Rice Science
  • 首页
  • 期刊介绍
  • 编委会
  • 学术伦理
  • 投稿指南
  • 期刊订阅
  • 联系我们
  • English

Rice Science ›› 2020, Vol. 27 ›› Issue (2): 81-85.DOI: 10.1016/j.rsci.2019.04.006

• •    下一篇

  • 收稿日期:2019-01-29 接受日期:2019-04-26 出版日期:2020-03-28 发布日期:2019-11-28

RichHTML

PDF

可视化

0

摘要/Abstract

引用本文

. [J]. Rice Science, 2020, 27(2): 81-85.

使用本文

0
    /   推荐

导出引用管理器 EndNote|Ris|BibTeX

链接本文: http://www.ricesci.org/CN/10.1016/j.rsci.2019.04.006

               http://www.ricesci.org/CN/Y2020/V27/I2/81

图/表 9

Supplemental Table 1. Comparison of agronomic traits among wild type (WT), mutants M12 and M13 plants.
Trait WT M12 M13
No. of days to heading (d) 52.7 ± 0.9 a 53.5 ± 1.4 a 52.5 ± 1.0 a
No. of tillers per plant 22.7 ± 2.2 a 22.9 ± 2.0 a 22.5 ± 1.8 a
Plant height (cm) 61.3 ± 1.9 a 60.3 ± 1.0 a 60.2 ± 0.9 a
Panicle length (cm) 11.5 ± 0.3 a 11.4 ± 0.4 a 11.6 ± 0.3 a
NPBP 5.4 ± 0.8 a 5.5 ± 0.8 a 5.7 ± 0.9 a
NSBP 4.2 ± 0.6 a 3.9 ± 0.7 a 4.0 ± 0.8 a
Seed-setting rate (%) 88.3 ± 4.2 a 86.6 ± 8.5 a 70.1 ± 7.9 b

Supplemental Table 1. Comparison of agronomic traits among wild type (WT), mutants M12 and M13 plants.

Trait WT M12 M13
No. of days to heading (d) 52.7 ± 0.9 a 53.5 ± 1.4 a 52.5 ± 1.0 a
No. of tillers per plant 22.7 ± 2.2 a 22.9 ± 2.0 a 22.5 ± 1.8 a
Plant height (cm) 61.3 ± 1.9 a 60.3 ± 1.0 a 60.2 ± 0.9 a
Panicle length (cm) 11.5 ± 0.3 a 11.4 ± 0.4 a 11.6 ± 0.3 a
NPBP 5.4 ± 0.8 a 5.5 ± 0.8 a 5.7 ± 0.9 a
NSBP 4.2 ± 0.6 a 3.9 ± 0.7 a 4.0 ± 0.8 a
Seed-setting rate (%) 88.3 ± 4.2 a 86.6 ± 8.5 a 70.1 ± 7.9 b
Fig. 1. Phenotypic analyses of giant embryo mutants M12 and M13.A, Morphologies of grains. Bar = 1 mm. B, Morphologies of brown rice. Bar = 1 mm. C, Quantification of brown rice length (BRL) (n = 20). D, Quantification of brown rice width (BRW) (n = 20). E, Quantification of brown rice thickness (BRT) (n = 20). F, 1000-brown rice weight (TBRW) (n = 3). G, The ratio of embryo size and seed size (n = 30). H, Weight of 100-embryo (n = 3). I, Longitudinal sections of the embryo of wild type (WT) and two mutants. CP, Coleoptile; RD, Radicle; ST, Scutellum. Bar = 0.2 mm. J, Embryo area of WT and two mutant seeds (n = 3). Data represent Mean ± SD. Different letters indicate a significant difference (P < 0.05).

Fig. 1. Phenotypic analyses of giant embryo mutants M12 and M13.A, Morphologies of grains. Bar = 1 mm. B, Morphologies of brown rice. Bar = 1 mm. C, Quantification of brown rice length (BRL) (n = 20). D, Quantification of brown rice width (BRW) (n = 20). E, Quantification of brown rice thickness (BRT) (n = 20). F, 1000-brown rice weight (TBRW) (n = 3). G, The ratio of embryo size and seed size (n = 30). H, Weight of 100-embryo (n = 3). I, Longitudinal sections of the embryo of wild type (WT) and two mutants. CP, Coleoptile; RD, Radicle; ST, Scutellum. Bar = 0.2 mm. J, Embryo area of WT and two mutant seeds (n = 3). Data represent Mean ± SD. Different letters indicate a significant difference (P < 0.05).

Supplemental Fig. 1. The allelic test of M12 and M13.The F2 seed morphologies of reciprocal crosses from M12 and M13. Bars, 1 mm.

Supplemental Fig. 1. The allelic test of M12 and M13.The F2 seed morphologies of reciprocal crosses from M12 and M13. Bars, 1 mm.

Fig. 2. Map-based cloning of the M12 and M13 mutation. A, Map-based cloning and identification of the mutation locus. The mutation locus was mapped to a 84.3 kb region between markers Z7-13 and Z7-18 on chromosome 7. A single nucleotide substitution of guanine to adenine occurred in the exon 1 and exon 2 in M12 and M13, respectively. B, Sequence chromatogram of M12. C, Sequence chromatogram of M13 mutation. The mutation site is noted with red box. D, Amino acid sequence of GE gene in M12 and M13. The two point mutations create Ala-113 replacement by Thr and a premature stop codon of Trp-340 in M12 and M13, respectively.

Fig. 2. Map-based cloning of the M12 and M13 mutation. A, Map-based cloning and identification of the mutation locus. The mutation locus was mapped to a 84.3 kb region between markers Z7-13 and Z7-18 on chromosome 7. A single nucleotide substitution of guanine to adenine occurred in the exon 1 and exon 2 in M12 and M13, respectively. B, Sequence chromatogram of M12. C, Sequence chromatogram of M13 mutation. The mutation site is noted with red box. D, Amino acid sequence of GE gene in M12 and M13. The two point mutations create Ala-113 replacement by Thr and a premature stop codon of Trp-340 in M12 and M13, respectively.

Supplemental Table 2. Fine mapping region contained 14 predicted genes.
Number Locus name Gene product name
1 LOC_Os07g41230 esterase, putative, expressed
2 LOC_Os07g41240 cytochrome P450, putative, expressed
3 LOC_Os07g41250 peptide transporter PTR2, putative
4 LOC_Os07g41260 PPR repeat domain containing protein, putative
5 LOC_Os07g41270 retrotransposon protein, putative, unclassified
6 LOC_Os07g41280 6-phosphogluconolactonase, putative
7 LOC_Os07g41290 DEFL13-Defensin and Defensin-like DEFL family
8 LOC_Os07g41300 respiratory-chain NADH dehydrogenase
9 LOC_Os07g41310 COBRA, putative, expressed
10 LOC_Os07g41320 COBRA-like protein precursor, putative, expressed
11 LOC_Os07g41330 mitochondrial import inner membrane translocase subunit Tim17
12 LOC_Os07g41340 B12D protein, putative, expressed
13 LOC_Os07g41350 B12D protein, putative, expressed
14 LOC_Os07g41360 alpha-1,4-glucan-protein synthase, putative, expressed

Supplemental Table 2. Fine mapping region contained 14 predicted genes.

Number Locus name Gene product name
1 LOC_Os07g41230 esterase, putative, expressed
2 LOC_Os07g41240 cytochrome P450, putative, expressed
3 LOC_Os07g41250 peptide transporter PTR2, putative
4 LOC_Os07g41260 PPR repeat domain containing protein, putative
5 LOC_Os07g41270 retrotransposon protein, putative, unclassified
6 LOC_Os07g41280 6-phosphogluconolactonase, putative
7 LOC_Os07g41290 DEFL13-Defensin and Defensin-like DEFL family
8 LOC_Os07g41300 respiratory-chain NADH dehydrogenase
9 LOC_Os07g41310 COBRA, putative, expressed
10 LOC_Os07g41320 COBRA-like protein precursor, putative, expressed
11 LOC_Os07g41330 mitochondrial import inner membrane translocase subunit Tim17
12 LOC_Os07g41340 B12D protein, putative, expressed
13 LOC_Os07g41350 B12D protein, putative, expressed
14 LOC_Os07g41360 alpha-1,4-glucan-protein synthase, putative, expressed
Fig. 3. Contents of γ-aminobutyric acid (GABA) (A), protein (B), starch (C) and amylose (D) in brown rice flour of wild type (WT) and two mutants (M12 and M13). Different letters indicate a significant difference (n = 3, P < 0.05).

Fig. 3. Contents of γ-aminobutyric acid (GABA) (A), protein (B), starch (C) and amylose (D) in brown rice flour of wild type (WT) and two mutants (M12 and M13). Different letters indicate a significant difference (n = 3, P < 0.05).

Table 1 Amino acid contents in brown rice. mg/g
Amino acid WT M12 M13
Glutamic acid 0.144 ± 0.002 a 0.173 ± 0.000 b 0.171 ± 0.002 b
Aspartic acid 0.076 ± 0.001 a 0.092 ± 0.001 b 0.090 ± 0.001 b
Serine 0.044 ± 0.001 a 0.052 ± 0.001 b 0.051 ± 0.001 b
Threonine 0.031 ± 0.000 a 0.037 ± 0.001 b 0.036 ± 0.000 b
Glycine 0.040 ± 0.001 a 0.047 ± 0.001 b 0.047 ± 0.001 b
Alanine 0.048 ± 0.001 a 0.057 ± 0.001 b 0.058 ± 0.001 b
Cysteine 0.016 ± 0.000 a 0.018 ± 0.001 b 0.017 ± 0.000 ab
Valine 0.046 ± 0.000 a 0.054 ± 0.000 b 0.054 ± 0.001 b
Methionine 0.015 ± 0.000 a 0.017 ± 0.000 b 0.017 ± 0.000 b
Isoleucine 0.033 ± 0.000 a 0.039 ± 0.000 b 0.039 ± 0.001 b
Leucine 0.068 ± 0.000 a 0.080 ± 0.000 b 0.079 ± 0.001 b
Tyrosine 0.033 ± 0.001 a 0.038 ± 0.000 b 0.038 ± 0.000 b
Phenylalanin 0.045 ± 0.000 a 0.053 ± 0.000 b 0.053 ± 0.001 b
Lysine 0.034 ± 0.000 a 0.041 ± 0.000 b 0.041 ± 0.000 b
Histidine 0.020 ± 0.000 a 0.025 ± 0.000 b 0.025 ± 0.000 b
Arginine 0.068 ± 0.001 a 0.081 ± 0.001 b 0.083 ± 0.001 b
Proline 0.033 ± 0.000 a 0.038 ± 0.000 b 0.039 ± 0.000 b
Total amino acid 0.790 ± 0.007 a 0.941 ± 0.006 b 0.936 ± 0.012 b
Essential amino acid 0.304 ± 0.002 a 0.358 ± 0.001 b 0.356 ± 0.004 b

Table 1 Amino acid contents in brown rice. mg/g

Amino acid WT M12 M13
Glutamic acid 0.144 ± 0.002 a 0.173 ± 0.000 b 0.171 ± 0.002 b
Aspartic acid 0.076 ± 0.001 a 0.092 ± 0.001 b 0.090 ± 0.001 b
Serine 0.044 ± 0.001 a 0.052 ± 0.001 b 0.051 ± 0.001 b
Threonine 0.031 ± 0.000 a 0.037 ± 0.001 b 0.036 ± 0.000 b
Glycine 0.040 ± 0.001 a 0.047 ± 0.001 b 0.047 ± 0.001 b
Alanine 0.048 ± 0.001 a 0.057 ± 0.001 b 0.058 ± 0.001 b
Cysteine 0.016 ± 0.000 a 0.018 ± 0.001 b 0.017 ± 0.000 ab
Valine 0.046 ± 0.000 a 0.054 ± 0.000 b 0.054 ± 0.001 b
Methionine 0.015 ± 0.000 a 0.017 ± 0.000 b 0.017 ± 0.000 b
Isoleucine 0.033 ± 0.000 a 0.039 ± 0.000 b 0.039 ± 0.001 b
Leucine 0.068 ± 0.000 a 0.080 ± 0.000 b 0.079 ± 0.001 b
Tyrosine 0.033 ± 0.001 a 0.038 ± 0.000 b 0.038 ± 0.000 b
Phenylalanin 0.045 ± 0.000 a 0.053 ± 0.000 b 0.053 ± 0.001 b
Lysine 0.034 ± 0.000 a 0.041 ± 0.000 b 0.041 ± 0.000 b
Histidine 0.020 ± 0.000 a 0.025 ± 0.000 b 0.025 ± 0.000 b
Arginine 0.068 ± 0.001 a 0.081 ± 0.001 b 0.083 ± 0.001 b
Proline 0.033 ± 0.000 a 0.038 ± 0.000 b 0.039 ± 0.000 b
Total amino acid 0.790 ± 0.007 a 0.941 ± 0.006 b 0.936 ± 0.012 b
Essential amino acid 0.304 ± 0.002 a 0.358 ± 0.001 b 0.356 ± 0.004 b
Table 2 Thermal properties and pasting properties of brown rice flour.
Material To (ºC) Tp (ºC) Tc (ºC) ΔH (J/g) PV (MPa/s) HV (MPa/s) BV (MPa/s) FV (MPa/s) SV (MPa/s)
WT 61.9 ± 0.1 b 70.0 ± 0.0 c 77.2 ± 0.1 b 4.8 ± 0.2 a 1 314 ± 38 c 955 ± 44 c 359 ± 6 b 2 002 ± 67 c 1 047 ± 23 b
M12 60.3 ± 0.4 a 68.4 ± 0.2 a 75.7 ± 0.2 a 4.7 ± 0.1 a 1 104 ± 83 b 709 ± 11 b 395 ± 72 b 1 529 ± 50 b 820 ± 39 a
M13 60.8 ± 0.3 a 69.0 ± 0.0 b 76.2 ± 0.1 a 4.7 ± 0.1 a 684 ± 6 a 461 ± 23 a 223 ± 16 a 1 239 ± 13 a 778 ± 10 a

Table 2 Thermal properties and pasting properties of brown rice flour.

Material To (ºC) Tp (ºC) Tc (ºC) ΔH (J/g) PV (MPa/s) HV (MPa/s) BV (MPa/s) FV (MPa/s) SV (MPa/s)
WT 61.9 ± 0.1 b 70.0 ± 0.0 c 77.2 ± 0.1 b 4.8 ± 0.2 a 1 314 ± 38 c 955 ± 44 c 359 ± 6 b 2 002 ± 67 c 1 047 ± 23 b
M12 60.3 ± 0.4 a 68.4 ± 0.2 a 75.7 ± 0.2 a 4.7 ± 0.1 a 1 104 ± 83 b 709 ± 11 b 395 ± 72 b 1 529 ± 50 b 820 ± 39 a
M13 60.8 ± 0.3 a 69.0 ± 0.0 b 76.2 ± 0.1 a 4.7 ± 0.1 a 684 ± 6 a 461 ± 23 a 223 ± 16 a 1 239 ± 13 a 778 ± 10 a
Supplemental Table 3. Primers used in mapping GE gene
Primer name Forward primer (5'-3') Reverse primer (5'-3')
Z7-9 TCTCCTCTTCCCCCGATC ATAGCGGGCGAGGCTTAG
Z7-10 ACAGTATCCAAGGCCCTGG CACGTGAGACAAAGACGGAG
Z7-11 GCCCACCTGTCATTGAGAGTA GTTTTTGCGCTTTTGTTGCT
Z7-13 GGAGTATTTTAGTAGGCTATTA TAAAGTTCAAAGATACAAGAAAT
Z7-14 TGCTTGCTTCGATCTGATC GTTGTGACTTGTGAAGAAGG
Z7-15 AAGAGCTTCTTGACGAGGTA ATGGATGGATATGAACAGTGC
Z7-17 CTCGGAGAAATTGCCGTTC GTCACCTCACCACCTTCTCC
Z7-18 AACACCTTGAATCTTTCCACGT GAATTTGAACCATATTAGCTA

Supplemental Table 3. Primers used in mapping GE gene

Primer name Forward primer (5'-3') Reverse primer (5'-3')
Z7-9 TCTCCTCTTCCCCCGATC ATAGCGGGCGAGGCTTAG
Z7-10 ACAGTATCCAAGGCCCTGG CACGTGAGACAAAGACGGAG
Z7-11 GCCCACCTGTCATTGAGAGTA GTTTTTGCGCTTTTGTTGCT
Z7-13 GGAGTATTTTAGTAGGCTATTA TAAAGTTCAAAGATACAAGAAAT
Z7-14 TGCTTGCTTCGATCTGATC GTTGTGACTTGTGAAGAAGG
Z7-15 AAGAGCTTCTTGACGAGGTA ATGGATGGATATGAACAGTGC
Z7-17 CTCGGAGAAATTGCCGTTC GTCACCTCACCACCTTCTCC
Z7-18 AACACCTTGAATCTTTCCACGT GAATTTGAACCATATTAGCTA

参考文献 23

[1] Chen Y L, Liu L L, Shen Y Y, Liu S J, Huang J X, Long Q Z, Wu W, Yang C Y, Chen H, Guo X P, Cheng Z J, Jiang L, Wan J M. 2014. Loss of function of the cytochrome P450 gene CYP78B5 causes giant embryos in rice. Plant Mol Biol Rep, 33(1): 69-83.
[2] Choi I, Kim D, Son J, Yang C, Chun J, Kim K. 2006. Physico- chemical properties of giant embryo brown rice (Keunnunbyeo). J Appl Biol Chem, 49(3): 95-100.
[3] Chung S I, Lee S C, Kang M Y. 2017. Physicochemical properties of giant embryo rice Seonong 17 and Keunnunjami. Biosci Biotechnol Biochem, 81(5): 972-978.
[4] Du Y M, Pan T, Tian Y L, Liu S J, Liu X, Jiang L, Zhang W W, Wang Y H, Wan J M. 2019. Phenotypic analysis and gene cloning of rice floury endosperm mutant fse4. Chin J Rice Sci, 33(6): 499-512. (in Chinese with English abstract)
[5] Kaur A, Ghumman A, Singh N, Kaur S, Virdi A S, Riar G S, Mahajan G. 2016. Effect of different doses of nitrogen on protein profiling, pasting and quality attributes of rice from different cultivars. J Food Sci Technol, 53(5): 2452-2462.
[6] Kim J Y, Seo W D, Park D S, Jang K C, Choi K J, Kim S Y, Oh S H, Ra J E, Yi G, Park S K, Hwang U H, Song Y C, Park B R, Park M J, Kang H W, Nam M H, Han S I. 2013. Comparative studies on major nutritional components of black waxy rice with giant embryos and its rice bran. Food Sci Biotechnol, 22(1): 121-128.
[7] Koh H J, Heu M H, McCouch S R. 1996. Molecular mapping of the ges gene controlling the super-giant embryo character in rice (Oryza sativa L.). Theor Appl Genet, 93: 257-261.
[8] Martin M, Fitzgerald M A. 2002. Proteins in rice grains influence cooking properties. J Cereal Sci, 36(3): 285-294.
[9] Mikkelsen M D, Hansen C H, Wittstock U, Halkier B A. 2000. Cytochrome P450 CYP79B2 from Arabidopsis catalyzes the conversion of tryptophan to indole-3-acetaldoxime, a precursor of indole glucosinolates and indole-3-acetic acid. J Biol Chem, 275: 33712-33717.
[10] Nagasawa N, Hibara K I, Heppard E P, Velden K A V, Luck S, Beatty M, Nagato Y, Sakai H. 2013. GIANT EMBRYO encodes CYP78A13, required for proper size balance between embryo and endosperm in rice. Plant J, 75(4): 592-605.
[11] Noda T, Tsuda S, Mori M, Takigawa S, Matsuura-Endo C, Saito K, Mangalika W H A, Hanaoka A, Suzuki Y, Yamauchi H. 2004. The effect of harvest dates on the starch properties of various potato cultivars. Food Chem, 86(1): 119-125.
[12] Park D S, Park S K, Lee B C, Song S Y, Jun N S, Manigbas N L, Cho J H, Nam M H, Jeon J S, Han C D, Choi K J, Kim D H, Woo Y M, Koh H J, Kang H W, Yi G. 2009. Molecular characterization and physico-chemical analysis of a new giant embryo mutant allele (get) in rice (Oryza sativa L.). Genes Genom, 31(4): 277-282.
[13] Pelissari F M, Andrade-Mahecha M M, do Amaral Sobral P J, Menegalli F C. 2012. Isolation and characterization of the flour and starch of plantain bananas (Musa paradisiaca). Starch/ Stärke, 64(5): 382-391.
[14] Qian Q, Xiong Z M, Min S K, Zhu L H. 1996. The RFLP of tagging of giant embryo gene. Chin J Rice Sci, 10(2): 65-70. (in Chinese with English abstract)
[15] Sakata M, Seno M, Matsusaka H, Takahashi K, Nakamura Y, Yamagata Y, Angeles E R, Mochizuki T, Kumamaru T, Sato M, Enomoto A, Tashiro K, Kuhara S, Satoh H, Yoshimura A. 2016. Development and evaluation of rice giant embryo mutants for high oil content originated from a high-yielding cultivar ‘Mizuhochikara’. Breeding Sci, 66(3): 425-433.
[16] Satoh H, Omura T. 1981. New endosperm mutations induced by chemical mutagens in rice Oryza sativa L. Jpn J Breeding, 31(3): 316-326.
[17] Seo W D, Kim J Y, Park D S, Han S I, Jang K C, Choi K J, Kim S Y, Oh S H, Ra J E, Yi G, Park S K, Hwang W H, Song Y C, Park B R, Kang H W. 2011. Comparative analysis of physico- chemicals and antioxidative properties of new giant embryo mutant, YR23517Acp79, in rice (Oryza sativa L.). J Kor Soc Appl Biol Chem, 54(5): 700-709.
[18] Wahlqvist M L, Hsu-Hage B H H, Lukito W. 1999. Clinical trials in nutrition. Asia Pac J Clin Nutr, 8(3): 231-241.
[19] Yang W B, Gao M J, Yin X, Liu J Y, Xu Y H, Zeng L J, Li Q, Zhang S B, Wang J M, Zhang X M, He Z H. 2013. Control of rice embryo development, shoot apical meristem maintenance, and grain yield by a novel cytochrome P450. Mol Plant, 6(6): 1945-1960.
[20] Yangcheng H Y, Blanco M, Gardner C, Li X H, Jane J L. 2016. Dosage effects of Waxy gene on the structures and properties of corn starch. Carbohydr Polym, 149: 282-288.
[21] Zhang C Q, Chen S J, Ren X Y, Lu Y, Liu D R, Cai X L, Li Q F, Gao J P, Liu Q Q, 2017. Molecular structure and physic- chemical properties of starches from rice with different amylose contents resulting from modification of OsGBSSI activity. J Agric Food Chem, 65(10): 2222-2232.
[22] Zhang L L, Hu P S, Tang S Q, Zhao H J, Wu D X. 2005. Comparative studies on major nutritional components of rice with a giant embryo and a normal embryo. J Food Biochem, 29(6): 653-661.
[23] Zhao G C, Xie M X, Wang Y C, Li J Y. 2017. Molecular mechanisms underlying γ-aminobutyric acid (GABA) accumulation in giant embryo rice seeds. J Agric Food Chem, 65(24): 4883-4889.

相关文章 0

No related articles found!

编辑推荐

Metrics

阅读次数
全文


摘要

  • 摘要
  • 图/表
  • 参考文献
  • 相关文章
  • 编辑推荐
  • Metrics
回顶部
浙ICP备05004719号-15   公安备案号:33010302003355
版权所有 © 《Rice Science》编辑部
地址:浙江省杭州市体育场路359号 邮编:310006 电话:0571-63371017 E-mail:crrn@fy.hz.zn.cn; cjrs278@gmail.com
本系统由北京玛格泰克科技发展有限公司设计开发
总访问量: 今日访问: 在线人数: