1 Little R R, Hilder G B, Dawson E H. Differential effect of dilute alkali on 25 varieties of milled white rice. Cereal Chem, 1958, 35: 111-126.2 Capampang G B, Perez C M, Juliano B O. A gel consistency test for eating quality of rice. J Sci Food Agric, 1973, 24: 1589-1594.3 Juliano B O. A simplified assay for milled rice amylose. Cereal Sci, 1971, 16: 334-338.4 Khush G S, Paul C M E, De la Cruz N M. Rice grain quality evaluation and improvement at IRRI // Workshop on Chemical Aspects of Rice Grain Quality. Manila: IRRI, 1979.5 McKenzie K S, Rutger J N. Genetic analysis of amylose content, alkali spreading score, and grain dimensions in rice. Crop Sci, 1983, 23: 306-313.6 Pooni H S, Kumar I, Khush G S. A comprehensive model for disomically inherited metrical traits expressed in triploid tissues. Heredity, 1992, 69: 166-174.7 Mo H D. Identification of genetic control for endosperm traits in cereals. Acta Genet Sin, 1995, 22: 126-132.8 Zhu J, Weir B S. Analysis of cytoplasmic and maternal effects: II. Genetic models for triploid endosperm. Theor Appl Genet, 1994, 89: 160-166.9 Shi C H, Zhu J, Zang R C, Chen G L. Genetic and heterosis analysis for cooking quality trait of indica rice in different environments. Theor Appl Genet, 1997, 95: 294-300.10 Harushima Y, Yano M, Shomura A, Sato M, Shimano T, Kuboki Y, Yamamoto T, Lin S Y, Antonio B A, Parco A, Kajiya H, Huang N, Yamamoto K, Nagamura Y, Kurata N, Khush G S, Sasaki T. A high-density rice genetic linkage map with 2275 markers using a single F2 population. Genetics, 1998, 148: 479-494.11 Li Z K, Luo L J, Mei H W, Wang D L, Shu Q Y, Tabien R, Zhong D B, Ying C S, Stansel J W, Khush G S, Paterson A H. Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice: I. Biomass and grain yield. Genetics, 2001, 158: 1737-1753. 12 Luo L J, Li Z K, Mei H W, Shu Q Y, Tabien R, Zhong D B, Ying C S, Stansel J W, Khush G S, Paterson A H. Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice: II. Grain yield components. Genetics, 2001, 158: 1755-1771.13 Yano M, Kojima S, Takahashi Y, Lin H X, Sasaki T. Genetic control of flowering time in rice, a short-day plant. Plant Physiol, 2001, 127: 1425-1429.14 Lin H X, Ashikari M, Yamanouchi U, Sasaki T, Yano M. Identification and characterization of a quantitative trait locus, Hd9, controlling heading date in rice. Breeding Sci, 2002, 52: 35-41.15 Gong J M, He P, Qian Q, Shen L S, Zhu L H, Chen S Y. Identification of salt-tolerance QTL in rice (Oryza sativa L.). Chin Sci Bull, 1999, 44: 68-71. (in Chinese)16 Lin H X,Zhu M Z, Yano M, Su W A, Gao J P, Liang Z W, Hu X H, Ren Z H, Chao D Y. QTLs for Na+ and K+ uptake of shoot and root controlling rice salt tolerance. Theor Appl Genet, 2004, 108: 253-260.17 Yano M, Sasaki T. Genetic and molecular dissection of quantitative traits in rice. Plant Mol Biol, 1997, 35: 145-153.18 He P, Li S G, Qian Q, Ma Y Q, Li J Z, Wang W M, Chen Y, Zhu L H. Genetic analysis of rice grain quality. Theor Appl Genet, 1999, 98: 502-508.19 Tan Y F, Li J X, Yu S B, Xing Y Z, Xu C G, Zhang Q. The three important traits for cooking and eating quality of rice grains are controlled by a single locus in an elite rice hybrid, Shanyou 63. Theor Appl Genet, 1999, 99: 642-648.20 Lanceras J C, Huang Z L, Naivikul O, Vanavichit A, Ruanjaichon V, Tragoonrung S. Mapping of genes for cooking and eating qualities in Thai jasmine rice (KDML105). DNA Res, 2000, 7: 93-101.21 Tan Y F, Sun M, Xing Y Z, Hua J P, Sun X L, Zhang Q F, Corke H. Mapping quantitative trait loci for milling quality, protein content and color characteristics of rice using a recombinant inbred line population derived from an elite rice hybrid. Theor Appl Genet, 2001, 103: 1037-1045.22 Eptiningsih E M, Trijatmiko K R. Identification of quantitative trait loci for grain quality in an advanced backcross population derived from the Oryza sativa variety IR64 and the wild relative O. rufipogon. Theor Appl Genet, 2003, 107: 1433-1441.23 Li Z F, Wan J M, Yano M. Mapping of quantitative trait loci controlling physico-chemical properties of rice grains (Oryza sativa L.). Breeding Sci, 2003, 53: 209-215.24 Fan C C, Yu X Q, Zhang Q F. The main effects, epistatic effects and environmental interactions of QTLs on the cooking and eating quality of rice in a doubled-haploid line population. Theor Appl Genet, 2005, 110: 1445-1452.25 Tian R, Jiang G H, He Y Q. Mapping quantitative trait loci underlying the cooking and eating quality of rice using a DH population. Mol Breeding, 2005, 15: 117-124.26 Yamamoto T, Taguchi-Shiobara F, Ukai Y. Mapping quantitative trait loci for days-to-heading, and clum, panicle and internode lengths in a BC1F3 population using an elite rice variety, Koshihikari, as the recurrent parent. Breeding Sci, 2001, 51: 63-71.27 Ma J F, Shen R F, Zhao Z Q, Wissuwa M, Takeuchi Y, Ebitani T, Yano M. Response of rice to Al stress and identification of quantitative trait loci for Al tolerance. Plant Cell Physiol, 2002, 43: 652-659. 28 Ebitani T, Takeuchi Y, Nonoue Y, Yamamoto T, Takeuchi K, Yano M. Construction and evaluation of chromosome segment substitution lines carrying overlapping chromosome segments of indica rice cultivar ‘Kasalath’ in a genetic background of japonica elite cultivar ‘Koshihikari’. Breeding Sci, 2005, 55: 65-73.29 Peterz C M, Juliano B O. Modification of the simplified amylose test for milled rice. Starke, 1978, 30: 424-426.30 Lander E S, Green O, Abrahamson J, Barlow A, Daley M J, Lincoln S E, Newburg L. Mapmaker: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genetics, 1987, 1: 174-181.31 Wang D L, Zhu J, Li Z K, Paterson A H. Mapping QTL with epistatic effects and QTL╳environment interactions by mixed model approaches. Theor Appl Genet, 1999, 99: 1255-1264.32 Yano M, Katayose Y, Ashikari M, Yamanouchi U, Monna L, Fuse T, Baba T, Yamamoto K, Umehara Y, Nagamura Y, Sasaki T. Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell, 2000, 12: 2473-2484.33 Ashikari M, Sakakibara H, Lin S Y, Yamamoto T, Takashi T, Nishimura A, Angeles E, Qian Q, Kitano H, Matsuoka M. Cytokinin oxidase regulates rice grain production. Science, 2005, 309: 741-745.34 Ren Z H, Gao J P, Li L G, Cai X L, Huang W, Chao D Y, Zhu M Z, Wang Z Y, Luan S, Lin H X. A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nat Genet, 2005, 37:1141-1146.35 Eshed Y, Zamir D. An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL. Genetics, 1995, 141: 1147-1162.36 Sano Y. Differential regulation of waxy gene expression in rice endosperm. Theor Appl Genet, 1984, 68: 467-473.37 Villareal C P, Juliano B O. Waxy gene factor and residual protein of rice starch granules. Starch/Starke, 1986, 38: 118-121.38 Villareal C P, Juliano B O. Comparative levels of waxy gene product of endosperm starch granules of different rice ecotypes. Starch/Starke, 1989, 41: 369-372. |