Rice Science
  • 首页
  • 期刊介绍
  • 编委会
  • 学术伦理
  • 投稿指南
  • 期刊订阅
  • 联系我们
  • English

Rice Science ›› 2015, Vol. 22 ›› Issue (6): 300-308.DOI: 10.1016/S1672-6308(14)60308-5

• • 上一篇    

  • 收稿日期:2015-03-07 接受日期:2015-06-12 出版日期:2015-06-06 发布日期:2015-09-15

RichHTML

PDF

可视化

0

摘要/Abstract

引用本文

. [J]. Rice Science, 2015, 22(6): 300-308.

使用本文

0
    /   推荐

导出引用管理器 EndNote|Ris|BibTeX

链接本文: http://www.ricesci.org/CN/10.1016/S1672-6308(14)60308-5

               http://www.ricesci.org/CN/Y2015/V22/I6/300

图/表 6

Table 1 List of blast resistant genes tested among introgression lines using gene based markers.
Gene Variety Chr Marker Size (kb) Forward primer (5′-3′) Reverse sequence (5′-3′) Reference
Piz-t IRBLb-B[LT] 6 Z56592 292 ggacccgcgttttccacgtgtaa aggaatctattgctaagcatgac Hayashi et al, 2006
Pita/ IRBLta-Zh[LT] 12 Pita3 861 agtcgtgcgatgcgaggacagaaac gcattctccaacccttttgcatgcat Imam et al, 2014
Pita2 IRBLta2-p1[LT] 12 YL155/YL87 1042 agcaggttataagctaggcc ctaccaacaagttcatcaaa Imam et al, 2014
Pi9 IRBL9-W[LT] 6 195R-1 2000 Atggtcctttatctttattg ttgctccatctcctctgtt Qu et al, 2006
6 NMSMPi9-1 168 cgagaaggacatctggtacg gagatgcttggatttagaagac Qu et al, 2006
Pi54 Tetep 11 TRS26 266 ggagagccaatctgataagca caacaagagaggcaaattctca Sharma et al, 2005
11 Pikh MAS 216 caatctccaaagttttcagg gcttcaatcactgctagacc Ramkumar et al, 2011
Pi40 IR65482-4-1-136-2-2 6 MSM6 256 tgctgagatagccgagaaatc gcacccttttcgctagagg Rama Devi et al, 2013
6 9871.T7E2b 641 caacaaacgggtcgacaaagg cccccaggtcgtgataccttc Jeung et al, 2007
Pi1 C101LAC 11 RM224 157 atcgatcgatcttcacgagg tgctataaaaggcattcggg Hittalmani et al, 2000
11 RM1233 170 aataggcctggagagaatttcc ccttataagccgtctcgatcc Fuentes et al, 2008
Pi2 C101A51 6 MSM1 175 gctagtgaagcaattcctatgg caagaaaatggccagaacg Arunakanthi et al, 2008
6 AP56595 288 Ctccttcagctgctcctc tgatgacttccaaacggtag Fjellstrom et al, 2004

Table 1 List of blast resistant genes tested among introgression lines using gene based markers.

Gene Variety Chr Marker Size (kb) Forward primer (5′-3′) Reverse sequence (5′-3′) Reference
Piz-t IRBLb-B[LT] 6 Z56592 292 ggacccgcgttttccacgtgtaa aggaatctattgctaagcatgac Hayashi et al, 2006
Pita/ IRBLta-Zh[LT] 12 Pita3 861 agtcgtgcgatgcgaggacagaaac gcattctccaacccttttgcatgcat Imam et al, 2014
Pita2 IRBLta2-p1[LT] 12 YL155/YL87 1042 agcaggttataagctaggcc ctaccaacaagttcatcaaa Imam et al, 2014
Pi9 IRBL9-W[LT] 6 195R-1 2000 Atggtcctttatctttattg ttgctccatctcctctgtt Qu et al, 2006
6 NMSMPi9-1 168 cgagaaggacatctggtacg gagatgcttggatttagaagac Qu et al, 2006
Pi54 Tetep 11 TRS26 266 ggagagccaatctgataagca caacaagagaggcaaattctca Sharma et al, 2005
11 Pikh MAS 216 caatctccaaagttttcagg gcttcaatcactgctagacc Ramkumar et al, 2011
Pi40 IR65482-4-1-136-2-2 6 MSM6 256 tgctgagatagccgagaaatc gcacccttttcgctagagg Rama Devi et al, 2013
6 9871.T7E2b 641 caacaaacgggtcgacaaagg cccccaggtcgtgataccttc Jeung et al, 2007
Pi1 C101LAC 11 RM224 157 atcgatcgatcttcacgagg tgctataaaaggcattcggg Hittalmani et al, 2000
11 RM1233 170 aataggcctggagagaatttcc ccttataagccgtctcgatcc Fuentes et al, 2008
Pi2 C101A51 6 MSM1 175 gctagtgaagcaattcctatgg caagaaaatggccagaacg Arunakanthi et al, 2008
6 AP56595 288 Ctccttcagctgctcctc tgatgacttccaaacggtag Fjellstrom et al, 2004
Fig. 1. Evaluation of blast disease at Directorate of Rice Research, India, during 2010 and 2011. (A, B, C and D are IL-1, IL-2, IL-3 and IL-4 showing immune response with susceptible check HR12 on either side, respectively.)

Fig. 1. Evaluation of blast disease at Directorate of Rice Research, India, during 2010 and 2011. (A, B, C and D are IL-1, IL-2, IL-3 and IL-4 showing immune response with susceptible check HR12 on either side, respectively.)

Table 2 Evaluation of introgression lines for leaf and neck blast resistance.
Code Detail of cross a Leaf blast b Neck blast b
IIRR India c AICRIP d Mean SD Variance India c AICRIP d Mean SD Variance
IL-1 PR114/O. glumaepatula (104387)//2×PR114 1 1.3 3.5 1.9 1.4 1.86 1.6 2.9 2.3 0.9 0.9
IL-2 PR114/O. glaberrima (102526)//3×PR114 1 1.4 3.3 1.9 1.2 1.51 1.8 2.9 2.4 0.8 0.6
IL-3 PR114/O. nivara (105410)//2×PR114 1.2 2.6 3.5 2.4 1.2 1.34 2.3 2 2.2 0.2 0.1
IL-4 Pusa 44/O.barthii (101248)//3×Pusa 44 1.3 2.4 3.8 2.5 1.3 1.57 2.3 3 2.7 0.5 0.3
C101LAC e Monogenic line of Pi1 1.6 2.1 3.6 2.4 1 1.08 2.9 3.5 3.2 0.4 0.2
C101A51 e Monogenic line of Pi2 1.6 2 4.3 2.6 1.5 2.12 3.1 3.9 3.5 0.6 0.3
HR12 f 9 8 6.3 7.8 1.4 1.86 6.4 5.8 6.1 0.4 0.2

Table 2 Evaluation of introgression lines for leaf and neck blast resistance.

Code Detail of cross a Leaf blast b Neck blast b
IIRR India c AICRIP d Mean SD Variance India c AICRIP d Mean SD Variance
IL-1 PR114/O. glumaepatula (104387)//2×PR114 1 1.3 3.5 1.9 1.4 1.86 1.6 2.9 2.3 0.9 0.9
IL-2 PR114/O. glaberrima (102526)//3×PR114 1 1.4 3.3 1.9 1.2 1.51 1.8 2.9 2.4 0.8 0.6
IL-3 PR114/O. nivara (105410)//2×PR114 1.2 2.6 3.5 2.4 1.2 1.34 2.3 2 2.2 0.2 0.1
IL-4 Pusa 44/O.barthii (101248)//3×Pusa 44 1.3 2.4 3.8 2.5 1.3 1.57 2.3 3 2.7 0.5 0.3
C101LAC e Monogenic line of Pi1 1.6 2.1 3.6 2.4 1 1.08 2.9 3.5 3.2 0.4 0.2
C101A51 e Monogenic line of Pi2 1.6 2 4.3 2.6 1.5 2.12 3.1 3.9 3.5 0.6 0.3
HR12 f 9 8 6.3 7.8 1.4 1.86 6.4 5.8 6.1 0.4 0.2
Fig. 2. Determination of donor genome introgression in four introgression lines (ILs) which is made by comparing ILs with recurrent parent.(Chr, Chromosome. The black region represents the donor introgression from the wild species.)

Fig. 2. Determination of donor genome introgression in four introgression lines (ILs) which is made by comparing ILs with recurrent parent.(Chr, Chromosome. The black region represents the donor introgression from the wild species.)

Table 3 Details of in silico analysis of introgression regions of four resistant introgression lines.
Introgression line Chr Introgression region (Mb) Introgression region length Putative candidate genes through Major gene and meta QTL identified from
(Mb) in silico analysis a earlier studies b
NBS-LRR NB-ARC Ser/Thr kinase Major gene Meta QTL
IL-1 3 4.0-10.0 6 8 1 9 0 q3FP
7 4.0-12.0 8 3 2 0 0 q7P3, q7G1, q7G2
IL-2 3 2.0-4.3 2.3 3 0 2 0 q3FP1, q3G1
IL-3 8 6.0-12.0 6 2 9 5 Pi29(t); Pi33 q8G3, q8P2
IL-4 9 7.0-10.0 3 0 1 0 Pi5/Pi3 q9P1, q9G2, q9F1, q9G3
# 18.0-23.0 5 3 0 9 Pi28(t) q10G8
# 9.0-18.0 9 2 16 0 Pikur; Pi38(t); Pi34(t) q11P5, q11F1

Table 3 Details of in silico analysis of introgression regions of four resistant introgression lines.

Introgression line Chr Introgression region (Mb) Introgression region length Putative candidate genes through Major gene and meta QTL identified from
(Mb) in silico analysis a earlier studies b
NBS-LRR NB-ARC Ser/Thr kinase Major gene Meta QTL
IL-1 3 4.0-10.0 6 8 1 9 0 q3FP
7 4.0-12.0 8 3 2 0 0 q7P3, q7G1, q7G2
IL-2 3 2.0-4.3 2.3 3 0 2 0 q3FP1, q3G1
IL-3 8 6.0-12.0 6 2 9 5 Pi29(t); Pi33 q8G3, q8P2
IL-4 9 7.0-10.0 3 0 1 0 Pi5/Pi3 q9P1, q9G2, q9F1, q9G3
# 18.0-23.0 5 3 0 9 Pi28(t) q10G8
# 9.0-18.0 9 2 16 0 Pikur; Pi38(t); Pi34(t) q11P5, q11F1
Table 4 Molecular analysis for determination of introgression among four introgression lines (ILs).
IL No. of polymorphic markers on each chromosome Total number of polymorphic markers Percentage of recurrent genome Percentage of donor genome
Chr 1 Chr 2 Chr 3 Chr 4 Chr 5 Chr 6 Chr 7 Chr 8 Chr 9 Chr 10 Chr 11 Chr 12 (%) (%)
-26 -39 -60 -55 -27 -68 -72 -44 -26 -26 -26 -30
IL-1 0 0 10 0 0 0 13 0 0 0 0 0 23 95.4 4.61
IL-2 0 0 3 0 0 0 0 0 0 0 0 0 3 99.4 0.6
IL-3 0 0 0 0 0 0 0 4 0 0 0 0 4 99.2 0.8
IL-4 0 0 0 0 0 0 0 0 6 5 3 0 14 97.2 2.8

Table 4 Molecular analysis for determination of introgression among four introgression lines (ILs).

IL No. of polymorphic markers on each chromosome Total number of polymorphic markers Percentage of recurrent genome Percentage of donor genome
Chr 1 Chr 2 Chr 3 Chr 4 Chr 5 Chr 6 Chr 7 Chr 8 Chr 9 Chr 10 Chr 11 Chr 12 (%) (%)
-26 -39 -60 -55 -27 -68 -72 -44 -26 -26 -26 -30
IL-1 0 0 10 0 0 0 13 0 0 0 0 0 23 95.4 4.61
IL-2 0 0 3 0 0 0 0 0 0 0 0 0 3 99.4 0.6
IL-3 0 0 0 0 0 0 0 4 0 0 0 0 4 99.2 0.8
IL-4 0 0 0 0 0 0 0 0 6 5 3 0 14 97.2 2.8

参考文献 54

[1] Amante B A, Sitch L A, Nelson R, Dalmacio R D, Oliva N P, Aswidinnoor H, Leung H.1992. Transfer of bacterial blight and blast resistance from the tetraploid wild rice Oryza minuta to cultivated rice, Oryza sativa.Theor Appl Genet, 84(3/4): 345-354.
[2] Arunakanthi B, Prasad M S, Madhanmohan K, Balachandran S M, Madhav M S, Reddy C S, Viraktamath B C.2008. Introgression of major blast resistance genes Pi-1, Pi-2 and Pi-kh in indica rice cultivars Samba Mahsuri and Swarna.J Mycol Plant Pathol, 38(3): 625-630.
[3] Ashikari M, Matsuoka M.2006. Identification, isolation and pyramiding of quantitative trait loci for rice breeding.Trends Plant Sci, 11(7): 344-350.
[4] Ballini E, Morel J B, Droc G, Price A, Courtois B, Notteghem J L, Tharreau D.2008. A genome-wide meta-analysis of rice blast resistance genes and quantitative trait loci provides new insights into partial and complete resistance.Mol Plant Microbe Interact, 21(7): 859-868.
[5] Berruyer R, Adreit H, Milazzo J, Gaillard S, Berger A, Dioh W, Lebrun M H, Tharreau D.2003. Identification and fine mapping of Pi33, the rice resistance gene corresponding to the Magnaporthe grisea avirulence gene ACE1.Theor Appl Genet, 107(6): 1139-1147.
[6] Bonman J M, Dedios T I V, Khin M M.1986. Physiological specialization of Pyricularia oryzae in the Philippines.Plant Dis, 70(8): 767-769.
[7] Brar D S, Khush G S.1997. Alien introgression in rice. In: Oryza: From Molecule to Plant. Netherlands: Springer: 10-47.
[8] Cheema K K, Grewal N K, Vikal Y, Sharma R, Lore J S, Das A, Bhatia D, Mahajan R, Gupta V, Bharaj T S, Singh K.2008. A novel bacterial blight resistance gene from Oryza nivara mapped to 38 kb region on chromosome 4L and transferred to Oryza sativa L.Genet Res, 90(5): 397-407.
[9] Chen Z W, Hu F Y, Xu P, Li J, Deng X N, Zhou J W, Li F, Chen S N, Tao D Y.2009. QTL analysis for hybrid sterility and plant height in interspecific populations derived from a wild rice relative, Oryza longistaminata.Breeding Sci, 59: 441-445.
[10] Devanna N B, Vijayan J, Sharma T R.2014. The blast resistance gene Pi54of cloned from Oryza officinalis interacts with Avr-Pi54 through its novel non-LRR domains.PLoS One, 9(8): e104840.
[11] Fjellstrom R, McClung A M, Conaway-Bormans C A, Anna M M, Marchetti M A, Shank A R, Park W D.2004. Development of DNA markers suitable for marker assisted selection of three Pi genes conferring resistance to multiple Pyricularia grisea pathotypes.Crop Sci, 44(5): 1790-1798.
[12] Fjellstrom R, McClung A M, Shank A R.2006. SSR markers closely linked to the Pi-z locus are useful for selection of blast resistance in a broad array of rice germplasm.Mol Breeding, 17(2): 149-157.
[13] Fuentes J L, Correa-Victoria F J, Escobar F, Prado G, Aricapa G, Duque M C, Tohme J.2008. Identification of microsatellite markers linked to the blast resistance gene Pi1(t) in rice.Euphytica, 160: 295-304.
[14] Fujita D, Santos R E, Ebron L A, Telebanco-Yanoria M J, Kato H, Kobayashi S, Uga Y, Araki E, Takai T, Tsunematsu H, Imbe T, Khush G S, Brar D S, Fukuta Y, Kobayashi N.2009. Development of introgression lines of an indica-type rice variety, IR64, for unique agronomic traits and detection of the responsible chromosomal regions.Field Crops Res, 114(2): 244-254.
[15] Fukuoka S, Okuno K.2001. QTL analysis and mapping of pi21, a recessive gene for field resistance to rice blast in Japanese upland rice.Theor Appl Genet, 103(2/3): 185-190.
[16] Fukuoka S, Yamamoto S I, Mizobuchi R, Yamanouchi U, Ono K, Kitazawa N, Yasuda N, Fujita Y, Nguyen T T T, Koizumi S, Sugimoto K, Matsumoto T, Yano M.2014. Multiple functional polymorphisms in a single disease resistance gene in rice enhance durable resistance to blast.Sci Rep, 4: 4550.
[17] Gaikwad K B, Singh N, Bhatia D, Kaur R, Bains N S, Bharaj T S, Singh K.2014. Yield-enhancing heterotic QTL transferred from wild species to cultivated rice Oryza sativa L.PLoS One, 9(6): e96939.
[18] Gowda M, Barman S R, Chattoo B B.2006. Molecular mapping of a novel blast resistance gene Pi38 in rice using SSLP and AFLP markers.Plant Breeding, 125(6): 596-599.
[19] Gu J, Yin X, Stomph T J, Wang H, Struik P C.2012. Physiological basis of genetic variation in leaf photosynthesis among rice (Oryza sativa L.) introgression lines under drought and well-watered conditions.J Exp Bot, 63(14): 5137-5153.
[20] Hayashi K, Yoshida H, Ashikawa I.2006. Development of PCR-based allele-specific and InDel marker sets for nine rice blast resistance genes.Theor Appl Genet, 113(2): 251-260.
[21] Hayashi N, Inoue H, Kato T, Funao T, Shirota M, Shimizu T, Kanamori H, Yamane H, Hayanosaito Y, Matsumoto T, Yano M, Takatsuji H.2010. Durable panicle blast-resistance gene Pb1 encodes an atypical CC-NBS-LRR protein and was generated by acquiring a promoter through local genome duplication.Plant J, 64(3): 498-510.
[22] He R F, Salvato F, Park J J, Kim M J, Nelson W, Balbuena T S, Willer M, Crow J A, May G D, Soderlund C A, Thelen J J, Gang D R.2014. A systems-wide comparison of red rice (Oryza longistaminata) tissues identifies rhizome specific genes and proteins that are targets for cultivated rice improvement.BMC Plant Biol, 14: 46.
[23] Hittalmani S, Parco A, Mew T V, Zeigler R S, Huang N.2000. Fine mapping and DNA marker-assisted pyramiding of the three major genes for blast resistance in rice.Theor Appl Genet, 100(7): 1121-1128.
[24] Imam J, Alam S, Mandal N P, Variar M, Shukla P.2014. Molecular screening for identification of blast resistance genes in North East and Eastern Indian rice germplasm (Oryza sativa L.) with PCR based makers.Euphytica, 196(2): 199-211.
[25] Ingole Kishor D, Prashanthi S K, Krishnaraj P U.2014. Mining for major blast resistance genes in rice landraces of Karnataka.Ind J Genet Plant Breeding, 74(3): 378-383.
[26] Jena K K, Jeung J U, Lee J H, Choi H C, Brar D S.2006. High-resolution mapping of a new brown planthopper (BPH) resistance gene, Bph18(t), and marker-assisted selection for BPH resistance in rice (Oryza sativa L.).Theor Appl Genet, 112(2): 288-297.
[27] Jeung J U, Kim B R, Cho Y C, Han S S, Moon H P, Lee Y T, Jena K K.2007. A novel gene, Pi40(t), linked to the DNA markers derived from NBS-LRR motifs confers broad spectrum of blast resistance in rice.Theor Appl Genet, 115(2): 1163-1177.
[28] Khan M A I, Sen P P, Bhuiyan R, Kabir E, Chowdhury A K, Fukuta Y, Ali A, Latif M A.2014. Phenotypic screening and molecular analysis of blast resistance in fragrant rice for marker assisted selection.Compt Rend Biol, 337(5): 318-324.
[29] Khush G S.2013. Strategies for increasing the yield potential of cereals: Case of rice as an example.Plant Breeding, 132(5): 433-436.
[30] Lang N T, Luy T T, Ha P T T, Buu B C.2009. Monogenic lines resistance to blast disease in rice (Oryza sativa L.) in Vietnam.Int J Genet Mol Biol, 1(7): 127-136.
[31] Lei M P, Li G R, Zhou L, Li C H, Liu C, Yang Z J.2013. Identification of wheat-Secale africanum chromosome 2Rafr introgression lines with novel disease resistance and agronomic characteristics.Euphytica, 194(2): 197-205.
[32] Linh L H, Hang N T, Jin F X, Kang K H, Lee Y T, Kwon S J, Ahn S N.2008. Introgression of a quantitative trait locus for spikelets per panicle from Oryza minuta to the O. sativa cultivar Hwaseongbyeo.Plant Breeding, 127(3): 262-267.
[33] Lmam J, Alam S, Mandal N P, Variar M, Shukla P.2014. Molecular screening for identification of blast resistance genes in North East and Eastern Indian rice germplasm (Oryza sativa L.) with PCR based makers.Euphytica, 196(2): 199-211.
[34] Mahender A, Swain D M, Subudhi H N, Rao G J N.2012. Molecular analysis of native Manipur rice accessions for resistance against blast.Afr J Biotechnol, 11(6): 1321-1329.
[35] McCouch S R, Teytelman L, Xu Y, Lobos K B, Clare K, Walton M, Fu B, Maghirang R, Li Z, Xing Y, Zhang Q, Kono I, Yano M, Fjellstrom R, De Clerck G, Schneider D, Cartinhour S, Ware D, Stein L.2002. Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.).DNA Res, 9(6): 199-207.
[36] Miah G, Rafii M Y, Ismail M R, Puteh A B, Rahim H A, Islam K N, Latif M A.2013. A review of microsatellite markers and their applications in rice breeding programs to improve blast disease resistance.Int J Mol Sci, 14: 22499-22528.
[37] Nataraj Kumar P, Sujatha K, Laha G S, Srinivasa Rao K, Mishra B, Viraktamath B C, Hari Y, Reddy C S, Balachandran S M, Ram T, Sheshu Madhav M, Shobha Rani N, Neeraja C N, Ashok Reddy G, Shaik H, Sundaram R M.2011. Identification and fine- mapping of Xa33, a novel gene for resistance to Xanthomonas oryzae pv oryzae.Phytopathology, 102(2): 222-228.
[38] Padmavathi G, Ram T, Satyanarayana K, Mishra B.2005. Identification of blast (Magnaporthe grisea) resistance genes in rice.Curr Sci, 88(4): 628-630.
[39] Panguluri S K, Kumar A A.2013. Phenotyping for Plant Breeding. New York: Springer: 1-40.
[40] Prasad M S, Kanthi B A, Balachandran S M, Seshumadhav M, Mohan K M, Viraktamath B C.2009. Molecular mapping of rice blast resistance gene Pi-1(t) in the elite indica variety Samba Mahsuri.World J Microbiol Biotechnol, 25(10): 1765-1769.
[41] Prasad M S, Madhav M S, Laha G S, Ladhalakshmi D, Krishnaveni D, Satendrakumar M, Balachandran S M, Sundaram R M, Arunakanthi B, Madhanmohan K, Ratnamadhavi K, Kumar V, Viraktamath B C.2011. Rice Blast Disease and Its Management. Hyderabad, India: Directorate of Rice Research.
[42] Qu S, Liu G, Zhou B, Bellizzi M, Zeng L, Dai L, Han B, Wang G L.2006. The broad spectrum blast resistance gene Pi9 encodes a nucleotide-binding site leucine-rich repeat protein and is a member of a multigene family in rice.Genetics, 172: 1901-1914.
[43] Rahman L, Khanam S, Jaehwan R, Heejong K.2011. Mapping of QTLs Involved in resistance to rice blast (Magnaporthe grisea) using Oryza minuta introgression lines.Czech J Genet Plant Breeding, 47(3): 85-94.
[44] Ram T, Bhadana V P, Laha G S, Padmakumari A P, Jyothibadri, Azam M M, Amtulwaris, Sarla N, Padmavathi G, Dinesh C, Divya B, Viraktamath B C.2013. Wild Species in Rice Improvement. Hyderabad, India: Directorate of Rice Research.
[45] Rama Devi S J S, Singh K, Prasad M S, Umakanth B, Ram Kumar G, Viraktamath B C, Madhav M S.2013. Identification and mapping of new genetic resources for durable blast resistance in India. In: Sustainable Rice Production and Livelihood Security: Challenges and Opportunities. Cuttack: Central Rice Research Institute.
[46] Ramkumar G, Srinivasarao K, Mohan K M, Sudarshan I, Sivaranjani A K P, Gopalakrishna K, Neeraja C N, Balachandran S M, Sundaram R M, Prasad M S, Shobha Rani N, Rama Prasad A M, Viraktamath B C, Madhav M S.2011. Development and validation of functional marker targeting an InDel in the major rice blast disease resistance gene Pi54 (Pikh).Mol Breeding, 27(1): 129-135.
[47] Rangel P N, Brondani R P V, Rangel P H N, Brondani C.2008. Agronomic and molecular characterization of introgression lines from the interspecific cross Oryza sativa (BG90-2) × Oryza glumaepatula (RS-16).Genet Mol Res, 7(1): 184-195.
[48] Ratna M K, Srinivas P M, Laha G S, Madhan M K, Sheshu M M, Viraktamath B C.2011. Combining blast and bacterial blight resistance in rice cultivar, improved Samba Mahsuri.Ind J Plant Prot, 39(2): 124-129.
[49] Saghai M M A, Soliman K M, Jogensen R A, Allard R W.1984. Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location and population dynamics.Proc Natl Acad Sci USA, 81(24): 8014-8018.
[50] Sharma T R, Madhav M S, Singh B K, Shanker P, Jana T K, Dalal V, Pandit A, Singh A, Gaikwad K, Upreti H C, Singh N K.2005. High-resolution mapping, cloning and molecular characterization of the gene of rice, which confers resistance to rice blast.Mol Genet Genom, 274(6): 569-578.
[51] Sié M, Sanni K, Futakuchi K, Manneh B, Mandé S, Vodouhé R, Dogbe S, Dramé K N, Ogunbayo A, Ndjiondjop M N, Traore K.2012. Towards a rational use of African rice (Oryza glaberrima Steud.) for breeding in Sub-Saharan Africa.Genes, Genom Genomics, 6(1): 1-7.
[52] Tsunematsu H, Yanoria M J T, Ebron L A, Hayashi N, Ando I, Kato H, Imbe T, Khush G S.2000. Development of monogenic lines for rice blast resistance.Breeding Sci, 50: 229-234.
[53] Zhang F T, Xie J K.2014. Genes and QTLs resistant to biotic and abiotic stresses from wild rice and their applications in cultivar improvements. In: Yan W G, Bao J S. Rice: Germplasm, Genetics and Improvement. Croatia, European Union: InTech.
[54] Zhou Y L, Xie X W, Zhang F, Wang S, Liu X Z, Zhu L H, Xu J L, Gao Y M, Li Z K.2014. Detection of quantitative resistance loci associated with resistance to rice false smut (Ustilaginoidea virens) using introgression lines.Plant Pathol, 63(2): 365-372.

相关文章 0

No related articles found!

编辑推荐

Metrics

阅读次数
全文


摘要

  • 摘要
  • 图/表
  • 参考文献
  • 相关文章
  • 编辑推荐
  • Metrics
回顶部
浙ICP备05004719号-15   公安备案号:33010302003355
版权所有 © 《Rice Science》编辑部
地址:浙江省杭州市体育场路359号 邮编:310006 电话:0571-63371017 E-mail:crrn@fy.hz.zn.cn; cjrs278@gmail.com
本系统由北京玛格泰克科技发展有限公司设计开发
总访问量: 今日访问: 在线人数: