Rice Science
  • 首页
  • 期刊介绍
  • 编委会
  • 学术伦理
  • 投稿指南
  • 期刊订阅
  • 联系我们
  • English

Rice Science ›› 2015, Vol. 22 ›› Issue (6): 264-274.DOI: 10.1016/S1672-6308(14)60306-1

• • 上一篇    下一篇

  • 收稿日期:2015-04-06 接受日期:2015-05-08 出版日期:2015-06-06 发布日期:2015-09-15

RichHTML

PDF

可视化

0

摘要/Abstract

引用本文

. [J]. Rice Science, 2015, 22(6): 264-274.

使用本文

0
    /   推荐

导出引用管理器 EndNote|Ris|BibTeX

链接本文: http://www.ricesci.org/CN/10.1016/S1672-6308(14)60306-1

               http://www.ricesci.org/CN/Y2015/V22/I6/264

图/表 8

Table 1 Soil organic matter and nitrogen (N), phosphorus (P) and potassium (K) contents of trial area for different treatments in Langfang, Hebei Province, China.
Sampling stage Treatment Organic matter Total N Alkali-hydrolyzable Olsen-P Available K pH
(g/kg) (g/kg) N (g/kg) (g/kg) (g/kg)
Before sowing A 13.71 1.11 0.06 0.04 0.1 8.4
B 7.85 0.57 0.04 0.01 0.07 8.6
C 8.2 0.62 0.04 0.01 0.07 8.6
Elongation stage (7 d after the first fertilizer application) A - 1.12 0.08 0.04 - -
B - 0.55 0.04 0.01 - -
C - 0.56 0.04 0.01 - -
Before booting stage (before the second fertilizer application) A - 0.96 0.07 0.03 - -
B - 0.51 0.04 0.01 - -
C - 0.53 0.04 0.01 - -
Booting stage (7 d after the second fertilizer application) A - 0.95 0.06 0.03 - -
B - 0.55 0.05 0.01 - -
C - 0.48 0.04 0.01 - -
After harvest A 13.35 1.02 0.06 0.03 0.08 8.2
B 7.42 0.53 0.03 0.01 0.06 8.2
C 7.05 0.54 0.03 0.01 0.06 8.2

Table 1 Soil organic matter and nitrogen (N), phosphorus (P) and potassium (K) contents of trial area for different treatments in Langfang, Hebei Province, China.

Sampling stage Treatment Organic matter Total N Alkali-hydrolyzable Olsen-P Available K pH
(g/kg) (g/kg) N (g/kg) (g/kg) (g/kg)
Before sowing A 13.71 1.11 0.06 0.04 0.1 8.4
B 7.85 0.57 0.04 0.01 0.07 8.6
C 8.2 0.62 0.04 0.01 0.07 8.6
Elongation stage (7 d after the first fertilizer application) A - 1.12 0.08 0.04 - -
B - 0.55 0.04 0.01 - -
C - 0.56 0.04 0.01 - -
Before booting stage (before the second fertilizer application) A - 0.96 0.07 0.03 - -
B - 0.51 0.04 0.01 - -
C - 0.53 0.04 0.01 - -
Booting stage (7 d after the second fertilizer application) A - 0.95 0.06 0.03 - -
B - 0.55 0.05 0.01 - -
C - 0.48 0.04 0.01 - -
After harvest A 13.35 1.02 0.06 0.03 0.08 8.2
B 7.42 0.53 0.03 0.01 0.06 8.2
C 7.05 0.54 0.03 0.01 0.06 8.2
Table 3 Phenotypic performances of measured traits for introgression lines and their parents under nutrient solution culture conditions in Beijing, China.
Material Treatment RRL (cm) RRW (g) RSW (g) RWRSR RTW (g)
Shuhui 527
Mean ± SD E-D 1.8 ± 2.6 a 0.015 ± 0.003 b 0.048 ± 0.018 a 0.039 ± 0.027 b 0.062 ± 0.021 a
F-D 4.0 ± 0.3 a 0.026 ± 0.000 a 0.030 ± 0.009 a 0.207 ± 0.035 a 0.056 ± 0.009 a
Minghui 86
Mean ± SD E-D 0.1 ± 1.0 a 0.006 ± 0.008 a 0.011 ± 0.015 a 0.011 ± 0.067 b -0.005 ± 0.062 a
F-D 0.6 ± 0.9 a 0.008 ± 0.009 a -0.005 ± 0.023 a 0.160 ± 0.086 a 0.003 ± 0.027 a
Yetuozai (1)
Mean ± SD E-D 0.5 ± 1.8 a 0.003 ± 0.012 a 0.006 ± 0.038 a 0.021 ± 0.082 a 0.010 ± 0.049 a
F-D -0.1 ± 2.8 a 0.009 ± 0.009 a 0.001 ± 0.022 a 0.107 ± 0.086 a 0.009 ± 0.029 a
Yetuozai (2)
Mean ± SD E-D 0.1 ± 1.1 b 0.001 ± 0.007 a -0.001 ± 0.008 a 0.013 ± 0.071 a -0.002 ± 0.015 a
F-D 1.8 ± 1.6 a 0.001 ± 0.007 a -0.021 ± 0.020 b 0.135 ± 0.144 a -0.020 ± 0.022 a
Shuhui 527/Yetuozai population (SY)
Mean ± SD E-D 0.3 ± 0.9 a 0.005 ± 0.017 a 0.001 ± 0.033 a 0.023 ± 0.042 a 0.008 ± 0.045 a
F-D 0.6 ± 1.1 a 0.007 ± 0.010 a -0.015 ± 0.035 a 0.102 ± 0.072 a -0.007 ± 0.042 a
Range E-D -2.1-2.9 -0.037-0.097 -0.153-0.059 -0.102-0.131 -0.180-0.125
F-D -2.8-3.1 -0.015-0.040 -0.116-0.073 -0.084-0.406 -0.131-0.093
Minghui 86/Yetuozai population (MY)
Mean ± SD E-D 0.2 ± 1.2 b 0.001 ± 0.008 a -0.007 ± 0.019 a 0.026 ± 0.044 b -0.006 ± 0.025 a
F-D 0.9 ± 1.0 a 0.004 ± 0.009 a -0.027 ± 0.019 b 0.154 ± 0.112 a -0.023 ± 0.026 b
Range E-D -2.4-1.6 -0.014-0.014 -0.043-0.044 -0.070-0.127 -0.057-0.057
F-D -1.3-3.0 -0.011-0.030 -0.065-0.024 0.054-0.839 -0.064-0.054

Table 3 Phenotypic performances of measured traits for introgression lines and their parents under nutrient solution culture conditions in Beijing, China.

Material Treatment RRL (cm) RRW (g) RSW (g) RWRSR RTW (g)
Shuhui 527
Mean ± SD E-D 1.8 ± 2.6 a 0.015 ± 0.003 b 0.048 ± 0.018 a 0.039 ± 0.027 b 0.062 ± 0.021 a
F-D 4.0 ± 0.3 a 0.026 ± 0.000 a 0.030 ± 0.009 a 0.207 ± 0.035 a 0.056 ± 0.009 a
Minghui 86
Mean ± SD E-D 0.1 ± 1.0 a 0.006 ± 0.008 a 0.011 ± 0.015 a 0.011 ± 0.067 b -0.005 ± 0.062 a
F-D 0.6 ± 0.9 a 0.008 ± 0.009 a -0.005 ± 0.023 a 0.160 ± 0.086 a 0.003 ± 0.027 a
Yetuozai (1)
Mean ± SD E-D 0.5 ± 1.8 a 0.003 ± 0.012 a 0.006 ± 0.038 a 0.021 ± 0.082 a 0.010 ± 0.049 a
F-D -0.1 ± 2.8 a 0.009 ± 0.009 a 0.001 ± 0.022 a 0.107 ± 0.086 a 0.009 ± 0.029 a
Yetuozai (2)
Mean ± SD E-D 0.1 ± 1.1 b 0.001 ± 0.007 a -0.001 ± 0.008 a 0.013 ± 0.071 a -0.002 ± 0.015 a
F-D 1.8 ± 1.6 a 0.001 ± 0.007 a -0.021 ± 0.020 b 0.135 ± 0.144 a -0.020 ± 0.022 a
Shuhui 527/Yetuozai population (SY)
Mean ± SD E-D 0.3 ± 0.9 a 0.005 ± 0.017 a 0.001 ± 0.033 a 0.023 ± 0.042 a 0.008 ± 0.045 a
F-D 0.6 ± 1.1 a 0.007 ± 0.010 a -0.015 ± 0.035 a 0.102 ± 0.072 a -0.007 ± 0.042 a
Range E-D -2.1-2.9 -0.037-0.097 -0.153-0.059 -0.102-0.131 -0.180-0.125
F-D -2.8-3.1 -0.015-0.040 -0.116-0.073 -0.084-0.406 -0.131-0.093
Minghui 86/Yetuozai population (MY)
Mean ± SD E-D 0.2 ± 1.2 b 0.001 ± 0.008 a -0.007 ± 0.019 a 0.026 ± 0.044 b -0.006 ± 0.025 a
F-D 0.9 ± 1.0 a 0.004 ± 0.009 a -0.027 ± 0.019 b 0.154 ± 0.112 a -0.023 ± 0.026 b
Range E-D -2.4-1.6 -0.014-0.014 -0.043-0.044 -0.070-0.127 -0.057-0.057
F-D -1.3-3.0 -0.011-0.030 -0.065-0.024 0.054-0.839 -0.064-0.054
Table 4 Identification of QTLs for yield traits in two populations under three treatments in Langfang, Hebei Province, China.
Treatment Population Trait QTL Marker Chromosome Position (cM) Bin Probability R2 (%) Additive
A SY PN qPN5.7 RM26 5 118.8 5.7 0.017 10.2 0.47
A SY PN qPN11.3 RM536 11 55.1 11.3 0.005 13 0.29
A MY PN qPN5.3 RM169 5 58 5.3 0.032 8.5 -0.3
A SY FGP qFGP11.6 RM254 11 110 11.6 0.017 9.7 -8
A SY SNP qSNP6.6 RM5463 6 124.4 6.6 0.016 9.8 10.48
A SY SNP qSNP11.6 RM254 11 110 11.6 0.018 9.5 -9.11
A SY SF qSF5.5 RM164 5 78.7 5.5 0.015 10 1.52
A MY SF qSF4.1 RM335 4 22 4.1 0.014 11 -2.53
A MY SF qSF12.1 RM20A 12 3.2 12.1 0.006 13.8 -4.51
A SY TGW qTGW4.1 RM335 4 22 4.1 0.025 8.6 -1.05
A SY TGW qTGW5.5 RM164 5 78.7 5.5 0.04 7.2 0.63
A SY TGW qTGW6.6 RM5463 6 124.4 6.6 0.008 11.9 -1
A SY TGW qTGW9.3 RM219 9 11.7 9.3 0.017 9.5 -0.83
A MY TGW qTGW1.10 RM200 1 143.2 1.1 0.031 8.7 0.55
A MY TGW qTGW3.12 RM514 3 216.4 3.12 0.01 12 0.64
A SY GY qGY6.5 RM541 6 76 6.5 0.009 11 1.15
A SY GY qGY11.6 RM254 11 110 11.6 0.018 9.5 -1.06
B SY PN qPN1.7 RM9 1 92.4 1.7 0.047 6.8 0.32
B SY PN qPN11.3 RM536 11 55.1 11.3 0.003 14.4 0.33
B SY PN qPN12.2 RM155 12 20.9 12.2 0.004 14.4 0.25
B SY FGP qFGP11.6 RM254 11 110 11.6 0.007 12.2 -8.56
B MY FGP qFGP12.4 RM511 12 59.8 12.4 0.007 13.3 14.57
B SY SNP qSNP11.6 RM254 11 110 11.6 0.006 12.7 -9.26
B MY SNP qSNP12.4 RM511 12 59.8 12.4 0.003 16.1 18.81
B SY SF qSF1.7 RM9 1 92.4 1.7 0.022 8.9 -2.3
B SY TGW qTGW4.1 RM335 4 22 4.1 0.005 12.8 -1.32
B SY TGW qTGW6.6 RM5463 6 124.4 6.6 0.002 15.1 -1.17
B SY TGW qTGW7.1 RM481 7 3.2 7.1 0.046 6.7 0.9
B SY TGW qTGW9.3 RM219 9 11.7 9.3 0.014 10 -0.88
B MY TGW qTGW1.10 RM200 1 143.2 1.1 0.002 16.5 0.69
B SY GY qGY6.5 RM541 6 76 6.5 0.024 8.5 0.88
B SY GY qGY11.6 RM254 11 110 11.6 0.013 10.4 -0.98
C SY PN qPN1.2 RM283 1 31.4 1.2 0.001 16.5 -0.42
C SY PN qPN1.7 RM9 1 92.4 1.7 0.005 13 0.54
C SY PN qPN5.7 RM26 5 118.8 5.7 0.007 12.6 0.65
C SY PN qPN6.1 RM589 6 3.2 6.1 0.008 11.4 0.33
C SY PN qPN11.3 RM536 11 55.1 11.3 0.007 11.8 0.35
C MY PN qPN5.3 RM169 5 58 5.3 0.015 11 -0.44
C SY SNP qSNP6.6 RM5463 6 124.4 6.6 0.02 9.2 9.87
C SY SNP qSNP11.6 RM254 11 110 11.6 0.039 7.3 -7.75
C SY SF qSF1.7 RM9 1 92.4 1.7 0.003 14.9 -3.42
C SY SF qSF5.5 RM164 5 78.7 5.5 0.018 9.4 1.62
C MY SF qSF4.1 RM335 4 22 4.1 0.043 7.6 -2.06
C SY TGW qTGW4.1 RM335 4 22 4.1 0.007 12.3 -1.08
C SY TGW qTGW5.5 RM164 5 78.7 5.5 0.004 13.7 0.74
C SY TGW qTGW6.6 RM5463 6 124.4 6.6 0.004 13.7 -0.92
C SY TGW qTGW7.1 RM481 7 3.2 7.1 0.032 7.7 0.8
C SY TGW qTGW9.3 RM219 9 11.7 9.3 0.013 10.1 -0.74
C MY GY qGY1.10 RM200 1 143.2 1.1 0.003 15.8 1.42

Table 4 Identification of QTLs for yield traits in two populations under three treatments in Langfang, Hebei Province, China.

Treatment Population Trait QTL Marker Chromosome Position (cM) Bin Probability R2 (%) Additive
A SY PN qPN5.7 RM26 5 118.8 5.7 0.017 10.2 0.47
A SY PN qPN11.3 RM536 11 55.1 11.3 0.005 13 0.29
A MY PN qPN5.3 RM169 5 58 5.3 0.032 8.5 -0.3
A SY FGP qFGP11.6 RM254 11 110 11.6 0.017 9.7 -8
A SY SNP qSNP6.6 RM5463 6 124.4 6.6 0.016 9.8 10.48
A SY SNP qSNP11.6 RM254 11 110 11.6 0.018 9.5 -9.11
A SY SF qSF5.5 RM164 5 78.7 5.5 0.015 10 1.52
A MY SF qSF4.1 RM335 4 22 4.1 0.014 11 -2.53
A MY SF qSF12.1 RM20A 12 3.2 12.1 0.006 13.8 -4.51
A SY TGW qTGW4.1 RM335 4 22 4.1 0.025 8.6 -1.05
A SY TGW qTGW5.5 RM164 5 78.7 5.5 0.04 7.2 0.63
A SY TGW qTGW6.6 RM5463 6 124.4 6.6 0.008 11.9 -1
A SY TGW qTGW9.3 RM219 9 11.7 9.3 0.017 9.5 -0.83
A MY TGW qTGW1.10 RM200 1 143.2 1.1 0.031 8.7 0.55
A MY TGW qTGW3.12 RM514 3 216.4 3.12 0.01 12 0.64
A SY GY qGY6.5 RM541 6 76 6.5 0.009 11 1.15
A SY GY qGY11.6 RM254 11 110 11.6 0.018 9.5 -1.06
B SY PN qPN1.7 RM9 1 92.4 1.7 0.047 6.8 0.32
B SY PN qPN11.3 RM536 11 55.1 11.3 0.003 14.4 0.33
B SY PN qPN12.2 RM155 12 20.9 12.2 0.004 14.4 0.25
B SY FGP qFGP11.6 RM254 11 110 11.6 0.007 12.2 -8.56
B MY FGP qFGP12.4 RM511 12 59.8 12.4 0.007 13.3 14.57
B SY SNP qSNP11.6 RM254 11 110 11.6 0.006 12.7 -9.26
B MY SNP qSNP12.4 RM511 12 59.8 12.4 0.003 16.1 18.81
B SY SF qSF1.7 RM9 1 92.4 1.7 0.022 8.9 -2.3
B SY TGW qTGW4.1 RM335 4 22 4.1 0.005 12.8 -1.32
B SY TGW qTGW6.6 RM5463 6 124.4 6.6 0.002 15.1 -1.17
B SY TGW qTGW7.1 RM481 7 3.2 7.1 0.046 6.7 0.9
B SY TGW qTGW9.3 RM219 9 11.7 9.3 0.014 10 -0.88
B MY TGW qTGW1.10 RM200 1 143.2 1.1 0.002 16.5 0.69
B SY GY qGY6.5 RM541 6 76 6.5 0.024 8.5 0.88
B SY GY qGY11.6 RM254 11 110 11.6 0.013 10.4 -0.98
C SY PN qPN1.2 RM283 1 31.4 1.2 0.001 16.5 -0.42
C SY PN qPN1.7 RM9 1 92.4 1.7 0.005 13 0.54
C SY PN qPN5.7 RM26 5 118.8 5.7 0.007 12.6 0.65
C SY PN qPN6.1 RM589 6 3.2 6.1 0.008 11.4 0.33
C SY PN qPN11.3 RM536 11 55.1 11.3 0.007 11.8 0.35
C MY PN qPN5.3 RM169 5 58 5.3 0.015 11 -0.44
C SY SNP qSNP6.6 RM5463 6 124.4 6.6 0.02 9.2 9.87
C SY SNP qSNP11.6 RM254 11 110 11.6 0.039 7.3 -7.75
C SY SF qSF1.7 RM9 1 92.4 1.7 0.003 14.9 -3.42
C SY SF qSF5.5 RM164 5 78.7 5.5 0.018 9.4 1.62
C MY SF qSF4.1 RM335 4 22 4.1 0.043 7.6 -2.06
C SY TGW qTGW4.1 RM335 4 22 4.1 0.007 12.3 -1.08
C SY TGW qTGW5.5 RM164 5 78.7 5.5 0.004 13.7 0.74
C SY TGW qTGW6.6 RM5463 6 124.4 6.6 0.004 13.7 -0.92
C SY TGW qTGW7.1 RM481 7 3.2 7.1 0.032 7.7 0.8
C SY TGW qTGW9.3 RM219 9 11.7 9.3 0.013 10.1 -0.74
C MY GY qGY1.10 RM200 1 143.2 1.1 0.003 15.8 1.42
Fig. 1. Identified QTLs for measured traits in two introgressed line populations under two environments.(A, Normal fertilization treatment in normal soil; B, Normal fertilization treatment in barren soil; C, Low-phosphorus stress in barren soil; PN, Panicle number per plant; FGP, Filled grain number per panicle; SNP, Spikelet number per panicle; SF, Spikelet fertility; TGW, 1000-grain weight; GY, Grain yield per plant; RRL, Relative root length; RRW, Relative root dry weight; RSW, Relative shoot dry weight; RTW, Relative total dry weight; RWRSR, Relative root-shoot ratio of dry weight; D, Control; E, Nutrient solution with 1/3 phosphorus of the control; F, Nutrient solution without phosphorus; Chr, Chromosome. * below the icon represents the QTL identified in Minghui 86/Yetuozai population, otherwise, in Shuhui 527/Yetuozai population.)

Fig. 1. Identified QTLs for measured traits in two introgressed line populations under two environments.(A, Normal fertilization treatment in normal soil; B, Normal fertilization treatment in barren soil; C, Low-phosphorus stress in barren soil; PN, Panicle number per plant; FGP, Filled grain number per panicle; SNP, Spikelet number per panicle; SF, Spikelet fertility; TGW, 1000-grain weight; GY, Grain yield per plant; RRL, Relative root length; RRW, Relative root dry weight; RSW, Relative shoot dry weight; RTW, Relative total dry weight; RWRSR, Relative root-shoot ratio of dry weight; D, Control; E, Nutrient solution with 1/3 phosphorus of the control; F, Nutrient solution without phosphorus; Chr, Chromosome. * below the icon represents the QTL identified in Minghui 86/Yetuozai population, otherwise, in Shuhui 527/Yetuozai population.)

Table 5 Identification of QTLs for measured traits in two populations in Beijing, China.
Treatment Population Trait QTL Marker Chromosome Position (cM) Bin Probability R2 (%) Additive
E-D SY RRL qRRL9.3 RM444 9 3.3 9.3 0.014 11.5 0.397
E-D SY RRL qRRL12.4 RM511 12 59.8 12.4 0.009 13 0.289
E-D MY RRL qRRL6.6 RM3307 6 113.4 6.6 0.007 14.4 -0.403
E-D MY RRL qRRL9.7 RM108 9 73.3 9.7 0.034 11.4 0.353
E-D SY RRW qRRW4.1 RM335 4 21.5 4.1 0.019 10.9 0.009
E-D SY RRW qRRW6.3 RM510 6 20.8 6.3 0.035 8.8 -0.007
E-D SY RRW qRRW7.7 RM47 7 90 7.7 0.036 8.8 -0.009
E-D SY RRW qRRW9.7 RM160 9 82.4 9.7 0.03 9.9 0.006
E-D MY RRW qRRW2.3 RM145 2 49.8 2.3 0.028 9.6 0.002
E-D MY RRW qRRW3.12 RM514 3 216.4 3.12 0.049 7.9 -0.002
E-D MY RRW qRRW12.2 RM155 12 20.9 12.2 0.016 11.5 0.003
E-D SY RSW qRSW12.4 RM511 12 59.8 12.4 0.037 8.4 -0.01
E-D MY RSW qRSW7.1 RM481 7 3.2 7.1 0.032 9.2 -0.004
E-D MY RSW qRSW12.2 RM155 12 20.9 12.2 0.04 8.5 0.007
E-D SY RTW qRTW7.7 RM47 7 90 7.7 0.039 8.7 -0.024
E-D SY RTW qRTW12.4 RM511 12 59.8 12.4 0.024 10.2 -0.014
E-D MY RTW qRTW7.1 RM481 7 3.2 7.1 0.038 8.7 -0.006
E-D MY RTW qRTW10.6 RM590 10 117.2 10.6 0.046 8 -0.01
E-D MY RTW qRTW12.2 RM155 12 20.9 12.2 0.035 9 0.01
E-D SY RWRSR qRWRSR2.5 RM3688 2 88.2 2.5 0.02 10.8 -0.019
E-D SY RWRSR qRWRSR6.1 RM589 6 3.2 6.1 0.022 10.3 -0.017
E-D SY RWRSR qRWRSR10.5 RM184 10 58 10.5 0.008 13.4 0.015
E-D MY RWRSR qRWRSR3.12 RM514 3 216.4 3.12 0.019 11 -0.015
E-D MY RWRSR qRWRSR5.8 RM538 5 132.7 5.8 0.046 8 0.021
E-D MY RWRSR qRWRSR11.4 RM287 11 68.6 11.4 0.048 7.9 0.012
E-D MY RWRSR qRWRSR12.2 RM155 12 20.9 12.2 0.005 15 0.007
F-D SY RRL qRRL2.4 RM521 2 62.2 2.4 0.005 14.5 0.392
F-D SY RRL qRRL5.6 RM3295 5 91.2 5.6 0.003 16.6 -0.489
F-D MY RRL qRRL4.8 RM349 4 146.8 4.8 0.006 15.1 0.835
F-D MY RRL qRRL7.1 RM481 7 3.2 7.1 0.015 12.1 0.166
F-D SY RRW qRRW2.4 RM290 2 66 2.4 0.047 8.5 0.004
F-D SY RRW qRRW12.1 RM20A 12 3.2 12.1 0.049 7.7 0.003
F-D SY RRW qRRW12.4 RM511 12 59.8 12.4 0.007 14.1 -0.004
F-D MY RRW qRRW1.3 RM576 1 51 1.3 0.047 8.2 0.003
F-D MY RRW qRRW4.4 RM142 4 68.5 4.4 0.016 11.5 -0.003
F-D SY RSW qRSW1.2 RM283 1 31.4 1.2 0.036 8.5 0.012
F-D MY RSW qRSW3.8 RM16 3 131.5 3.8 0.028 9.7 -0.012
F-D MY RSW qRSW5.7 RM26 5 118.8 5.7 0.039 8.7 0.002
F-D MY RSW qRSW7.1 RM481 7 3.2 7.1 0.006 14.6 -0.009
F-D SY RTW qRTW1.2 RM283 1 31.4 1.2 0.039 8.4 0.015
F-D SY RTW qRTW12.4 RM511 12 59.8 12.4 0.034 8.9 -0.017
F-D MY RTW qRTW3.8 RM16 3 131.5 3.8 0.021 10.6 -0.017
F-D MY RTW qRTW3.12 RM514 3 216.4 3.12 0.043 8.2 -0.007
F-D MY RTW qRTW5.7 RM26 5 118.8 5.7 0.032 9.4 0.001
F-D MY RTW qRTW7.1 RM481 7 3.2 7.1 0.005 15.4 -0.01
F-D SY RWRSR qRWRSR9.3 RM219 9 11.7 9.3 0.044 8 0.024
F-D MY RWRSR qRWRSR5.2 RM574 5 41 5.2 0.006 14.7 0.056
F-D MY RWRSR qRWRSR6.3 RM510 6 20.8 6.3 0.012 12.6 0.043

Table 5 Identification of QTLs for measured traits in two populations in Beijing, China.

Treatment Population Trait QTL Marker Chromosome Position (cM) Bin Probability R2 (%) Additive
E-D SY RRL qRRL9.3 RM444 9 3.3 9.3 0.014 11.5 0.397
E-D SY RRL qRRL12.4 RM511 12 59.8 12.4 0.009 13 0.289
E-D MY RRL qRRL6.6 RM3307 6 113.4 6.6 0.007 14.4 -0.403
E-D MY RRL qRRL9.7 RM108 9 73.3 9.7 0.034 11.4 0.353
E-D SY RRW qRRW4.1 RM335 4 21.5 4.1 0.019 10.9 0.009
E-D SY RRW qRRW6.3 RM510 6 20.8 6.3 0.035 8.8 -0.007
E-D SY RRW qRRW7.7 RM47 7 90 7.7 0.036 8.8 -0.009
E-D SY RRW qRRW9.7 RM160 9 82.4 9.7 0.03 9.9 0.006
E-D MY RRW qRRW2.3 RM145 2 49.8 2.3 0.028 9.6 0.002
E-D MY RRW qRRW3.12 RM514 3 216.4 3.12 0.049 7.9 -0.002
E-D MY RRW qRRW12.2 RM155 12 20.9 12.2 0.016 11.5 0.003
E-D SY RSW qRSW12.4 RM511 12 59.8 12.4 0.037 8.4 -0.01
E-D MY RSW qRSW7.1 RM481 7 3.2 7.1 0.032 9.2 -0.004
E-D MY RSW qRSW12.2 RM155 12 20.9 12.2 0.04 8.5 0.007
E-D SY RTW qRTW7.7 RM47 7 90 7.7 0.039 8.7 -0.024
E-D SY RTW qRTW12.4 RM511 12 59.8 12.4 0.024 10.2 -0.014
E-D MY RTW qRTW7.1 RM481 7 3.2 7.1 0.038 8.7 -0.006
E-D MY RTW qRTW10.6 RM590 10 117.2 10.6 0.046 8 -0.01
E-D MY RTW qRTW12.2 RM155 12 20.9 12.2 0.035 9 0.01
E-D SY RWRSR qRWRSR2.5 RM3688 2 88.2 2.5 0.02 10.8 -0.019
E-D SY RWRSR qRWRSR6.1 RM589 6 3.2 6.1 0.022 10.3 -0.017
E-D SY RWRSR qRWRSR10.5 RM184 10 58 10.5 0.008 13.4 0.015
E-D MY RWRSR qRWRSR3.12 RM514 3 216.4 3.12 0.019 11 -0.015
E-D MY RWRSR qRWRSR5.8 RM538 5 132.7 5.8 0.046 8 0.021
E-D MY RWRSR qRWRSR11.4 RM287 11 68.6 11.4 0.048 7.9 0.012
E-D MY RWRSR qRWRSR12.2 RM155 12 20.9 12.2 0.005 15 0.007
F-D SY RRL qRRL2.4 RM521 2 62.2 2.4 0.005 14.5 0.392
F-D SY RRL qRRL5.6 RM3295 5 91.2 5.6 0.003 16.6 -0.489
F-D MY RRL qRRL4.8 RM349 4 146.8 4.8 0.006 15.1 0.835
F-D MY RRL qRRL7.1 RM481 7 3.2 7.1 0.015 12.1 0.166
F-D SY RRW qRRW2.4 RM290 2 66 2.4 0.047 8.5 0.004
F-D SY RRW qRRW12.1 RM20A 12 3.2 12.1 0.049 7.7 0.003
F-D SY RRW qRRW12.4 RM511 12 59.8 12.4 0.007 14.1 -0.004
F-D MY RRW qRRW1.3 RM576 1 51 1.3 0.047 8.2 0.003
F-D MY RRW qRRW4.4 RM142 4 68.5 4.4 0.016 11.5 -0.003
F-D SY RSW qRSW1.2 RM283 1 31.4 1.2 0.036 8.5 0.012
F-D MY RSW qRSW3.8 RM16 3 131.5 3.8 0.028 9.7 -0.012
F-D MY RSW qRSW5.7 RM26 5 118.8 5.7 0.039 8.7 0.002
F-D MY RSW qRSW7.1 RM481 7 3.2 7.1 0.006 14.6 -0.009
F-D SY RTW qRTW1.2 RM283 1 31.4 1.2 0.039 8.4 0.015
F-D SY RTW qRTW12.4 RM511 12 59.8 12.4 0.034 8.9 -0.017
F-D MY RTW qRTW3.8 RM16 3 131.5 3.8 0.021 10.6 -0.017
F-D MY RTW qRTW3.12 RM514 3 216.4 3.12 0.043 8.2 -0.007
F-D MY RTW qRTW5.7 RM26 5 118.8 5.7 0.032 9.4 0.001
F-D MY RTW qRTW7.1 RM481 7 3.2 7.1 0.005 15.4 -0.01
F-D SY RWRSR qRWRSR9.3 RM219 9 11.7 9.3 0.044 8 0.024
F-D MY RWRSR qRWRSR5.2 RM574 5 41 5.2 0.006 14.7 0.056
F-D MY RWRSR qRWRSR6.3 RM510 6 20.8 6.3 0.012 12.6 0.043
Table 6 Trait performance of two IL populations with significant higher yield than the recurrent parents selected under low phosphorus stress conditions in Langfang, Hebei Province and Hefei, Anhui Province, China.
Type Population Material Environment HD PH PN PL FGP SNP SF TGW GY BI HI
(d) (cm) (cm) (%) (g) (g) (g)
Type 1 MY BL151 Langfang, 2013 118.7 109.3 5.1 27.4 204.6 230.2 88.5 29 18.6 43 0.43
Hefei, 2012 94 119.4 6.9 26.8 109.7 160.6 68.3 29.1 21.7
MY BL158 Langfang, 2013 115.7 105.8 6.2 27.5 175.7 235 74.6 29.3 23.8 51.6 0.46
Hefei, 2012 93 106.4 7.7 23.6 107.6 135.4 79.7 31.6 25.8
MY BL165 Langfang, 2013 119.3 100.6 6.7 25.5 170.4 234.6 73.1 20.6 19.5 46.7 0.42
Hefei, 2012 90 115.4 8.3 24.9 92.3 126.9 72.5 30.1 22.8
MY BL167 Langfang, 2013 115.3 101.2 6.3 25.2 143.6 203.8 70.5 28.5 20.9 41.1 0.51
Hefei, 2012 94 107.7 8.3 24.2 105.2 140.6 74.9 25.9 22.7
MY BL170 Langfang, 2013 116.7 108.1 4.7 27.6 239 272.6 87.7 26.9 18.7 37.3 0.5
Hefei, 2012 93 120.4 6 23.7 97.7 125.2 78 27.6 16.2
MY BL197 Langfang, 2013 117.7 93.2 4.5 27.2 170 214.8 79.1 25.3 18.5 37.1 0.5
Hefei, 2012 92 108 7.7 25.9 92 150.1 61.4 30.3 21.4
MY BL198 Langfang, 2013 117.3 100.4 5.8 27.4 202.8 256.5 77.9 28 22.4 45.7 0.49
Hefei, 2012 92 111.9 5.3 24.3 82.5 142.3 58.9 28.5 12.5
Type 2 SY BL66 Langfang, 2013 116.7 105.9 6.7 24.9 180.5 221.2 81.6 29.2 29.2 60 0.49
Hefei, 2012 92 109.5 7.4 24.4 116.8 148.8 78.6 30.9 26.5
MY BL152 Langfang, 2013 119 101.9 6.2 25.7 216.4 248.9 87 25.7 26.3 49.9 0.53
Hefei, 2012 94 111.5 7.8 26.7 96.2 142.1 67.9 30 22.4
MY BL162 Langfang, 2013 117.3 107.8 5.7 29 211.3 245.3 86.2 27 26.2 51 0.51
Hefei, 2012 94 109.7 6.4 27.7 113.6 157.8 71.9 28.5 20.4
MY BL172 Langfang, 2013 116.7 111 5.7 27.2 139.5 169.2 82.5 27.8 18.2 37 0.49
Hefei, 2012 91 109.6 8.7 24.7 87.2 108.9 80 30 22.7
MY BL190 Langfang, 2013 117.3 110.3 5.1 27.6 171.9 208.8 82.6 29.5 23 46.9 0.49
Hefei, 2012 91 115.2 8.4 24.9 103.3 140.6 73.6 30.6 26.3
MY BL192 Langfang, 2013 120.3 97.2 4.5 25.5 174.3 217.4 79.7 26.3 19.5 40.3 0.48
Hefei, 2012 95 102.4 8 23 85.7 131.5 65.2 28.7 19.6
MY BL195 Langfang, 2013 118 106.9 5.1 28.2 150.1 225.4 66.4 27.8 17.6 34.6 0.51
Hefei, 2012 93 115.7 6.2 25.2 84 138.8 60.4 29.6 15.6
Shuhui 527 Langfang, 2013 116.3 98.1 4.6 25.6 130.3 162.1 80.6 27.6 16.2 34.1 0.48
Hefei, 2012 92.4 99.3 8 24.7 97.7 127.9 77.2 29.9 21.3
Minghui 86 Langfang, 2013 113.7 92.7 4.3 23.4 120.8 159.5 75.8 23.8 9.1 24.3 0.37
Hefei, 2012 93.8 106.5 8.1 26.3 82.8 143.7 61.3 27.8 16.3

Table 6 Trait performance of two IL populations with significant higher yield than the recurrent parents selected under low phosphorus stress conditions in Langfang, Hebei Province and Hefei, Anhui Province, China.

Type Population Material Environment HD PH PN PL FGP SNP SF TGW GY BI HI
(d) (cm) (cm) (%) (g) (g) (g)
Type 1 MY BL151 Langfang, 2013 118.7 109.3 5.1 27.4 204.6 230.2 88.5 29 18.6 43 0.43
Hefei, 2012 94 119.4 6.9 26.8 109.7 160.6 68.3 29.1 21.7
MY BL158 Langfang, 2013 115.7 105.8 6.2 27.5 175.7 235 74.6 29.3 23.8 51.6 0.46
Hefei, 2012 93 106.4 7.7 23.6 107.6 135.4 79.7 31.6 25.8
MY BL165 Langfang, 2013 119.3 100.6 6.7 25.5 170.4 234.6 73.1 20.6 19.5 46.7 0.42
Hefei, 2012 90 115.4 8.3 24.9 92.3 126.9 72.5 30.1 22.8
MY BL167 Langfang, 2013 115.3 101.2 6.3 25.2 143.6 203.8 70.5 28.5 20.9 41.1 0.51
Hefei, 2012 94 107.7 8.3 24.2 105.2 140.6 74.9 25.9 22.7
MY BL170 Langfang, 2013 116.7 108.1 4.7 27.6 239 272.6 87.7 26.9 18.7 37.3 0.5
Hefei, 2012 93 120.4 6 23.7 97.7 125.2 78 27.6 16.2
MY BL197 Langfang, 2013 117.7 93.2 4.5 27.2 170 214.8 79.1 25.3 18.5 37.1 0.5
Hefei, 2012 92 108 7.7 25.9 92 150.1 61.4 30.3 21.4
MY BL198 Langfang, 2013 117.3 100.4 5.8 27.4 202.8 256.5 77.9 28 22.4 45.7 0.49
Hefei, 2012 92 111.9 5.3 24.3 82.5 142.3 58.9 28.5 12.5
Type 2 SY BL66 Langfang, 2013 116.7 105.9 6.7 24.9 180.5 221.2 81.6 29.2 29.2 60 0.49
Hefei, 2012 92 109.5 7.4 24.4 116.8 148.8 78.6 30.9 26.5
MY BL152 Langfang, 2013 119 101.9 6.2 25.7 216.4 248.9 87 25.7 26.3 49.9 0.53
Hefei, 2012 94 111.5 7.8 26.7 96.2 142.1 67.9 30 22.4
MY BL162 Langfang, 2013 117.3 107.8 5.7 29 211.3 245.3 86.2 27 26.2 51 0.51
Hefei, 2012 94 109.7 6.4 27.7 113.6 157.8 71.9 28.5 20.4
MY BL172 Langfang, 2013 116.7 111 5.7 27.2 139.5 169.2 82.5 27.8 18.2 37 0.49
Hefei, 2012 91 109.6 8.7 24.7 87.2 108.9 80 30 22.7
MY BL190 Langfang, 2013 117.3 110.3 5.1 27.6 171.9 208.8 82.6 29.5 23 46.9 0.49
Hefei, 2012 91 115.2 8.4 24.9 103.3 140.6 73.6 30.6 26.3
MY BL192 Langfang, 2013 120.3 97.2 4.5 25.5 174.3 217.4 79.7 26.3 19.5 40.3 0.48
Hefei, 2012 95 102.4 8 23 85.7 131.5 65.2 28.7 19.6
MY BL195 Langfang, 2013 118 106.9 5.1 28.2 150.1 225.4 66.4 27.8 17.6 34.6 0.51
Hefei, 2012 93 115.7 6.2 25.2 84 138.8 60.4 29.6 15.6
Shuhui 527 Langfang, 2013 116.3 98.1 4.6 25.6 130.3 162.1 80.6 27.6 16.2 34.1 0.48
Hefei, 2012 92.4 99.3 8 24.7 97.7 127.9 77.2 29.9 21.3
Minghui 86 Langfang, 2013 113.7 92.7 4.3 23.4 120.8 159.5 75.8 23.8 9.1 24.3 0.37
Hefei, 2012 93.8 106.5 8.1 26.3 82.8 143.7 61.3 27.8 16.3
Table 7 Validation of five QTLs identified from Shuhui 527/Yetuozai population in Langfang (2013) and Hefei (2012) in China.
Trait Marker Chromosome Position Bin QTL Treatment Langfang, Hebei Province Hefei, Anhui Province
(cM) Probability R2 (%) Additive Probability R2 (%) Additive
TGW RM335 4 22 4.1 qTGW4.1 A 0.025 8.6 -1.1 0.01 11 -1.2
C 0.006 12.3 -1.1 0.002 16 -1.4
TGW RM5463 6 124.4 6.6 qTGW6.6 A 0.008 11.9 -1 0.003 17 -1.2
C 0.004 13.7 -0.9 0.02 9 -0.9
TGW RM481 7 3.2 7.1 qTGW7.1 C 0.032 7.7 0.8 0.05 6 0.8
TGW RM219 9 11.7 9.3 qTGW9.3 A 0.017 9.5 -0.8 0.01 12 -0.9
C 0.013 10.1 -0.7 0.002 15 -1
GY RM254 11 110 11.6 qGY11.6 A 0.018 9.5 -1.1 0.01 11 -2.3

Table 7 Validation of five QTLs identified from Shuhui 527/Yetuozai population in Langfang (2013) and Hefei (2012) in China.

Trait Marker Chromosome Position Bin QTL Treatment Langfang, Hebei Province Hefei, Anhui Province
(cM) Probability R2 (%) Additive Probability R2 (%) Additive
TGW RM335 4 22 4.1 qTGW4.1 A 0.025 8.6 -1.1 0.01 11 -1.2
C 0.006 12.3 -1.1 0.002 16 -1.4
TGW RM5463 6 124.4 6.6 qTGW6.6 A 0.008 11.9 -1 0.003 17 -1.2
C 0.004 13.7 -0.9 0.02 9 -0.9
TGW RM481 7 3.2 7.1 qTGW7.1 C 0.032 7.7 0.8 0.05 6 0.8
TGW RM219 9 11.7 9.3 qTGW9.3 A 0.017 9.5 -0.8 0.01 12 -0.9
C 0.013 10.1 -0.7 0.002 15 -1
GY RM254 11 110 11.6 qGY11.6 A 0.018 9.5 -1.1 0.01 11 -2.3

参考文献 26

[1] Carriger S, Vallee D.2007. More crop per drop.Rice Today, 6(2): 10-13.
[2] Chen M Y, Ali J, Fu B Y, Xu J L, Zhao M F, Jiang Y Z, Zhu L H, Shi Y Y, Yao D N, Gao Y M, Li Z K.2011. Detection of drought-related loci in rice at reproductive stage using selected introgressed lines.Agric Sci China, 10(1): 1-8.
[3] Dobermann A, Fairhurst T.2000. Rice: Nutrient Disorders & Nutrient Management. Los Banos: Potash & Phosphate Institute, Potash & Phosphate Institute of Canada and International Rice Research Institute: 1-191.
[4] Gao F Y, Lu X J, Kang H Q, Sun S X, Liu G C, Reng G J.2006. Screening and identification for rice tolerance to Pi deficency at seedling stage.Acta Agron Sin, 32(8): 1151-1155. (in Chinese with English abstract)
[5] Guo T R, Yao P C, Zhang Z D, Wang J J, Wang M.2013. Involvement of antioxidative defense system in rice seedlings exposed to aluminum toxicity and phosphorus deficiency.Chin J Rice Sci, 27(6): 653-657. (in Chinese with English abstract)
[6] He Y X, Zheng T Q, Hao X B, Wang L F, Gao Y M, Hua Z T, Zhai H Q, Xu J L, Xu Z J, Zhu L H, Li Z K.2010. Yield performances of japonica introgression lines selected for drought tolerance in a BC breeding programme.Plant Breeding, 129(2): 167-175.
[7] Huang L F, Tao X T, Gao W, Wang Y L, Zhuang H Y.2014. Effect of reduced phosphorus fertilizer application on yield formation and quality of japonica rice in Jiangsu coastal region.Chin J Rice Sci, 28(6): 632-638. (in Chinese with English abstract)
[8] Huang X H, Wei X H, Sang T, Zhao Q, Feng Q, Zhao Y, Li C Y, Zhu C R, Lu T T, Zhang Z W, Li M, Fan D L, Guo Y L, Wang A, Wang L, Deng L W, Li W J, Lu Y Q, Weng Q J, Liu K Y, Huang T, Zhou T Y, Jing Y F, Li W, Lin Z, Buckler E S, Qian Q, Zhang Q F, Li J Y, Han B.2010. Genome-wide association studies of 14 agronomic traits in rice landraces.Nat Genet, 42(11): 961-967.
[9] Ismail A M, Heuer S, Thomson M J, Wissuwa M.2007. Genetic and genomic approaches to develop rice germplasm for problem soils.Plant Mol Biol, 65(4): 547-570.
[10] Lea P J, Miflin B J.2011. Nitrogen assimilation and its relevance to crop improvement. In: Foyer C H, Zhang H. Annual Plant Reviews. West Sussex, UK: Blackwell Publishing Ltd: 42: 1-40.
[11] Li Z K.2005. Strategies for molecular rice breeding in China.Mol Plant Breeding, 3(5): 603-608. (in Chinese with English abstract)
[12] Loudet O, Chaillou S, Merigout P, Talbotec J, Daniel-Vedele F.2003. Quantitative trait loci analysis of nitrogen use efficiency in Arabidopsis.Plant Physiol, 131(1): 345-358.
[13] Luo L J.2005. Development of near isogenic introgression lines and molecular breeding on rice.Mol Plant Breeding, 3(5): 609-612. (in Chinese with English abstract)
[14] Lynch J P.2011. Root phenes for enhanced soil exploration and phosphorus acquisition: Tools for future crops.Plant Physiol, 156: 1041-1049.
[15] Ma G H, Yuan L P.2015. Hybrid rice achievements, development and prospect in China.Agric Sci China, 14(2): 197-205.
[16] Meng L J, Lin X Y, Wang J M, Chen K, Cui Y R, Xu J L, Li Z K.2013. Simultaneous improvement of cold tolerance and yield of temperate japonica rice (Oryza sativa L.) by introgression breeding.Plant Breeding, 132(6): 604-612.
[17] Moncada P, Martinez C P, Borrero J, Chatel M, Gauch Jr H, Guimaraes E, Tohme J, McCouch S R.2001. Quantitative trait loci for yield and yield components in an Oryza sativa-Oryza rufipogon BC2F2 population evaluated in an upland environment.Theor Appl Genet, 102(1): 41-52.
[18] Mu P, Huang C, Li J X, Liu L F, Liu U J, Li Z C.2008. QTL yield trait variation and QTL mapping in a DH population of rice under phosphorus deficiency.Acta Agron Sin, 34(7): 1137-1142. (in Chinese with English abstract)
[19] SAS Institute Inc.2008. SAS/STAT Software V9.2 User’s Guide. Cary, North Carolina, USA: SAS Institute Inc: 2430-2611.
[20] Tanksley S D, Nelson J C.1996. Advanced backcross QTL analysis: A method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines.Theor Appl Genet, 92(2): 191-203.
[21] Vinod K K, Heuer S.2012. Approaches towards nitrogen- and phosphorus-efficient rice.AoB Plants, doi: 10.1093/aobpla/pls028.
[22] Wu P.2013. The research on the molecular mechanism of absorption and utilization of high phosphorus in plant and its application.Chin Sci Technol Achiev, 9: 20. (in Chinese)
[23] Xu J L, Gao Y M, Fu B Y, Li Z K.2005. Identification and screening of favorable genes from rice germplasm in backcross introgression populations.Mol Plant Breeding, 3(5): 619-628. (in Chinese with English abstract)
[24] Zang J P, Sun Y, Wang Y, Yang J, Li F, Zhou Y L, Zhu L H, Jessica R, Mohammadhosein F, Xu J L, Li Z K.2008. Dissection of genetic overlap of salt tolerance QTL at the seedling and tillering stages using backcross introgression lines in rice.Sci China: Life Sci, 51(7): 583-591.
[25] Zhang F, Hao X B, Gao Y M, Hua Z T, Ma X F, Chen W F, Xu Z J, Zhu L H, Li Z K.2007. Improving seedling cold tolerance of japonica rice by using the ‘hidden diversity’ in indica rice germplasm in a backcross breeding program.Acta Agron Sin, 33(10): 1618-1624. (in Chinese with English abstract)
[26] Zheng T Q, Xu J L, Fu B Y, Gao Y M, Veruka S, Lafitte R, Zhai H Q, Wan J M, Zhu L H, Li Z K.2007. Application of genetic hitch-hiking and ANOVA in identification of loci for drought tolerance in populations of rice from directional selection.Acta Agron Sin, 33(5): 799-804. (in Chinese with English abstract)

相关文章 0

No related articles found!

编辑推荐

Metrics

阅读次数
全文


摘要

  • 摘要
  • 图/表
  • 参考文献
  • 相关文章
  • 编辑推荐
  • Metrics
回顶部
浙ICP备05004719号-15   公安备案号:33010302003355
版权所有 © 《Rice Science》编辑部
地址:浙江省杭州市体育场路359号 邮编:310006 电话:0571-63371017 E-mail:crrn@fy.hz.zn.cn; cjrs278@gmail.com
本系统由北京玛格泰克科技发展有限公司设计开发
总访问量: 今日访问: 在线人数: