Rice Science
  • 首页
  • 期刊介绍
  • 编委会
  • 学术伦理
  • 投稿指南
  • 期刊订阅
  • 联系我们
  • English

Rice Science ›› 2024, Vol. 31 ›› Issue (4): 361-365.DOI: 10.1016/j.rsci.2024.04.003

• •    下一篇

  • 收稿日期:2023-12-15 接受日期:2024-03-21 出版日期:2024-07-28 发布日期:2024-08-08

RichHTML

PDF

补充材料

1

可视化

0
  • 1. supplemental data.pdf(412KB)

摘要/Abstract

引用本文

. [J]. Rice Science, 2024, 31(4): 361-365.

使用本文

推荐

导出引用管理器 EndNote|Ris|BibTeX

链接本文: http://www.ricesci.org/CN/10.1016/j.rsci.2024.04.003

               http://www.ricesci.org/CN/Y2024/V31/I4/361

图/表 2

Fig. 1. Soil characteristics, phosphorus (P) fractions, microbial community compositions, and relative quantitative values of P functional genes under different treatments. A, Soil pH values in different treatments. B, Soil available P contents in different treatments. C, Effect of different treatments on P content of various soil forms shown as percentages. D, Redundancy analysis (RDA) reveals linkages among soil P fractions, soil properties, bacterial α diversity (ACE, Abundance-based coverage estimator), and microbial community compositions. The red arrows indicate soil properties, blue arrows indicate different forms of P, black arrows indicate bacterial α diversity, and purple arrows indicate dominant bacteria. E, RDA reveals linkages among soil P fractions, soil properties, bacterial α diversity, and P-cycling pathway gene families. The red arrows indicate soil properties, blue arrows indicate different forms of P, black arrows indicate bacterial α diversity, and purple arrows indicate P-cycling pathway genes. F, Soil bacterial community compositions at the level of phylum in different treatments. G, Soil bacterial community compositions at the level of common dominant phyla in different treatments. H, Relative quantitative expression of phoD and phnK genes in soils under different treatments. I, Relative quantitative expression of gcd and pqqC in soils under different treatments. J, Relative quantitative expression of phoX gene in soils under different treatments. CK, No fertilization; RHB1, 0.5% rice husk biochar (RBH) and 0.1% organic fertilizer (OF); RHB2, 1.0% RBH and 0.1% OF; BMB1, 0.5% Bacillus megaterium (BM)-inoculated RBH (BMB) and 0.1% OF; BMB2, 1.0% BMB and 0.1% OF; Pi, Inorganic P; Po, Organic P. Data are Mean ± SD (n = 3). Different lowercase letters in the same columns indicate significant differences (P < 0.05).

Fig. 1. Soil characteristics, phosphorus (P) fractions, microbial community compositions, and relative quantitative values of P functional genes under different treatments. A, Soil pH values in different treatments. B, Soil available P contents in different treatments. C, Effect of different treatments on P content of various soil forms shown as percentages. D, Redundancy analysis (RDA) reveals linkages among soil P fractions, soil properties, bacterial α diversity (ACE, Abundance-based coverage estimator), and microbial community compositions. The red arrows indicate soil properties, blue arrows indicate different forms of P, black arrows indicate bacterial α diversity, and purple arrows indicate dominant bacteria. E, RDA reveals linkages among soil P fractions, soil properties, bacterial α diversity, and P-cycling pathway gene families. The red arrows indicate soil properties, blue arrows indicate different forms of P, black arrows indicate bacterial α diversity, and purple arrows indicate P-cycling pathway genes. F, Soil bacterial community compositions at the level of phylum in different treatments. G, Soil bacterial community compositions at the level of common dominant phyla in different treatments. H, Relative quantitative expression of phoD and phnK genes in soils under different treatments. I, Relative quantitative expression of gcd and pqqC in soils under different treatments. J, Relative quantitative expression of phoX gene in soils under different treatments. CK, No fertilization; RHB1, 0.5% rice husk biochar (RBH) and 0.1% organic fertilizer (OF); RHB2, 1.0% RBH and 0.1% OF; BMB1, 0.5% Bacillus megaterium (BM)-inoculated RBH (BMB) and 0.1% OF; BMB2, 1.0% BMB and 0.1% OF; Pi, Inorganic P; Po, Organic P. Data are Mean ± SD (n = 3). Different lowercase letters in the same columns indicate significant differences (P < 0.05).

Table 1. The α diversity index of soil bacteria under different treatments.
Treatment Shannon Simpson Chao1 ACE
CK 9.00 ± 0.18 a 0.0135 ± 0.0027 a 5 352 ± 52 b 6 868 ± 121 a
RHB1 9.27 ± 0.36 a 0.0126 ± 0.0057 a 5 623 ± 197 a 7 046 ± 271 a
RHB2 9.06 ± 0.14 a 0.0117 ± 0.0017 a 5 455 ± 18 ab 6 919 ± 29 a
BMB1 9.39 ± 0.17 a 0.0083 ± 0.0021 a 5 630 ± 19 a 7 005 ± 31 a
BMB2 9.35 ± 0.30 a 0.0114 ± 0.0037 a 5 575 ± 66 a 7 008 ± 33 a

Table 1. The α diversity index of soil bacteria under different treatments.

Treatment Shannon Simpson Chao1 ACE
CK 9.00 ± 0.18 a 0.0135 ± 0.0027 a 5 352 ± 52 b 6 868 ± 121 a
RHB1 9.27 ± 0.36 a 0.0126 ± 0.0057 a 5 623 ± 197 a 7 046 ± 271 a
RHB2 9.06 ± 0.14 a 0.0117 ± 0.0017 a 5 455 ± 18 ab 6 919 ± 29 a
BMB1 9.39 ± 0.17 a 0.0083 ± 0.0021 a 5 630 ± 19 a 7 005 ± 31 a
BMB2 9.35 ± 0.30 a 0.0114 ± 0.0037 a 5 575 ± 66 a 7 008 ± 33 a

参考文献 26

[1] Amanullah, Inamullah, Alkahtani J, Elshikh M S, Alwahibi M S, Muhammad A, Imran, Khalid S. 2020. Phosphorus and zinc fertilization improve productivity and profitability of rice cultivars under rice-wheat system. Agronomy, 10(8): 1085.
[2] Azeem M, Hassan T U, Tahir M I, Ali A, Jeyasundar P G S A, Hussain Q, Bashir S, Mehmood S, Zhang Z Q. 2021. Tea leaves biochar as a carrier of Bacillus cereus improves the soil function and crop productivity. Appl Soil Ecol, 157: 103732.
[3] Bi Q F, Li K J, Zheng B X, Liu X P, Li H Z, Jin B J, Ding K, Yang X R, Lin X Y, Zhu Y G. 2020. Partial replacement of inorganic phosphorus (P) by organic manure reshapes phosphate mobilizing bacterial community and promotes P bioavailability in a paddy soil. Sci Total Environ, 703: 134977.
[4] Billah M, Khan M, Bano A, Hassan T U, Munir A, Gurmani A R. 2019. Phosphorus and phosphate solubilizing bacteria: Keys for sustainable agriculture. Geomicrobiol J, 36(10): 904-916.
[5] Cao N, Zhi M L, Zhao W Q, Pang J Y, Hu W, Zhou Z G, Meng Y L. 2022. Straw retention combined with phosphorus fertilizer promotes soil phosphorus availability by enhancing soil P-related enzymes and the abundance of phoC and phoD genes. Soil Tillage Res, 220: 105390.
[6] Ding L J, Su J Q, Sun G X, Wu J S, Wei W X. 2018. Increased microbial functional diversity under long-term organic and integrated fertilization in a paddy soil. Appl Microbiol Biotechnol, 102(4): 1969-1982.
[7] Ding Y, Liu Y G, Liu S B, Li Z W, Tan X F, Huang X X, Zeng G M, Zhou Lu, Zheng B H. 2016. Biochar to improve soil fertility: A review. Agron Sustain Dev, 36: 1-18.
[8] Gul S, Whalen J K. 2016. Biochemical cycling of nitrogen and phosphorus in biochar-amended soils. Soil Biol Biochem, 103: 1-15.
[9] Gorovtsov A V, Minkina T M, Mandzhieva S S, Perelomov L V, Soja G, Zamulina I V, Rajput V D, Sushkova S N, Mohan D, Yao J. 2020. The mechanisms of biochar interactions with microorganisms in soil. Environ Geochem Health, 42(8): 2495-2518.
[10] Hinsinger P. 2001. Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: A review. Plant Soil, 237(2): 173-195.
[11] Husna N, Budianta D, Munandar, Napoleon A. 2019. Evaluation of several biochar types as inoculant carrier for indigenous phosphate solubilizing microoorganism from acid sulphate soil. J Ecol Eng, 20(6): 1-8.
[12] Jenkins J R, Viger M, Arnold E C, Harris Z M, Ventura M, Miglietta F, Girardin C, Edwards R J, Rumpel C, Fornasier F, Zavalloni C, Tonon G, Alberti G, Taylor G. 2017. Biochar alters the soil microbiome and soil function: Results of next-generation amplicon sequencing across Europe. GCB Bioenergy, 9(3): 591-612.
[13] Jones D L, Magthab E A, Gleeson D B, Hill P W, Sánchez- Rodríguez A R, Roberts P, Ge T, Murphy D V. 2018. Microbial competition for nitrogen and carbon is as intense in the subsoil as in the topsoil. Soil Biol Biochem, 117: 72-82.
[14] Khan M S, Zaidi A, Wani P A. 2007. Role of phosphate solubilizing microorganisms in sustainable agriculture: A review. Agron Sustain Dev, 27(1): 29-43.
[15] Khan N, Clark I, Sánchez-Monedero M A, Shea S, Meier S, Qi F J, Kookana R S, Bolan N. 2016. Physical and chemical properties of biochars co-composted with biowastes and incubated with a chicken litter compost. Chemosphere, 142: 14-23.
[16] Kouas S, Labidi N, Debez A, Abdelly C. 2005. Effect of P on nodule formation and N fixation in bean. Agron Sustain Dev, 25(3): 389-393.
[17] Liang B, Lehmann J, Solomon D, Kinyangi J, Grossman J, O’Neill B, Skjemstad J O, Thies J, Luizão F J, Petersen J, Neves E G. 2006. Black carbon increases cation exchange capacity in soils. Soil Sci Soc Am J, 70(5): 1719-1730.
[18] Lu J K, Liu S N, Chen W F, Meng J. 2023. Study on the mechanism of biochar affecting the effectiveness of phosphate solubilizing bacteria. World J Microbiol Biotechnol, 39(3): 87.
[19] Maher F M, Thorrold B S. 1989. Accumulation of phosphorus fractions in yellow-brown pumice soils with development. N Z J Agric Res, 32(1): 53-62.
[20] Masto R E, Kumar S, Rout T K, Sarkar P, George J, Ram L C. 2013. Biochar from water hyacinth (Eichornia crassipes) and its impact on soil biological activity. Catena, 111: 64-71.
[21] Sakurai M, Wasaki J, Tomizawa Y, Shinano T, Osaki M. 2008. Analysis of bacterial communities on alkaline phosphatase genes in soil supplied with organic matter. Soil Sci Plant Nutr, 54(1): 62-71.
[22] Saleque M A, Naher U A, Islam A, Pathan A B M B U, Hossain A T M S, Meisner C A. 2004. Inorganic and organic phosphorus fertilizer effects on the phosphorus fractionation in wetland rice soils. Soil Sci Soc Am J, 68(5): 1635-1644.
[23] Sharma S B, Sayyed R Z, Trivedi M H, Gobi T A. 2013. Phosphate solubilizing microbes: Sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus, 2(1): 587.
[24] Wang L, Wang J, Yuan J, Tang Z H, Wang J D, Zhang Y C. 2023. Long-term organic fertilization strengthens the soil phosphorus cycle and phosphorus availability by regulating the pqqC- and phoD-harboring bacterial communities. Microb Ecol, 86(4): 2716-2732.
[25] Wang Y M, Peng S, Hua Q Q, Qiu C W, Wu P, Liu X L, Lin X G. 2021. The long-term effects of using phosphate-solubilizing bacteria and photosynthetic bacteria as biofertilizers on peanut yield and soil bacteria community. Front Microbiol, 12: 693535.
[26] Zheng B X, Ding K, Yang X R, Wadaan M A M, Hozzein W N, Peñuelas J, Zhu Y G. 2019. Straw biochar increases the abundance of inorganic phosphate solubilizing bacterial community for better rape (Brassica napus) growth and phosphate uptake. Sci Total Environ, 647: 1113-1120.

相关文章 0

No related articles found!

编辑推荐

Metrics

阅读次数
全文


摘要

  • 摘要
  • 图/表
  • 参考文献
  • 相关文章
  • 编辑推荐
  • Metrics
回顶部
浙ICP备05004719号-15   公安备案号:33010302003355
版权所有 © 《Rice Science》编辑部
地址:浙江省杭州市体育场路359号 邮编:310006 电话:0571-63371017 E-mail:crrn@fy.hz.zn.cn; cjrs278@gmail.com
本系统由北京玛格泰克科技发展有限公司设计开发
总访问量: 今日访问: 在线人数: