Rice Science
  • 首页
  • 期刊介绍
  • 编委会
  • 学术伦理
  • 投稿指南
  • 期刊订阅
  • 联系我们
  • English

Rice Science ›› 2023, Vol. 30 ›› Issue (4): 267-270.DOI: 10.1016/j.rsci.2023.01.009

• •    下一篇

  • 收稿日期:2022-10-08 接受日期:2023-01-14 出版日期:2023-07-28 发布日期:2023-05-09

RichHTML

PDF

补充材料

1

可视化

0
  • 1. Supplemental data for 1.pdf(539KB)

摘要/Abstract

引用本文

. [J]. Rice Science, 2023, 30(4): 267-270.

使用本文

0
    /   推荐

导出引用管理器 EndNote|Ris|BibTeX

链接本文: http://www.ricesci.org/CN/10.1016/j.rsci.2023.01.009

               http://www.ricesci.org/CN/Y2023/V30/I4/267

图/表 1

Fig. 1. Pattern of grain cadmium (Cd) accumulation in 54 rice varieties. A, Grain Cd concentration of 54 varieties (V01-V54). Details for the varieties are shown in Table S2. The asterisks mean significant lower Cd levels than the average of traditional rice. B and C, Relative grain Cd level of varieties shared with the same female parents of Zhongzhe A and Y58S, respectively. Data are Mean ± SE (n = 3). D and E, Relative grain Cd level of varieties shared with the same male parents of R207 and F5032, respectively. The asterisks in C to E and different lowercase letters above the bars in B represent significant difference between varieties (P ≤ 0.05; two-tailed student’s t-test). FYH, Fuyang with high Cd level; FYL, Fuyang with low Cd level; CSH, Changshan with high Cd level; CSL, Changshan with low Cd level.

Fig. 1. Pattern of grain cadmium (Cd) accumulation in 54 rice varieties. A, Grain Cd concentration of 54 varieties (V01-V54). Details for the varieties are shown in Table S2. The asterisks mean significant lower Cd levels than the average of traditional rice. B and C, Relative grain Cd level of varieties shared with the same female parents of Zhongzhe A and Y58S, respectively. Data are Mean ± SE (n = 3). D and E, Relative grain Cd level of varieties shared with the same male parents of R207 and F5032, respectively. The asterisks in C to E and different lowercase letters above the bars in B represent significant difference between varieties (P ≤ 0.05; two-tailed student’s t-test). FYH, Fuyang with high Cd level; FYL, Fuyang with low Cd level; CSH, Changshan with high Cd level; CSL, Changshan with low Cd level.

参考文献 21

[1] Afonne O J, Ifediba E C. 2020. Heavy metals risks in plant foods: Need to step up precautionary measures. Curr Opin Toxicol, 22: 1-6.
[2] Brus D J, Li Z B, Song J, Koopmans G F, Temminghoff E J M, Yin X B, Yao C X, Zhang H B, Luo Y M, Japenga J. 2009. Predictions of spatially averaged cadmium contents in rice grains in the Fuyang Valley, P. R. China. J Environ Qual, 38(3): 1126-1136.
[3] Chen H R, Yang Y, Ye Y F, Tao L Z, Fu X D, Liu B M, Wu Y J. 2019. Differences in cadmium accumulation between indica and japonica rice cultivars in the reproductive stage. Ecotox Environ Saf, 186: 109795.
[4] Chen Q, Wu F B. 2020. Breeding for low cadmium accumulation cereals. J Zhejiang Univ Sci B, 21(6): 442-459.
[5] Fu J J, Zhou Q F, Liu J M, Liu W, Wang T, Zhang Q H, Jiang G B. 2008. High levels of heavy metals in rice (Oryza sativa L.) from a typical E-waste recycling area in Southeast China and its potential risk to human health. Chemosphere, 71(7): 1269-1275.
[6] Fu T T, Zhao R Y, Hu B F, Jia X L, Wang Z G, Zhou L Q, Huang M X, Li Y, Shi Z. 2021. Novel framework for modelling the cadmium balance and accumulation in farmland soil in Zhejiang Province, East China: Sensitivity analysis, parameter optimisation, and forecast for 2050. J Clean Prod, 279: 123674.
[7] Hu Z Y, Wang Y F, Fang Z G, Shi G L, Lou L Q, Ren K D, Cai Q S. 2020. Italian ryegrass-rice rotation system for biomass production and cadmium removal from contaminated paddy fields. J Soils Sediments, 20(2): 874-882.
[8] Huang Y, Sheng H, Zhou P, Zhang Y Z. 2020. Remediation of Cd-contaminated acidic paddy fields with four-year consecutive liming. Ecotox Environ Saf, 188: 109903.
[9] Kang Z M, Zhang W Y, Qin J H, Li S H, Yang X, Wei X, Li H S. 2020. Yield advantage and cadmium decreasing of rice in intercropping with water spinach under moisture management. Ecotox Environ Saf, 190: 110102.
[10] Li X F, Zhou D M. 2019. A meta-analysis on phenotypic variation in cadmium accumulation of rice and wheat: Implications for food cadmium risk control. Pedosphere, 29(5): 545-553.
[11] Lin L Y, Zhu R L, Li Z H, Han C L, Li W Y, Deng Y R. 2021. A combined remediation strategy of arsenic and cadmium in the paddy soil of polymetallic mining areas. Bull Environ Contam Toxicol, 107(6): 1220-1226.
[12] Liu C L, Gao Z Y, Shang L G, Yang C H, Ruan B P, Zeng D L, Guo L B, Zhao F J, Huang C F, Qian Q. 2020. Natural variation in the promoter of OsHMA3 contributes to differential grain cadmium accumulation between indica and japonica rice. J Integr Plant Biol, 62(3): 314-329.
[13] Qu L Y, Huang H, Xia F, Liu Y Y, Dahlgren R A, Zhang M H, Mei K. 2018. Risk analysis of heavy metal concentration in surface waters across the rural-urban interface of the Wen-Rui Tang River, China. Environ Pollut, 237: 639-649.
PMID
[14] Singh P, Pokharia C, Shah K. 2021. Exogenous peroxidase mitigates cadmium toxicity, enhances rhizobial population and lowers root knot formation in rice seedlings. Rice Sci, 28(2): 166-177.
[15] Song Y, Wang Y, Mao W F, Sui H X, Yong L, Yang D J, Jiang D G, Zhang L, Gong Y Y. 2017. Dietary cadmium exposure assessment among the Chinese population. PLoS One, 12(5): e0177978.
[16] Sun L, Xu X X, Jiang Y R, Zhu Q H, Yang F, Zhou J Q, Yang Y Z, Huang Z Y, Li A H, Chen L H, Tang W B, Zhang G Y, Wang J R, Xiao G Y, Huang D Y, Chen C Y. 2016. Genetic diversity, rather than cultivar type, determines relative grain Cd accumulation in hybrid rice. Front Plant Sci, 7: 1407.
PMID
[17] Xu W J, Hou S Z, AmanKhan M, Chao Y, Xiao L L, Ruan Z B, Hong L, Chen Z H, Ceng S W, Ye Z Q, Liu D. 2021. Effect of water and fertilization management on Cd immobilization and bioavailability in Cd-polluted paddy soil. Chemosphere, 276: 130168.
[18] Yan H L, Xu W X, Xie J Y, Gao Y W, Wu L L, Sun L, Feng L, Chen X, Zhang T, Dai C H, Li T, Lin X N, Zhang Z Y, Wang X Q, Li F M, Zhu X Y, Li J J, Li Z C, Chen C Y, Ma M, Zhang H L, He Z Y. 2019. Variation of a major facilitator superfamily gene contributes to differential cadmium accumulation between rice subspecies. Nat Commun, 10(1): 2562.
PMID
[19] Yang Y J, Chen J M, Huang Q N, Tang S Q, Wang J L, Hu P S, Shao G S. 2018. Can liming reduce cadmium (Cd) accumulation in rice (Oryza sativa) in slightly acidic soils? A contradictory dynamic equilibrium between Cd uptake capacity of roots and Cd immobilisation in soils. Chemosphere, 193: 547-556.
PMID
[20] Ye S J, Zeng G M, Wu H P, Zhang C, Dai J, Liang J, Yu J F, Ren X Y, Yi H, Cheng M, Zhang C,. 2017. Biological technologies for the remediation of co-contaminated soil. Crit Rev Biotechnol, 37(8): 1062-1076.
PMID
[21] Zou M M, Zhou S L, Zhou Y J, Jia Z Y, Guo T W, Wang J X. 2021. Cadmium pollution of soil-rice ecosystems in rice cultivation dominated regions in China: A review. Environ Pollut, 280: 116965.

相关文章 0

No related articles found!

编辑推荐

Metrics

阅读次数
全文


摘要

  • 摘要
  • 图/表
  • 参考文献
  • 相关文章
  • 编辑推荐
  • Metrics
回顶部
浙ICP备05004719号-15   公安备案号:33010302003355
版权所有 © 《Rice Science》编辑部
地址:浙江省杭州市体育场路359号 邮编:310006 电话:0571-63371017 E-mail:crrn@fy.hz.zn.cn; cjrs278@gmail.com
本系统由北京玛格泰克科技发展有限公司设计开发
总访问量: 今日访问: 在线人数: