Rice Science
  • 首页
  • 期刊介绍
  • 编委会
  • 学术伦理
  • 投稿指南
  • 期刊订阅
  • 联系我们
  • English

Rice Science ›› 2016, Vol. 23 ›› Issue (6): 287-296.DOI: 10.1016/j.rsci.2016.09.002

• •    下一篇

  • 收稿日期:2016-07-25 接受日期:2016-09-22 出版日期:2016-12-12 发布日期:2016-08-10

RichHTML

PDF

可视化

0

摘要/Abstract

引用本文

. [J]. Rice Science, 2016, 23(6): 287-296.

使用本文

0
    /   推荐

导出引用管理器 EndNote|Ris|BibTeX

链接本文: http://www.ricesci.org/CN/10.1016/j.rsci.2016.09.002

               http://www.ricesci.org/CN/Y2016/V23/I6/287

图/表 9

Fig. 1. Conceivable biosynthetic pathways of phospholipids in cereals. Drawn based on Kinney (1993), D’Arrigo and Servi (2010) and Liu et al (2013). E, Ethanolamine; ME, Methylethanolamine; DME, Dimethylethanolamine; IP3, inositol 1,4,5-triphosphate; LPA, Lysophosphatidic acid; C, Choline; P, Phosphate; CDP, Cytidinediphosphate; PE, Phosphatidylethanolamine; PME, Phosphatidylmethylethanolamine; PDME, Phosphatidyldimethyle- thanolamine; PC, Phosphatidylcholine; PS, Phosphatidylserine; PI, Phosphatidylinositol; PIP, Phosphatidylinositol phosphate; PIP2, Phosphati- dylinositolbisphosphate; PGP, Phosphoglycerol phosphate; PG, Phosphatidylglycerol; DPG, Diphosphatidylglycerol; , Glycerol-3-phosphate acyltransferase; , 1-monoacylglycerol-3-phosphate acyltransferase; , CDP-diacylglycerol synthase (CTP: phosphatidatecytidylyltransferase); , Phosphatidatephosphohydrolase; , PI synthase (CDP-diacylglycerol: myo-inositol phosphatidyltransferase); , PI 4-kinase (ATP: phosphati- dylinositol-4-phosphotransferase); , PIP kinase (ATP: phosphatidylinositol 4-phosphate 5-phosphotransferase); , PGP synthase (CDP-diacylgly- cerolphosphatidyltransferase); , PGP phosphatase (phosphatidylglycerol-phosphate phosphohydrolase); , CDP diacylglycerolphosphatidly- transerase; , PS synthase (CDP-diacylglycerol: L-serine O-phosphatidyltransferase); , PS decarboxylase; , PE N-methyltransferase; , Phospholipid N-methyltransferase; , Aminoalcoholphosphotransferase; , Ethanolaminephosphotransferase (CDP-ethanolamine: 1,2-diacylglycerol cytidylyltransferase); , Ethanolamine phosphate cytidylyltransferase (CTP: ethanolamine phosphate cytidylyltransferase); , Ethanolamine kinase (ATP: ethanolamine phosphotransferase); , Cholinephosphotransferase (CDP-choline: 1,2-diacylglycerol cytidylyltransferase); , Choline phosphate cytidylyltransferase (CTP: choline phosphate cytidylyltransferase); , Choline kinase (ATP: choline phosphotransferase); , Phospholipase D (PLD) (Phosphatidylcholinephosphatidohydrolase); , Phospholipase C (PLC); , Diacylglycerol (DAG) kinase; , Phospholipase A2 (PLA2).

Fig. 1. Conceivable biosynthetic pathways of phospholipids in cereals. Drawn based on Kinney (1993), D’Arrigo and Servi (2010) and Liu et al (2013). E, Ethanolamine; ME, Methylethanolamine; DME, Dimethylethanolamine; IP3, inositol 1,4,5-triphosphate; LPA, Lysophosphatidic acid; C, Choline; P, Phosphate; CDP, Cytidinediphosphate; PE, Phosphatidylethanolamine; PME, Phosphatidylmethylethanolamine; PDME, Phosphatidyldimethyle- thanolamine; PC, Phosphatidylcholine; PS, Phosphatidylserine; PI, Phosphatidylinositol; PIP, Phosphatidylinositol phosphate; PIP2, Phosphati- dylinositolbisphosphate; PGP, Phosphoglycerol phosphate; PG, Phosphatidylglycerol; DPG, Diphosphatidylglycerol; , Glycerol-3-phosphate acyltransferase; , 1-monoacylglycerol-3-phosphate acyltransferase; , CDP-diacylglycerol synthase (CTP: phosphatidatecytidylyltransferase); , Phosphatidatephosphohydrolase; , PI synthase (CDP-diacylglycerol: myo-inositol phosphatidyltransferase); , PI 4-kinase (ATP: phosphati- dylinositol-4-phosphotransferase); , PIP kinase (ATP: phosphatidylinositol 4-phosphate 5-phosphotransferase); , PGP synthase (CDP-diacylgly- cerolphosphatidyltransferase); , PGP phosphatase (phosphatidylglycerol-phosphate phosphohydrolase); , CDP diacylglycerolphosphatidly- transerase; , PS synthase (CDP-diacylglycerol: L-serine O-phosphatidyltransferase); , PS decarboxylase; , PE N-methyltransferase; , Phospholipid N-methyltransferase; , Aminoalcoholphosphotransferase; , Ethanolaminephosphotransferase (CDP-ethanolamine: 1,2-diacylglycerol cytidylyltransferase); , Ethanolamine phosphate cytidylyltransferase (CTP: ethanolamine phosphate cytidylyltransferase); , Ethanolamine kinase (ATP: ethanolamine phosphotransferase); , Cholinephosphotransferase (CDP-choline: 1,2-diacylglycerol cytidylyltransferase); , Choline phosphate cytidylyltransferase (CTP: choline phosphate cytidylyltransferase); , Choline kinase (ATP: choline phosphotransferase); , Phospholipase D (PLD) (Phosphatidylcholinephosphatidohydrolase); , Phospholipase C (PLC); , Diacylglycerol (DAG) kinase; , Phospholipase A2 (PLA2).

Table 1 Genome-wide significantly associated QTLs for rice lysophospholipids (LPLs)
Trait Year Model QTL Chr Position a
(bp)
P-value Major allele Minor allele Minor allele frequency Allelic effect (R2)
LPC16:0 2011 K qC160-6-1 6 26 685 967 4.72 × 10-3 C T 0.30 0.8011
2012 K qC160-6-2 6 3 235 560 4.41 × 10-3 G A 0.25 0.5573
qC160-8 8 8 481 084 3.64 × 10-3 A G 0.40 0.5872
LPC18:1 2012 Q+K qC181-2 2 14 522 544 3.15 × 10-3 G A 0.20 0.8346
qC181-1 1 27 729 601 4.20 × 10-3 C T 0.30 0.8107
LPC18:2 2011 K qC182-9 9 15 125 638 4.37 × 10-3 C T 0.20 0.5585
2012 K qC182-11 11 17 847 796 4.07 × 10-3 A T 0.30 0.5698
LPC18:3 2011 K qC183-1 1 23 517 183 3.27 × 10-3 A C 0.25 0.6047
2012 K qC183-1 1 23 517 183 4.89 × 10-3 A C 0.25 0.5411
TLPC 2011 ANOVA qC-5 5 23 465 186 4.20 × 10-3 G A 0.25 0.5647
qC-9 9 15 125 638 2.62 × 10-3 C T 0.20 0.6409
qC-12 12 21 175 392 3.73 × 10-3 T A 0.25 0.5835
2012 K qC-10 10 5 339 258 4.36 × 10-3 G A 0.25 0.5589
LPE16:0 2011 ANOVA qE160-1 1 6 971 525 3.33 × 10-3 G A 0.25 0.6016
LPE18:1 2011 Q+K qE181-2 2 14 522 544 3.26 × 10-3 G A 0.20 0.7802
2012 Q+K qE181-2 2 14 522 544 2.17 × 10-3 G A 0.20 0.8364
LPE18:2 2011 K qE182-1 1 23 585 360 3.23 × 10-3 C T 0.25 0.6064
qE182-4 4 31 271 474 4.23 × 10-3 T C 0.20 0.5637
qE182-11 11 17 943 118 3.82 × 10-3 T A 0.35 0.5798
LPE18:3 2011 K qE183-1 1 23 517 183 4.27 × 10-3 A C 0.25 0.5623
2012 K qE183-1 1 23 517 183 4.33 × 10-3 A C 0.25 0.5600
TLPE 2011 ANOVA qE-10 10 5 339 258 4.69 × 10-3 G A 0.25 0.5477
TLPL 2011 ANOVA qL-9 9 15 125 638 2.92 × 10-3 C T 0.20 0.6229
qL-10 10 5 339 258 4.67 × 10-3 G A 0.25 0.5482
qL-12 12 21 175 392 4.93 × 10-3 T A 0.25 0.5399
2012 K qL-10 10 5 339 258 4.19 × 10-3 G A 0.25 0.5649
LPC14:0, 1-myristoyl-2-hydroxy-sn-glycero-3-phosphocholine; LPC16:0, 1-palmitoyl-2-hydroxy-sn-glycero-3-phosphocholine; LPC18:1, 1-oleoyl- 2-hydroxy-sn-glycero-3-phosphocholine; LPC18:2, 1-linoleoyl-2-hydroxy-sn-glycero-3-phosphocholine; LPC18:3, 1-linolenoyl-2-hydroxy-sn- glycero-3-phosphocholine; LPE14:0, 1-myristoyl-2-hydroxy-sn-glycero-3-phosphoethanolamine; LPE16:0, 1-palmitoyl-2-hydroxy-sn-glycero-3- phosphoethanolamine; LPE18:1, 1-oleoyl-2-hydroxy-sn-glycero-3-phosphoethanolamine; LPE18:2, 1-linoleoyl-2-hydroxy-sn-glycero-3-phosphoethanolamine; LPE18:3, 1-linolenoyl-2-hydroxy-sn-glycero-3-phosphoethanolamine; TLPC, Total lysophosphatidylcholine; TLPE, Total lysophosphatidylethanolamine; TLPL, Total lysophospholipid; Q, Population structure; K, Kinship; ANOVA, Analysis of variance; Chr, Chromosome.
a, Position in base pairs for the leading SNP of rice sequence.

Table 1 Genome-wide significantly associated QTLs for rice lysophospholipids (LPLs)

Trait Year Model QTL Chr Position a
(bp)
P-value Major allele Minor allele Minor allele frequency Allelic effect (R2)
LPC16:0 2011 K qC160-6-1 6 26 685 967 4.72 × 10-3 C T 0.30 0.8011
2012 K qC160-6-2 6 3 235 560 4.41 × 10-3 G A 0.25 0.5573
qC160-8 8 8 481 084 3.64 × 10-3 A G 0.40 0.5872
LPC18:1 2012 Q+K qC181-2 2 14 522 544 3.15 × 10-3 G A 0.20 0.8346
qC181-1 1 27 729 601 4.20 × 10-3 C T 0.30 0.8107
LPC18:2 2011 K qC182-9 9 15 125 638 4.37 × 10-3 C T 0.20 0.5585
2012 K qC182-11 11 17 847 796 4.07 × 10-3 A T 0.30 0.5698
LPC18:3 2011 K qC183-1 1 23 517 183 3.27 × 10-3 A C 0.25 0.6047
2012 K qC183-1 1 23 517 183 4.89 × 10-3 A C 0.25 0.5411
TLPC 2011 ANOVA qC-5 5 23 465 186 4.20 × 10-3 G A 0.25 0.5647
qC-9 9 15 125 638 2.62 × 10-3 C T 0.20 0.6409
qC-12 12 21 175 392 3.73 × 10-3 T A 0.25 0.5835
2012 K qC-10 10 5 339 258 4.36 × 10-3 G A 0.25 0.5589
LPE16:0 2011 ANOVA qE160-1 1 6 971 525 3.33 × 10-3 G A 0.25 0.6016
LPE18:1 2011 Q+K qE181-2 2 14 522 544 3.26 × 10-3 G A 0.20 0.7802
2012 Q+K qE181-2 2 14 522 544 2.17 × 10-3 G A 0.20 0.8364
LPE18:2 2011 K qE182-1 1 23 585 360 3.23 × 10-3 C T 0.25 0.6064
qE182-4 4 31 271 474 4.23 × 10-3 T C 0.20 0.5637
qE182-11 11 17 943 118 3.82 × 10-3 T A 0.35 0.5798
LPE18:3 2011 K qE183-1 1 23 517 183 4.27 × 10-3 A C 0.25 0.5623
2012 K qE183-1 1 23 517 183 4.33 × 10-3 A C 0.25 0.5600
TLPE 2011 ANOVA qE-10 10 5 339 258 4.69 × 10-3 G A 0.25 0.5477
TLPL 2011 ANOVA qL-9 9 15 125 638 2.92 × 10-3 C T 0.20 0.6229
qL-10 10 5 339 258 4.67 × 10-3 G A 0.25 0.5482
qL-12 12 21 175 392 4.93 × 10-3 T A 0.25 0.5399
2012 K qL-10 10 5 339 258 4.19 × 10-3 G A 0.25 0.5649
LPC14:0, 1-myristoyl-2-hydroxy-sn-glycero-3-phosphocholine; LPC16:0, 1-palmitoyl-2-hydroxy-sn-glycero-3-phosphocholine; LPC18:1, 1-oleoyl- 2-hydroxy-sn-glycero-3-phosphocholine; LPC18:2, 1-linoleoyl-2-hydroxy-sn-glycero-3-phosphocholine; LPC18:3, 1-linolenoyl-2-hydroxy-sn- glycero-3-phosphocholine; LPE14:0, 1-myristoyl-2-hydroxy-sn-glycero-3-phosphoethanolamine; LPE16:0, 1-palmitoyl-2-hydroxy-sn-glycero-3- phosphoethanolamine; LPE18:1, 1-oleoyl-2-hydroxy-sn-glycero-3-phosphoethanolamine; LPE18:2, 1-linoleoyl-2-hydroxy-sn-glycero-3-phosphoethanolamine; LPE18:3, 1-linolenoyl-2-hydroxy-sn-glycero-3-phosphoethanolamine; TLPC, Total lysophosphatidylcholine; TLPE, Total lysophosphatidylethanolamine; TLPL, Total lysophospholipid; Q, Population structure; K, Kinship; ANOVA, Analysis of variance; Chr, Chromosome.
a, Position in base pairs for the leading SNP of rice sequence.
Fig. 2. Location of QTLs for rice starch lysophospholipids (LPLs) on chromosomes (Chr). C160, C181, C182, C183, E160, E181, E182, E183, C, E and L in the QTLs represent LPC16:0, LPC18:1, LPC18:2, LPC18:3, LPE16:0, LPE18:1, LPE18:2, LPE18:3, total lysophosphatidylcholine, total lysophosphatidylethanolamine and total lysophospholipid, respectively.

Fig. 2. Location of QTLs for rice starch lysophospholipids (LPLs) on chromosomes (Chr). C160, C181, C182, C183, E160, E181, E182, E183, C, E and L in the QTLs represent LPC16:0, LPC18:1, LPC18:2, LPC18:3, LPE16:0, LPE18:1, LPE18:2, LPE18:3, total lysophosphatidylcholine, total lysophosphatidylethanolamine and total lysophospholipid, respectively.

Fig. 3. Manhattan plots of association test for total lysophospholipid.

Fig. 3. Manhattan plots of association test for total lysophospholipid.

Fig. 4. Part sequence alignments of AAPT and PLA2 genes. A, InDel found in AAPT gene among G01-G20; B, Single nucleotide polymorphism found in PLA2 gene among G01-G20. AAPT, Aminoalcoholphosphotransferase; PLA2, Phospholipase A2.

Fig. 4. Part sequence alignments of AAPT and PLA2 genes. A, InDel found in AAPT gene among G01-G20; B, Single nucleotide polymorphism found in PLA2 gene among G01-G20. AAPT, Aminoalcoholphosphotransferase; PLA2, Phospholipase A2.

Table 2 Primers for enzyme digestion of several single nucleotide polymorphisms
Primer Type Sequence (5′-3′) PCR product (bp) Restriction enzyme Enzyme digestion product (bp)
AAPT1-F InDel CCAGCCTTGTTTCAATACCTG 134/127 - -
AAPT1-R AAATGTAGGAAGTTTTTACTTGC
AAPT2-F dCAPS AAGAGCAAGTAAAAACTTCCTAAATT 222 ApoI 22, 200
AAPT2-R GATACAAATGCCCAAATACCA
AAPT3-F dCAPS CAAAGATCAATGCTGGGTAATTTC 184 SphI 22, 162
AAPT3-R AGGTAAATCAGTTCACCTGTGCA
PLD1-F dCAPS CATCCTGCACTAAAAACAGTTGAAT 214 HinfI 22, 192
PLD1-R TGCACAACACCAGAGCCCCACC
PLD2-F dCAPS CCTCCCAAAGTTTAGGCGGAAAAGGCC 187 HpaII 27, 160
PLD2-R TCAAAGCTCACAATAGCAGAATA
PLA21-F dCAPS TTCCTATTGTTTCTTCCTCCCTCTT 230 HinfI 20, 210
PLA21-R GAAAAAACAAAATTAAAAAAGAGT
dCAPS, Development of derived cleaved amplified polymorphic sequences.
Underlined letter means the mismatch base.

Table 2 Primers for enzyme digestion of several single nucleotide polymorphisms

Primer Type Sequence (5′-3′) PCR product (bp) Restriction enzyme Enzyme digestion product (bp)
AAPT1-F InDel CCAGCCTTGTTTCAATACCTG 134/127 - -
AAPT1-R AAATGTAGGAAGTTTTTACTTGC
AAPT2-F dCAPS AAGAGCAAGTAAAAACTTCCTAAATT 222 ApoI 22, 200
AAPT2-R GATACAAATGCCCAAATACCA
AAPT3-F dCAPS CAAAGATCAATGCTGGGTAATTTC 184 SphI 22, 162
AAPT3-R AGGTAAATCAGTTCACCTGTGCA
PLD1-F dCAPS CATCCTGCACTAAAAACAGTTGAAT 214 HinfI 22, 192
PLD1-R TGCACAACACCAGAGCCCCACC
PLD2-F dCAPS CCTCCCAAAGTTTAGGCGGAAAAGGCC 187 HpaII 27, 160
PLD2-R TCAAAGCTCACAATAGCAGAATA
PLA21-F dCAPS TTCCTATTGTTTCTTCCTCCCTCTT 230 HinfI 20, 210
PLA21-R GAAAAAACAAAATTAAAAAAGAGT
dCAPS, Development of derived cleaved amplified polymorphic sequences.
Underlined letter means the mismatch base.
Table 3 Summary of alleles of three candidate genes.
Accession AAPT1 AAPT2 AAPT3 PLD1 PLD2 PLA21 Accession AAPT1 AAPT2 AAPT3 PLD1 PLD2 PLA21
G01 D T A C G G G18 I A G C C G
G02 D T A C G G G19 D T A C G T
G03 D T A A C T G20 I A G A C T
G04 D T A A C G R01 D T A C C G
G05 D T A C C T R02 D T A C C G
G06 D T A C G G R03 D T A C G T
G07 D T A C G G R04 D T A C C G
G08 D T A C C T R05 D T A C C T
G09 D T A C G G R06 D T A C C G
G10 D T A A C T R07 D T A C G G
G11 D T A C G G R08 I A G C C G
G12 D T A C C T R09 D T A C C T
G13 D T A C C T R10 I A G C C T
G14 I A G C C T R11 D T A C C T
G15 D T A C C G R12 D T A C C T
G16 D T A C G G R13 I A G C C T
G17 I A G C C G
AAPT, Aminoalcoholphosphotransferase; PLD, Phospholipase D; PLA2, Phospholipase A2; I, Insertion; D, Deletion.

Table 3 Summary of alleles of three candidate genes.

Accession AAPT1 AAPT2 AAPT3 PLD1 PLD2 PLA21 Accession AAPT1 AAPT2 AAPT3 PLD1 PLD2 PLA21
G01 D T A C G G G18 I A G C C G
G02 D T A C G G G19 D T A C G T
G03 D T A A C T G20 I A G A C T
G04 D T A A C G R01 D T A C C G
G05 D T A C C T R02 D T A C C G
G06 D T A C G G R03 D T A C G T
G07 D T A C G G R04 D T A C C G
G08 D T A C C T R05 D T A C C T
G09 D T A C G G R06 D T A C C G
G10 D T A A C T R07 D T A C G G
G11 D T A C G G R08 I A G C C G
G12 D T A C C T R09 D T A C C T
G13 D T A C C T R10 I A G C C T
G14 I A G C C T R11 D T A C C T
G15 D T A C C G R12 D T A C C T
G16 D T A C G G R13 I A G C C T
G17 I A G C C G
AAPT, Aminoalcoholphosphotransferase; PLD, Phospholipase D; PLA2, Phospholipase A2; I, Insertion; D, Deletion.
Fig. 5. Polymorphism of InDel and simple nucleotide polymorphisms in AAPT, PLD and PLA2 genes in rice accessions G01-G20 and R01-R13. AAPT, Aminoalcoholphosphotransferase; PLD, Phospholipase D; PLA2, Phospholipase A2. Lanes from left to right in each part are marker, G01-G20 and R01-R13, respectively.

Fig. 5. Polymorphism of InDel and simple nucleotide polymorphisms in AAPT, PLD and PLA2 genes in rice accessions G01-G20 and R01-R13. AAPT, Aminoalcoholphosphotransferase; PLD, Phospholipase D; PLA2, Phospholipase A2. Lanes from left to right in each part are marker, G01-G20 and R01-R13, respectively.

Table 4 Marker loci associated with starch lysophospholipids (LPLs) traits detected with analysis of variance (ANOVA) model in 31 non-waxy and all the 33 rice accessions.
Gene Marker Trait Non-waxy accession (31) All rice accession (33) QTL
p_Marker R2_Marker p_Marker R2_Marker
PLD PLD1 LPC16:0 0.0149 0.1876 0.0984 0.0856 qC160-6-1
PLA2 PLA21 LPC18:2 0.0902 0.0958 0.0277 0.1468 qC182-11, qE182-11
PLD, Phospholipase D; PLA2, Phospholipase A2.

Table 4 Marker loci associated with starch lysophospholipids (LPLs) traits detected with analysis of variance (ANOVA) model in 31 non-waxy and all the 33 rice accessions.

Gene Marker Trait Non-waxy accession (31) All rice accession (33) QTL
p_Marker R2_Marker p_Marker R2_Marker
PLD PLD1 LPC16:0 0.0149 0.1876 0.0984 0.0856 qC160-6-1
PLA2 PLA21 LPC18:2 0.0902 0.0958 0.0277 0.1468 qC182-11, qE182-11
PLD, Phospholipase D; PLA2, Phospholipase A2.

参考文献 39

1 Ambrosewicz-Walacik M, Tańska M, Rotkiewicz D.2015. Phospholipids of rapeseeds and rapeseed oils: Factors determining their content and technological significance: A review.Food Rev Int, 31(4): 385-400.
2 Bessoule J J, Moreau P.2004. Phospholipid synthesis and dynamics in plant cells. In: Daum G. Lipid Metabolism and Membrane Biogenesis. Berlin, Germany: Springer: 89-124.
3 Bohdanowicz M, Grinstein S.2013. Role of phospholipids in endocytosis, phagocytosis, and macropinocytosis.Physiol Rev, 93(1): 69-106.
4 Choi S K, Takahashi E, Inatsu O, Mano Y, Ohnishi M.2005. Component fatty acids of acidic glycerophospholipids in rice grains: Universal order of unsaturation index in each lipid among varieties.J Oleo Sci, 54(7): 369-373.
5 D’Arrigo P, Servi S.2010. Synthesis of lysophospholipids.Molecules, 15: 1354-1377.
6 Doyle J.1991. DNA protocols for plants: CTAB total DNA isolation. In: Hewitt G M, Johnston A. Molecular Techniques in Taxonomy. Berlin, Germany: Springer: 283-293.
7 Eastmond P J, Quettier A L, Kroon J T M, Craddock C, Adams N, Slabas A R.2010. PHOSPHATIDIC ACID PHOSPHOHYDRO- LASE1 and 2 regulate phospholipid synthesis at the endoplasmic reticulum inArabidopsis. Plant Cell, 22(8): 2796-2811.
8 Farquharson K L.2010. Regulation of phospholipid biosynthesis inArabidopsis. Plant Cell, 22(8): 2527.
9 Gaspar M L, Hofbauer H F, Kohlwein S D, Henry S A.2011. Coordination of storage lipid synthesis and membrane biogenesis evidence for cross-talk between triacylglycerol metabolism and phosphatidylinositol synthesis.J Biol Chem, 286(3): 1696-1708.
10 Hofbauer H F, Schopf F H, Schleifer H, Knittelfelder O L, Pieber B, Rechberger G N, Wolinski H, Gaspar M L, Kappe C O, Stadlmann J, Mechtler K, Zenz A, Lohner K, Tehlivets O, Henry S A, Kohlwein S D.2014. Regulation of gene expression through a transcriptional repressor that senses acyl-chain length in membrane phospholipids.Dev Cell, 29(6): 729-739.
11 Kinney A J.1993. Phospholipid head groups. In: Moore T S J. Lipid Metabolism in Plants. Boca Raton, Florida, USA: CRC Press: 259-284.
12 Kuhn S, Slavetinsky C J, Peschel A.2015. Synthesis and function of phospholipids inStaphylococcus aureus. Int J Med Microbiol, 305(2): 196-202.
13 Konieczny A, Ausubel F M.1993. A procedure for mappingArabidopsis mutations using co-dominant ecotype-specific PCR- based markers. Plant J, 4(2): 403-410.
14 Li H, Peng Z Y, Yang X H, Wang W D, Fu J J, Wang J H, Han Y J, Chai Y C, Guo T T, Yang N, Liu J, Warburton M L, Cheng Y B, Hao X M, Zhang P, Zhao J Y, Liu Y J, Wang G Y, Li J S, Yan J B.2013. Genome-wide association study dissects the genetic architecture of oil biosynthesis in maize kernels.Nat Genet, 45(1): 43-50.
15 Lipka A E, Tian F, Wang Q S, Peiffer J, Li M, Bradbury P J, Gore M A, Buckler E S, Zhang Z W.2012. GAPIT: Genome association and prediction integrated tool.Bioinformatics, 28(18): 2397-2399.
16 Liu L, Waters D L E, Rose T J, Bao J S, King G J.2013. Phospholipids in rice: Significance in grain quality and health benefits: A review.Food Chem, 139(1/2/3/4): 1133-1145.
17 Liu L, Tong C, Bao J S, Waters D L E, Rose T J, King G J.2014. Determination of starch lysophospholipids in rice using liquid chromatography-mass spectrometry (LC-MS).J Agric Food Chem, 62(28): 6600-6607.
18 Liu W J, Zeng J, Jiang G H, He Y Q.2009. QTLs identification of crude fat content in brown rice and its genetic basis analysis using DH and two backcross populations.Euphytica, 169(2): 197-205.
19 Maniñgat C C, Juliano B O.1980. Starch lipids and their effect on rice starch properties.Starch Stärke, 32(3): 76-82.
20 Martin P K, Li T, Sun D X, Biek D P, Schmid M B.1999. Role in cell permeability of an essential two-component system inStaphylococcus aureus. J Bacteriol, 181(12): 3666-3673.
21 Nakamura A, Ocirc N T, Funahashi S.1958. Nature of lysolecithin in rice grains.Bull Agric Chem Soc Jpn, 22(5): 320-324.
22 Neff M M, Neff J D, Chory J, Pepper A E.1998. dCAPS, a simple technique for the genetic analysis of single nucleotide polymorphisms: Experimental applications inArabidopsis thaliana genetics. Plant J, 14(3): 387-392.
23 Perry H J, Harwood J L.1993. Radiolabelling studies of acyl lipids in developing seeds ofBrassica napus: Use of [1-14C]acetate precursor. Phytochemistry, 33(2): 329-333.
24 Putseys J A, Lamberts L, Delcour J A.2010. Amylose-inclusion complexes: Formation, identity and physico-chemical properties.J Cereal Sci, 51(3): 238-247.
25 Qin Y, Kim S M, Zhao X H, Lee H S, Jia B Y, Kim K M, Eun M Y, Sohn J K.2010. QTL detection and MAS selection efficiency for lipid content in brown rice (Oryza sativa L.). Genes Genom, 32(6): 506-512.
26 Ren J, Zhao X Q, Ding Z S, Xiang C, Zhang J, Wang C, Zhang J W, Joseph C A, Zhang Q, Pang Y L, Gao Y M, Shi Y Y.2015. Dissection and QTL mapping of low-phosphorus tolerance using selected introgression lines in rice.Chin J Rice Sci, 29(1): 1-13. (in Chinese with English abstract)
27 Shen Y Y, Zhang W W, Liu X, Chen L M, Liu S J, Zheng L N, Li J J, Chen Y L, Wu T, Yu Y, Zhong Z Z, Jiang L, Wan J M.2012. Identification of two stably expressed QTLs for fat content in rice (Oryza sativa). Genome, 55(8): 585-590.
28 Shewry P R, Pinfield N J, Stobart A K.1973. Phospholipids and the phospholipid fatty acids of germinating hazel seeds (Corylus avellana L.). J Exp Bot, 24(6): 1100-1105.
29 Suzuki Y.2011a. Isolation and characterization of a rice (Oryza sativa L.) mutant deficient in seed phospholipase D, an enzyme involved in the degradation of oil-body membranes. Crop Sci, 51(2): 567-573.
30 Suzuki Y, Takeuchi Y, Shirasawa K.2011b. Identification of a seed phospholipase D null allele in rice (Oryza sativa L.) and development of SNP markers for phospholipase D deficiency. Crop Sci, 51(5): 2113-2118.
31 Tong C, Liu L, Waters D L E, Rose T J, Bao J S, King G J.2014. Genotypic variation in lysophospholipids of milled rice.J Agric Food Chem, 62(38): 9353-9361.
32 Tong C, Liu L, Waters D L E, Huang Y, Bao J S.2015. The contribution of lysophospholipids to pasting and thermal properties of nonwaxy rice starch.Carbohyd Polym, 133: 187-193.
33 Xu C C, Shanklin J.2016. Triacylglycerol metabolism, function, and accumulation in plant vegetative tissues.Annu Rev Plant Biol, 67: 179-206.
34 Xu F F, Tang F F, Shao Y F, Chen Y L, Tong C, Bao J S.2014. Genotype × environment interactions for agronomic traits of rice revealed by association mapping.Rice Sci, 21(3): 133-141.
35 Yang F, Chen Y L, Tong C, Huang Y, Xu F F, Li K H, Corke H, Sun M, Bao J S.2014. Association mapping of starch physicochemical properties with starch synthesis-related gene markers in nonwaxy rice (Oryza sativa L.). Mol Breeding, 34(4): 1747-1763.
36 Ying J Z, Shan J X, Gao J P, Zhu M Z, Shi M, Lin H X.2012. Identification of quantitative trait loci for lipid metabolism in rice seeds.Mol Plant, 5(4): 865-875.
37 Yoshida H, Tanigawa T, Yoshida N, Kuriyama I, Tomiyama Y, Mizushina Y.2011. Lipid components, fatty acid distributions of triacylglycerols and phospholipids in rice brans.Food Chem, 129(2): 479-484.
38 Zhan X D, Yu P, Lin Z C, Chen D B, Shen X H, Zhang Y X, Fu J L, Cheng S H, Cao L Y.2014. QTL mapping of heading date and yield-related traits in rice using a recombination inbred lines (RILs) population derived from BG1/XLJ.Chin J Rice Sci, 28(6): 570-580. (in Chinese with English abstract)
39 (Managing Editor: Li Guan)

相关文章 0

No related articles found!

编辑推荐

Metrics

阅读次数
全文


摘要

  • 摘要
  • 图/表
  • 参考文献
  • 相关文章
  • 编辑推荐
  • Metrics
回顶部
浙ICP备05004719号-15   公安备案号:33010302003355
版权所有 © 《Rice Science》编辑部
地址:浙江省杭州市体育场路359号 邮编:310006 电话:0571-63371017 E-mail:crrn@fy.hz.zn.cn; cjrs278@gmail.com
本系统由北京玛格泰克科技发展有限公司设计开发
总访问量: 今日访问: 在线人数: