Rice Science
  • 首页
  • 期刊介绍
  • 编委会
  • 学术伦理
  • 投稿指南
  • 期刊订阅
  • 联系我们
  • English

Rice Science ›› 2018, Vol. 25 ›› Issue (3): 152-1604.DOI: 10.1016/j.rsci.2018.04.003

• • 上一篇    下一篇

  • 收稿日期:2018-01-04 接受日期:2018-02-26 出版日期:2018-05-04 发布日期:2018-03-07

RichHTML

PDF

可视化

0

摘要/Abstract

引用本文

. [J]. Rice Science, 2018, 25(3): 152-1604.

使用本文

0
    /   推荐

导出引用管理器 EndNote|Ris|BibTeX

链接本文: http://www.ricesci.org/CN/10.1016/j.rsci.2018.04.003

               http://www.ricesci.org/CN/Y2018/V25/I3/152

图/表 2

Table 1 Primers used in real-time PCR.
Gene Accession Gene description Forward primer (5′-3′) Reverse primer (5′-3′) Production size (bp)
OsALDH2-1 AK119571 Aldehyde dehydrogenase 2-1 CCTCAGATTGACAAGGAGCA GGCTCGATGTAGTACCCGTT 122
OsALDH2-2 AK101427 Aldehyde dehydrogenase 2-2 GGTCCTCAGGTTGACAAGGT CTTTGTCACCAGTGGGTTTG 109
OsALDH2-3 CU607043 Aldehyde dehydrogenase 2-3 CAGGTGGACAAGGCTCAGTA AATGGTGGGCTCGATGTAGT 126
OsALDH2-4 AK121610 Aldehyde dehydrogenase 2-4 TCTTGCCTGGATCACTTCAC CATTGATGAGGAGCTTGGTG 120
OsALDH2-5 AK073079 Aldehyde dehydrogenase 2-5 AAGTCGTCCTTGAGTTGGCT CATGGTCAACATCAGCATCA 105
OsALDH3-1 AK070741 Aldehyde dehydrogenase 3-1 ATAATCGGAGCGAAATGGTC CAATCAGGAATGGTGCAAAC 94
OsALDH3-2 AK120274 Aldehyde dehydrogenase 3-2 AGGGTGGCAGCTTCTGTAGT TTACCGTGATGATTGGGAGA 145
OsALDH3-3 AK071169 Aldehyde dehydrogenase 3-3 ATAGAGGACAGCATCGCCTT ACTGCGTCGTTGAACGTAAC 134
OsALDH3-4 AK104746 Aldehyde dehydrogenase 3-4 ATTCCCATCAACTGCACAAA TATGACTGGGTCGATGGAGA 100
OsALDH3-5 JC625236 Aldehyde dehydrogenase 3-5 GCTGCGATCATCTGACTTGT TCGTCCATCAGCTTCTTCAG 72
OsALDH7 AK120185 Aldehyde dehydrogenase 7 AGAGCAAAGCTCCATCACCT TGAACCTCTCCAATCCCTTC 80
OsAKR1 AK242899 Aldo-keto reductase 1 TCGATTGCATCGACCTTTAC ATGCCGATGCTTCACATAAG 132
OsAKR2 AK103729 Aldo-keto reductase 2 CATCAGGGAAGCGATGTATG CCTCGAACATCATCTGTGCT 143
OsAKR3 AK100718 Aldo-keto reductase 3 AGCTCACACCTGACGAGATG GCGGAGGAGTTTCAGAGTTC 117
UBQ5 AK062354 Ubiquitin 5 ACCACTTCGACCGCCACTACT ACGCC TAAGCCTGCTGGTT 69

Table 1 Primers used in real-time PCR.

Gene Accession Gene description Forward primer (5′-3′) Reverse primer (5′-3′) Production size (bp)
OsALDH2-1 AK119571 Aldehyde dehydrogenase 2-1 CCTCAGATTGACAAGGAGCA GGCTCGATGTAGTACCCGTT 122
OsALDH2-2 AK101427 Aldehyde dehydrogenase 2-2 GGTCCTCAGGTTGACAAGGT CTTTGTCACCAGTGGGTTTG 109
OsALDH2-3 CU607043 Aldehyde dehydrogenase 2-3 CAGGTGGACAAGGCTCAGTA AATGGTGGGCTCGATGTAGT 126
OsALDH2-4 AK121610 Aldehyde dehydrogenase 2-4 TCTTGCCTGGATCACTTCAC CATTGATGAGGAGCTTGGTG 120
OsALDH2-5 AK073079 Aldehyde dehydrogenase 2-5 AAGTCGTCCTTGAGTTGGCT CATGGTCAACATCAGCATCA 105
OsALDH3-1 AK070741 Aldehyde dehydrogenase 3-1 ATAATCGGAGCGAAATGGTC CAATCAGGAATGGTGCAAAC 94
OsALDH3-2 AK120274 Aldehyde dehydrogenase 3-2 AGGGTGGCAGCTTCTGTAGT TTACCGTGATGATTGGGAGA 145
OsALDH3-3 AK071169 Aldehyde dehydrogenase 3-3 ATAGAGGACAGCATCGCCTT ACTGCGTCGTTGAACGTAAC 134
OsALDH3-4 AK104746 Aldehyde dehydrogenase 3-4 ATTCCCATCAACTGCACAAA TATGACTGGGTCGATGGAGA 100
OsALDH3-5 JC625236 Aldehyde dehydrogenase 3-5 GCTGCGATCATCTGACTTGT TCGTCCATCAGCTTCTTCAG 72
OsALDH7 AK120185 Aldehyde dehydrogenase 7 AGAGCAAAGCTCCATCACCT TGAACCTCTCCAATCCCTTC 80
OsAKR1 AK242899 Aldo-keto reductase 1 TCGATTGCATCGACCTTTAC ATGCCGATGCTTCACATAAG 132
OsAKR2 AK103729 Aldo-keto reductase 2 CATCAGGGAAGCGATGTATG CCTCGAACATCATCTGTGCT 143
OsAKR3 AK100718 Aldo-keto reductase 3 AGCTCACACCTGACGAGATG GCGGAGGAGTTTCAGAGTTC 117
UBQ5 AK062354 Ubiquitin 5 ACCACTTCGACCGCCACTACT ACGCC TAAGCCTGCTGGTT 69
Fig. 4. Expression analysis of ALDH and AKR genes in aged rice embryos. UBQ5 gene was used as a housekeeping control. Data represent Mean ± SD. Seeds with the germination rate of 90% were served as the control. Different letters mean significant difference among treatments (P < 0.05, one-way ANOVA, n = 3).

Fig. 4. Expression analysis of ALDH and AKR genes in aged rice embryos. UBQ5 gene was used as a housekeeping control. Data represent Mean ± SD. Seeds with the germination rate of 90% were served as the control. Different letters mean significant difference among treatments (P < 0.05, one-way ANOVA, n = 3).

参考文献 42

[1] Alméras E, Stolz S, Vollenweider S, Reymond P, Mène-Saffrané L, Farmer E E.2003. Reactive electrophile species activate defense gene expression inArabidopsis. Plant J, 34(2): 205-216.
[2] Csallany A S, Han I, Shoeman D W, Chen C, Yuan J Y.2015. 4-hydroxynonenal (HNE), a toxic aldehyde in French fries from fast food restaurants.J Am Oil Chem Soc, 92(10): 1413-1419.
[3] FAO.2010. Second report on the state of the world’s plants genetic resources for food and agriculture. Commission on Genetic Resources for Food and Agriculture. Rome: Food and Agriculture Organization of the United Nations: 47.
[4] Farmer E E, Mueller M J.2013. ROS-mediated lipid peroxidation and RES-activated signaling.Annu Rev Plant Biol, 64(1): 429-450.
[5] Gao C X, Han B.2009. Evolutionary and expression study of the aldehyde dehydrogenase (ALDH) gene superfamily in rice (Oryza sativa). Gene, 431(1/2): 86-94.
[6] Gao H Y, Jing L Q, Chen L, Ju J, Wang Y X, Zhu J G, Yang L X, Wang Y L.2016. Effects of elevated atmospheric CO2 and temperature on seed vigor of rice under open-air field conditions.Chin J Rice Sci, 30(4): 371-379. (in Chinese with English abstract)
[7] Hay F R, de Guzman F, Ellis D, Makahiya H, Borromeo T, Hamilton N R S.2013. Viability of Oryza sativa L. seeds stored under genebank conditions for up to 30 years. Genet Resour Crop Evol, 60(1): 275-296.
[8] Hay F R, de Guzman F, Hamilton N R S.2015. Viability monitoring intervals for genebank samples ofOryza sativa. Seed Sci Technol, 43(2): 218-237.
[9] Hideg É, Nagy T, Oberschall A, Dudits D, Vass I.2003. Detoxification function of aldose/aldehyde reductase during drought and ultraviolet-B (280-320 nm) stresses.Plant Cell Environ, 26(4): 513-522.
[10] Islam M M, Ye W, Matsushima D, Munemasa S, Okuma E, Nakamura Y, Biswas S, Mano J, Murata Y.2016. Reactive carbonyl species mediate ABA signaling in guard cells.Plant Cell Physiol, 57(12): 2552-2563.
[11] ISTA.2014. International Rules for Seed Testing. Bassersdorf, Switzerland: International Seed Testing Association.
[12] Kotchoni S O, Kuhns C, Ditzer A, Kirch H H, Bartels D.2006. Overexpression of different aldehyde dehydrogenase genes in Arabidopsis thaliana confers tolerance to abiotic stress and protects plants against lipid peroxidation and oxidative stress. Plant Cell Environ, 29(6): 1033-1048.
[13] Lu X X, Chen X L, Guo Y H.2005. Seed germinability of 23 crop species after a decade of storage in the national genebank of China.Agric Sci China, 4(6): 408-412.
[14] Mano J, Miyatake F, Hiraoka E, Tamoi M.2009. Evaluation of the toxicity of stress-related aldehydes to photosynthesis in chloroplasts.Planta, 230(4): 639-648.
[15] Mano J.2012. Reactive carbonyl species: Their production from lipid peroxides, action in environmental stress, and the detoxification mechanism.Plant Physiol Biochem, 59: 90-97.
[16] Mano J, Nagata M, Okamura S, Shiraya T, Mitsui T.2014. Identification of oxidatively modified proteins in salt-stressed Arabidopsis: A carbonyl-targeted proteomics approach. Plant Cell Physiol, 55(7): 1233-1244.
[17] Matsui K, Sugimoto K, Kakumyan P, Khorobrykh S A, Mano J.2009. Volatile oxylipins and related compounds formed under stress in plants.Methods Mol Biol, 580: 17-28.
[18] Matsui K, Sugimoto K, Mano J, Ozawa R, Takabayashi J.2012. Differential metabolisms of green leaf volatiles in injured and intact parts of a wounded leaf meet distinct ecophysiological requirements.PLoS One, 7(4): e36433.
[19] Mène-Saffrané L, Davoine C, Stolz S, Majcherczyk P, Farmer E E.2007. Genetic removal of tri-unsaturated fatty acids suppresses developmental and molecular phenotypes of an Arabidopsis tocopherol-deficient mutant: Whole-body mapping of malondialdehyde pools in a complex eukaryote. J Biol Chem, 282: 35749-35756.
[20] Mueller M J.1998. Radically novel prostaglandins in animals and plants: The isoprostanes.Chem Biol, 5(12): 323-333.
[21] Nakazono M, Tsuji H, Li Y, Saisho D, Arimura S, Tsutsumi N, Hirai A.2000. Expression of a gene encoding mitochondrial aldehyde dehydrogenase in rice increases under submerged conditions.Plant Physiol, 124(2): 587-598.
[22] Oberschall A, Deák M, Török K, Sass L, Vass I, Kovács I, Fehér A, Dudits D, Horváth G V.2000. A novel aldose/aldehyde reductase protects transgenic plants against lipid peroxidation under chemical and drought stresses.Plant J, 24(4): 437-446.
[23] Penning T M.2015. The aldo-keto reductases (AKRs): Overview.Chem-Biol Inter, 234(5): 236-246.
[24] Rodrigues S M, Andrade M O, Gomes A P S, Damatta F M, Baracat-Pereira M C, Fontes E P B.2006. Arabidopsis and tobacco plants ectopically expressing the soybean antiquitin-like ALDH7 gene display enhanced tolerance to drought, salinity, and oxidative stress. J Exp Bot, 57(9): 1909-1918.
[25] Sengupta D, Naik D, Reddy A R.2015. Plant aldo-keto reductases (AKRs) as multi-tasking soldiers involved in diverse plant metabolic processes and stress defense: A structure-function update.J Plant Physiol, 179: 40-55.
[26] Shin J H, Kim S R, An G.2009. Rice aldehyde dehydrogenase 7 is needed for seed maturation and viability.Plant Physiol, 149(2): 905-915.
[27] Stiti N, Adewale I O, Petersen J, Bartels D, Kirch H H.2011. Engineering the nucleotide coenzyme specificity and sulfhydryl redox sensitivity of two stress-responsive aldehyde dehydrogenase isoenzymes of Arabidopsis thaliana. Biochem J, 434(3): 459-471.
[28] Sun Y L, Liu H M, Xu Q G.2017. Effects of cadmium stress on rice seed germination characteristics.Chin J Rice Sci, 31(4): 425-431. (in Chinese with English abstract)
[29] Sunkar R, Bartels D, Kirch H H.2003. Overexpression of a stress-inducible aldehyde dehydrogenase gene from Arabidopsis thaliana in transgenic plants improves stress tolerance. Plant J, 35(4): 452-464.
[30] Taylor N L, Day D A, Millar A H.2002. Environmental stress causes oxidative damage to plant mitochondria leading to inhibition of glycine decarboxylase.J Biol Chem, 277(45): 42663-42668.
[31] Tsuji H, Meguro N, Suzuki Y, Tsutsumi N, Hirai A, Nakazono M.2003. Induction of mitochondrial aldehyde dehydrogenase by submergence facilitates oxidation of acetaldehyde during re-aeration in rice.Febs Lett, 546: 369-373.
[32] Turóczy Z, Kis P, Török K, Cserháti M, Lendvai Á, Dudits D, Horváth G V.2011. Overproduction of a rice aldo-keto reductase increases oxidative and heat stress tolerance by malondialdehyde and methylglyoxal detoxification.Plant Mol Biol, 75(4/5): 399-412.
[33] Vemanna R S, Vennapusa A R, Easwaran M, Chandrashekar B K, Rao H, Ghanti K, Sudhakar C, Mysore K S, Makarla U.2016. Aldo-keto reductase enzymes detoxify glyphosate and improve herbicide resistance in plants.Plant Biotechnol J, 15(7): 794-804.
[34] Vemanna R S, Babitha K C, Solanki J K, Amarnatha Reddy V, Sarangi S K, Udayakumar M.2017. Aldo-keto reductase-1 (AKR1) protect cellular enzymes from salt stress by detoxifying reactive cytotoxic compounds.Plant Physiol Biochem, 113: 177-186.
[35] Wang H, Jiang Z Z, Du H B, Liang C Y, Wang Y C, Zhang M H, Zhang L Y, Ye W C, Li P.2012. Simultaneous determination of three flavonoid C-glycosides in mice biosamples by HPLC- ESI-MS method after oral administration of Abrus mollis extract and its application to biodistribution studies. J Chromatogr B, 903: 68-74.
[36] Weber H, Chételat A, Reymond P, Farmer E E.2004. Selective and powerful stress gene expression inArabidopsis in response to malondialdehyde. Plant J, 37(6): 877-888.
[37] Xin X, Lin X H, Zhou Y C, Chen X L, Liu X, Lu X X.2011. Proteome analysis of maize seeds: The effect of artificial ageing.Physiol Planta, 143(2): 126-138.
[38] Yamauchi Y, Hasegawa A, Taninaka A, Mizutani M, Sugimoto Y.2011. NADPH-dependent reductases involved in the detoxification of reactive carbonyls in plants.J Biol Chem, 286(9): 6999-7009.
[39] Yin G K, Whelan J, Wu S H, Zhou J, Chen X L, Chen B Y, Zhang J M, Xin X, Lu X X.2016. Comprehensive mitochondrial metabolic shift during the critical node of seed ageing in rice.PLoS One, 11(4): e0148013.
[40] Yin G K, Xin X, Fu S Z, An M N, Wu S H, Chen X L, Zhang J M, He J J, Whelan J, Lu X X.2017. Proteomic and carbonylation profile analysis at the critical node of seed ageing inOryza sativa. Sci Rep-UK, 7: 40611.
[41] Yin L, Mano J, Wang S, Tsuji W, Tanaka K.2010. The involvement of lipid peroxide-derived aldehydes in aluminum toxicity of tobacco roots.Plant Physiol, 152(3): 1406-1417.
[42] Zhou J L, Wang X F, Jiao Y L, Qin Y H, Liu X G, He K, Chen C, Ma L G, Wang J, Xiong L Z, Zhang Q F, Fan L M, Deng X W.2007. Global genome expression analysis of rice in response to drought and high-salinity stresses in shoot, flag leaf, and panicle.Plant Mol Biol, 63(5): 591-608.

相关文章 0

No related articles found!

编辑推荐

Metrics

阅读次数
全文


摘要

  • 摘要
  • 图/表
  • 参考文献
  • 相关文章
  • 编辑推荐
  • Metrics
回顶部
浙ICP备05004719号-15   公安备案号:33010302003355
版权所有 © 《Rice Science》编辑部
地址:浙江省杭州市体育场路359号 邮编:310006 电话:0571-63371017 E-mail:crrn@fy.hz.zn.cn; cjrs278@gmail.com
本系统由北京玛格泰克科技发展有限公司设计开发
总访问量: 今日访问: 在线人数: