] Dang Y, Jia G X, Choi J, Ma H M, Anaya E, Ye C T, Shankar P, Wu H Q.2015. Optimizing sgRNA structure to improve CRISPR- Cas9 knockout efficiency.Genome Biol, 16: 280.
[3] Gaudelli N M, Komor A C, Rees H A, Packer M S, Badran A H, Bryson D I, Liu D R.2017. Programmable base editing of A∙T to G∙C in genomic DNA without DNA cleavage.Nature, 551: 464-471.
[4] Hu X X, Meng X B, Liu Q, Li J Y, Wang K J.2018. Increasing the efficiency of CRISPR-Cas9-VQR precise genome editing in rice.Plant Biotechnol J, 16(1): 292-297.
[5] Hua K, Tao X P, Yuan F T, Wang D, Zhu J K.2018. Precise A∙T to G∙C base editing in the rice genome.Mol Plant, 11(4): 627-630.
[6] Koblan L W, Doman J L, Wilson C, Levy J M, Tay T, Newby G A, Maianti J P, Raguram A, Liu D R.2018. Improving cytidine and adenine base editors by expression optimization and ancestral reconstruction.Nat Biotechnol, doi: 10.1038/nbt.4172.
[7] Komor A C, Kim Y B, Packer M S, Zuris J A, Liu D R.2016. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage.Nature, 533: 420-424.
[8] Li C, Zong Y, Wang Y P, Jin S, Zhang D B, Song Q N, Zhang R, Gao C X.2018. Expanded base editing in rice and wheat using a Cas9-adenosine deaminase fusion.Genome Biol, 19: 59.
[9] Liu H H, Guo S Y, Xu Y Y, Li C H, Zhang Z Y, Zhang D J, Xu S J, Zhang C, Chong K.2014. OsmiR396d-regulatedOsGRFs function in floral organogenesis in rice through binding to their targets OsJMJ706 and OsCR4. Plant Physiol, 165(1): 160-174.
[10] Lu Y, Zhu J K.2017. Precise editing of a target base in the rice genome using a modified CRISPR/Cas9 system.Mol Plant, 10(3): 523-525.
[11] Miki D, Zhang W X, Zeng W J, Feng Z Y, Zhu J K.2018. CRISPR/ Cas9-mediated gene targeting inArabidopsis using sequential transformation. Nat Commun, 9: 1967.
[12] Sato H, Suzuki Y, Sakai M, Imbe T.2002. Molecular characterization ofWx-mq, a novel mutant gene for low-amylose content in endosperm of rice(Oryza sativa L.). Jpn J Breeding, 52(2): 131-135
[13] Xing H L, Dong L, Wang Z P, Zhang H Y, Han C Y, Liu B, Wang X C, Chen Q J.2014. A CRISPR/Cas9 toolkit for multiplex genome editing in plants.BMC Plant Biol, 14: 327.
[14] Xu R F, Yang Y C, Qin R Y, Li H, Qiu C H, Li L, Wei P C, Yang J B.2016. Rapid improvement of grain weight via highly efficient CRISPR/Cas9-mediated multiplex genome editing in rice.J Genet Genom, 43(8): 529-532.
[15] Yan F, Kuang Y J, Ren B, Wang J W, Zhang D W, Lin H H, Yang B, Zhou X P, Zhou H B.2018. Highly efficient A∙T to G∙C base editing by Cas9n-guided tRNA adenosine deaminase in rice.Mol Plant, 11(4): 631-634.
[16] Zong Y, Wang Y P, Li C, Zhang R, Chen K L, Ran Y D, Qiu J L, Wang D W, Gao C.2017. Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion.Nat Biotechnol, 35(5): 438-440.

相关文章 0

No related articles found!

编辑推荐

Metrics

阅读次数
全文


摘要

  • 摘要
  • 图/表
  • 参考文献
  • 相关文章
  • 编辑推荐
  • Metrics
回顶部
浙ICP备05004719号-15   公安备案号:33010302003355
版权所有 © 《Rice Science》编辑部
地址:浙江省杭州市体育场路359号 邮编:310006 电话:0571-63371017 E-mail:crrn@fy.hz.zn.cn; cjrs278@gmail.com
本系统由北京玛格泰克科技发展有限公司设计开发
总访问量: 今日访问: 在线人数: