Rice Science
  • 首页
  • 期刊介绍
  • 编委会
  • 学术伦理
  • 投稿指南
  • 期刊订阅
  • 联系我们
  • English

Rice Science ›› 2024, Vol. 31 ›› Issue (3): 237-240.DOI: 10.1016/j.rsci.2023.11.009

• •    下一篇

  • 收稿日期:2023-09-09 接受日期:2023-11-08 出版日期:2024-05-28 发布日期:2024-06-04

RichHTML

PDF

补充材料

1

可视化

0
  • 1. supplemental data.pdf(525KB)

摘要/Abstract

引用本文

. [J]. Rice Science, 2024, 31(3): 237-240.

使用本文

推荐

导出引用管理器 EndNote|Ris|BibTeX

链接本文: http://www.ricesci.org/CN/10.1016/j.rsci.2023.11.009

               http://www.ricesci.org/CN/Y2024/V31/I3/237

图/表 1

Fig. 1. Alleviatory role of putrescine (PUT) in cadmium (Cd)-stressed rice. A and B, Root (A) and shoot (B) biomass of rice plants at different concentrations of PUT with or without 1 µmol/L Cd treatments. C, Root elongation at different concentrations of PUT with or without 1 µmol/L Cd treatments. D and E, Cd content in roots (D) and shoots (E) with or without 0.01 µmol/L PUT treatments. F, Ratio of shoot to root Cd content with or without 0.01 µmol/L PUT treatments. G, Cd content in xylem with or without 0.01 µmol/L PUT treatments. H, Rice phenotype at the seedling stage when treated with or without 1 µmol/L Cd and different concentrations of PUT. Scale bar, 5 cm. I and K, Cd content in root (I) and shoot (K) cell wall hemicellulose treated with or without 0.01 µmol/L PUT. J and L, Total sugar content in root (J) and shoot (L) hemicellulose with or without 0.01 µmol/L PUT and 1 µmol/L Cd treatments. M, Fluorescence images of nitric oxide (NO) in rice roots. Scale bars, 1 mm. N, Relative fluorescence intensity of NO when treated with or without 0.01 µmol/L PUT and 1 µmol/L Cd at the seedling stage. O and P, Cd content in roots (O) and shoots (P) treated with 10 µmol/L c-PTIO and 1 µmol/L Cd, with or without 0.01 µmol/L PUT. Data are Mean ± SD (n = 10 in A to C, and N, and 4 in D to G, I to O, and P). Different lowercase letters and asterisks above the bars indicate significant differences at P < 0.05.

Fig. 1. Alleviatory role of putrescine (PUT) in cadmium (Cd)-stressed rice. A and B, Root (A) and shoot (B) biomass of rice plants at different concentrations of PUT with or without 1 µmol/L Cd treatments. C, Root elongation at different concentrations of PUT with or without 1 µmol/L Cd treatments. D and E, Cd content in roots (D) and shoots (E) with or without 0.01 µmol/L PUT treatments. F, Ratio of shoot to root Cd content with or without 0.01 µmol/L PUT treatments. G, Cd content in xylem with or without 0.01 µmol/L PUT treatments. H, Rice phenotype at the seedling stage when treated with or without 1 µmol/L Cd and different concentrations of PUT. Scale bar, 5 cm. I and K, Cd content in root (I) and shoot (K) cell wall hemicellulose treated with or without 0.01 µmol/L PUT. J and L, Total sugar content in root (J) and shoot (L) hemicellulose with or without 0.01 µmol/L PUT and 1 µmol/L Cd treatments. M, Fluorescence images of nitric oxide (NO) in rice roots. Scale bars, 1 mm. N, Relative fluorescence intensity of NO when treated with or without 0.01 µmol/L PUT and 1 µmol/L Cd at the seedling stage. O and P, Cd content in roots (O) and shoots (P) treated with 10 µmol/L c-PTIO and 1 µmol/L Cd, with or without 0.01 µmol/L PUT. Data are Mean ± SD (n = 10 in A to C, and N, and 4 in D to G, I to O, and P). Different lowercase letters and asterisks above the bars indicate significant differences at P < 0.05.

参考文献 18

[1] Adriano D C, Wenzel W W, Vangronsveld J, Bolan N S. 2004. Role of assisted natural remediation in environmental cleanup. Geoderma, 122: 121-142.
[2] Åkesson A, Barregard L, Bergdahl I A, Nordberg G F, Nordberg M, Skerfving S. 2014. Non-renal effects and the risk assessment of environmental cadmium exposure. Environ Health Perspect, 122(5): 431-438.
[3] Codex Alimentarius Commission. 2002. Codex general standard for contaminants and toxins in foods. In: Report of the 34th Session of the Codex Committee on Food Additives and Contaminants. Rotterdam, the Netherlands. Rome, Italy: FAO/WHO: 11-15.
[4] Hong C O, Owens V N, Kim Y G, Lee S M, Park H C, Kim K K, Son H J, Suh J M, Kim P J. 2014. Soil pH effect on phosphate induced cadmium precipitation in arable soil. Bull Environ Contam Toxicol, 93: 101-105.
[5] Kumar A, Altabella T, Taylor M A, Tiburcio A F. 1997. Recent advances in polyamine research. Trends Plant Sci, 2: 124-130.
[6] Kumar P, Siddique A, Thakur V, Singh M. 2019a. Effect of putrescine and glomus on total reducing sugar in cadmium treated sorghum crop. J Pharm Phytochem, 8: 313-316.
[7] Kumar P, Siddique A, Thongbam S, Chopra P, Kumar S. 2019b. Cadmium induced changes in total starch, total amylose and amylopectin content in putrescine and mycorrhiza treated sorghum crop. Nat Environ Pollut Technol, 18: 525-530.
[8] Piao L, Wang Y, Liu X M, Sun G Y, Zhang S Y, Yan J Y, Chen Y, Meng Y, Li M, Gu W R. 2022. Exogenous hemin alleviated cadmium stress in maize (Zea mays L.) by enhancing leaf photosynthesis, AsA-GSH cycle and polyamine metabolism. Front Plant Sci, 13: 993675.
[9] Prasann K, Mandala H, Kumar P S, Johnson Y, Nada J, Mohit N, Sunil K. 2018. Effect on chlorophyll a/b ratio in cadmium contaminated maize leaves treated with putrescine and mycorrhiza. Ann Biol, 34: 281-283.
[10] Sardar R, Ahmed S, Yasin N A. 2022. Role of exogenously applied putrescine in amelioration of cadmium stress in Coriandrum sativum by modulating antioxidant system. Int J Phytoremediat, 24: 955-962.
[11] Sarwar N, Saifullah, Malhi S S, Zia M H, Naeem A, Bibi S, Farid G. 2010. Role of mineral nutrition in minimizing cadmium accumulation by plants. J Sci Food Agric, 90: 925-937.
[12] Tajti J, Janda T, Majláth I, Szalai G, Pál M. 2018. Comparative study on the effects of putrescine and spermidine pre-treatment on cadmium stress in wheat. Ecotoxicol Environ Saf, 148: 546-554.
[13] Yan Y, Jin C W, Sun C L, Wang J H, Ye Y Q, Zhou W W, Lu L L, Lin X Y. 2016. Inhibition of ethylene production by putrescine alleviates aluminium induced root inhibition in wheat plants. Sci Rep, 6: 18888.
[14] Yang Q Z, Wang F, Rao J P. 2016. Effect of putrescine treatment on chilling injury, fatty acid composition and antioxidant system in kiwifruit. PLoS One, 11(9): e0162159.
[15] Zeid I M, Shedeed Z A. 2006. Response of alfalfa to putrescine treatment under drought stress. Biol Plant, 50: 635-640.
[16] Zhao H C, Yu L, Yu M J, Afzal M, Dai Z M, Brookes P, Xu J M. 2020. Nitrogen combined with biochar changed the feedback mechanism between soil nitrification and Cd availability in an acidic soil. J Hazard Mater, 15: 121631.
[17] Zhou M X, Han R M, Ghnaya T, Lutts S. 2018. Salinity influences the interactive effects of cadmium and zinc on ethylene and polyamine synthesis in the halophyte plant species Kosteletzkya pentacarpos. Chemosphere, 209: 892-900.
[18] Zhu C Q, Hu W J, Cao X C, Zhu L F, Kong Y L, Jin Q Y, Shen G X, Wang W P, Zhang H, Zhang J H. 2021. Physiological and proteomic analyses reveal effects of putrescine-alleviated aluminum toxicity in rice roots. Rice Sci, 28(6): 579-593.

相关文章 0

No related articles found!

编辑推荐

Metrics

阅读次数
全文


摘要

  • 摘要
  • 图/表
  • 参考文献
  • 相关文章
  • 编辑推荐
  • Metrics
回顶部
浙ICP备05004719号-15   公安备案号:33010302003355
版权所有 © 《Rice Science》编辑部
地址:浙江省杭州市体育场路359号 邮编:310006 电话:0571-63371017 E-mail:crrn@fy.hz.zn.cn; cjrs278@gmail.com
本系统由北京玛格泰克科技发展有限公司设计开发
总访问量: 今日访问: 在线人数: