Rice Science ›› 2024, Vol. 31 ›› Issue (1): 33-46.DOI: 10.1016/j.rsci.2023.11.002
• Reviews • Previous Articles Next Articles
Tian Yu,#, Sun Jing,#, Li Jiaxin, Wang Aixia, Nie Mengzi, Gong Xue, Wang Lili, Liu Liya, Wang Fengzhong(), Tong Litao(
)
Received:
2023-04-27
Accepted:
2023-08-31
Online:
2024-01-28
Published:
2024-02-06
Contact:
Wang Fengzhong (About author:
First author contact:#These authors contributed equally to this work
Tian Yu, Sun Jing, Li Jiaxin, Wang Aixia, Nie Mengzi, Gong Xue, Wang Lili, Liu Liya, Wang Fengzhong, Tong Litao. Effects of Milling Methods on Rice Flour Properties and Rice Product Quality: A Review[J]. Rice Science, 2024, 31(1): 33-46.
Add to citation manager EndNote|Ris|BibTeX
Milling type | Sieve | Process yield (%) | Temperature (ºC) | Damaged starch (%) | Average particle size (µm) | Main force | Advantage (↑) / Disadvantage (↓) | Energy consumption (kJ/kg) | Reference |
---|---|---|---|---|---|---|---|---|---|
Wet milling | |||||||||
Mixer grinder | 100 mesh | - | - | 1.0 | 131 | Shear force | ↑ Low energy consumption ↓ Large particle size | 72 | Solanki et al, |
Stone grinder | 100 mesh | - | - | 2.1 | 125 | Compressive force | ↓ High damaged starch | 108 | Solanki et al, |
Colloid mill | 100 mesh | - | - | 0.4 | 82 | Shear force | ↑ Low damaged starch ↑ Small particle size | - | Solanki et al, |
Stone mill then hammer mill | - | - | - | 3.74 | 5-9 | Compressive force + impact force | ↑ Small particle size ↓ High damaged starch | - | Suksomboon and Naivikul, |
Colloid mill then hammer mill | 150 µm | 66.5 | 39.5 | 2.78 | 61.3 | Shear force + impact force | ↓ High energy consumption | 13 868 | Ngamnikom and Songsermpong, |
Dry milling | |||||||||
Roller mill × 2 | 100 mesh | 80.2 | 33.9 | 10.7 | 112.2 | Compressive force | ↑ Low heat generation ↑ Low damaged starch ↑ High yield ↓ High energy consumption | 801 | Ngamnikom and Songsermpong, |
Pin mill × 2 | 100 mesh | 35.68 | 39.4 | 12.4 | 99.7 | Impact force | ↑ Inexpensive ↓ Low yield ↓ High energy consumption | 795 | Ngamnikom and Songsermpong, |
Hammer mill | 500 µm | - | 40-50 | 17 | 158 | Impact force | ↑ Low energy consumption ↓ Low yield ↓ More heat generation ↓ High damaged starch | - | Hasjim et al, |
Stone mill | - | - | - | - | - | Compressive force | ↑ Easy and quick ↓ More heat generation ↓ Damaged nutritional components | - | Horigane et al, |
Cyclone mill | 100 mesh | - | - | 12.0 | 74.2 | Shear force | ↑ Fine particle ↑ Wide particle size | - | de la Hera E et al, |
Jet mill | 100 mesh | - | - | - | - | Impact force | ↑ Small particle size ↓ High damaged starch | - | Liu, |
Table 1. Effects of milling type on polished rice flour properties during wet milling and dry milling.
Milling type | Sieve | Process yield (%) | Temperature (ºC) | Damaged starch (%) | Average particle size (µm) | Main force | Advantage (↑) / Disadvantage (↓) | Energy consumption (kJ/kg) | Reference |
---|---|---|---|---|---|---|---|---|---|
Wet milling | |||||||||
Mixer grinder | 100 mesh | - | - | 1.0 | 131 | Shear force | ↑ Low energy consumption ↓ Large particle size | 72 | Solanki et al, |
Stone grinder | 100 mesh | - | - | 2.1 | 125 | Compressive force | ↓ High damaged starch | 108 | Solanki et al, |
Colloid mill | 100 mesh | - | - | 0.4 | 82 | Shear force | ↑ Low damaged starch ↑ Small particle size | - | Solanki et al, |
Stone mill then hammer mill | - | - | - | 3.74 | 5-9 | Compressive force + impact force | ↑ Small particle size ↓ High damaged starch | - | Suksomboon and Naivikul, |
Colloid mill then hammer mill | 150 µm | 66.5 | 39.5 | 2.78 | 61.3 | Shear force + impact force | ↓ High energy consumption | 13 868 | Ngamnikom and Songsermpong, |
Dry milling | |||||||||
Roller mill × 2 | 100 mesh | 80.2 | 33.9 | 10.7 | 112.2 | Compressive force | ↑ Low heat generation ↑ Low damaged starch ↑ High yield ↓ High energy consumption | 801 | Ngamnikom and Songsermpong, |
Pin mill × 2 | 100 mesh | 35.68 | 39.4 | 12.4 | 99.7 | Impact force | ↑ Inexpensive ↓ Low yield ↓ High energy consumption | 795 | Ngamnikom and Songsermpong, |
Hammer mill | 500 µm | - | 40-50 | 17 | 158 | Impact force | ↑ Low energy consumption ↓ Low yield ↓ More heat generation ↓ High damaged starch | - | Hasjim et al, |
Stone mill | - | - | - | - | - | Compressive force | ↑ Easy and quick ↓ More heat generation ↓ Damaged nutritional components | - | Horigane et al, |
Cyclone mill | 100 mesh | - | - | 12.0 | 74.2 | Shear force | ↑ Fine particle ↑ Wide particle size | - | de la Hera E et al, |
Jet mill | 100 mesh | - | - | - | - | Impact force | ↑ Small particle size ↓ High damaged starch | - | Liu, |
Physicochemical property | Wet milling | Dry milling | Semi-dry milling |
---|---|---|---|
Damaged starch | Less damaged starch (1%-10%) | High level of damaged starch (10%-24%) | Approach wet-milled flour; Less damaged starch (1.9%-10.0%) |
Particle size | Smaller particle size and range | Large particle size | Smaller particle size and range |
Hydration property | Better WAI and SPI under high temperatures | Cold-water solubility and swelling power increase | Similar water hydration properties to wet-milling |
Pasting property | High values of all pasting characteristics | Low pasting viscosity and pasting temperature | High pasting characteristics close to wet-milling |
Thermal property | Higher gelatinization enthalpy | Lower gelatinization enthalpy | Higher gelatinization enthalpy |
Effect on rice product a | ↑ Low cooking loss rate ↑ Strong tensile force ↑ Large specific volume | ↓ Reduction in hardness, whiteness, chewiness, and resilience of rice noodles ↓ High cooking loss | ↑ Less cooking loss ↑ Good texture properties ↑ Better transmittance |
Reference | Heo et al, et al, 2019 | Hasjim et al, | Tong et al, |
Table 2. Characteristics of milling methods and their effects on rice flour physicochemical properties.
Physicochemical property | Wet milling | Dry milling | Semi-dry milling |
---|---|---|---|
Damaged starch | Less damaged starch (1%-10%) | High level of damaged starch (10%-24%) | Approach wet-milled flour; Less damaged starch (1.9%-10.0%) |
Particle size | Smaller particle size and range | Large particle size | Smaller particle size and range |
Hydration property | Better WAI and SPI under high temperatures | Cold-water solubility and swelling power increase | Similar water hydration properties to wet-milling |
Pasting property | High values of all pasting characteristics | Low pasting viscosity and pasting temperature | High pasting characteristics close to wet-milling |
Thermal property | Higher gelatinization enthalpy | Lower gelatinization enthalpy | Higher gelatinization enthalpy |
Effect on rice product a | ↑ Low cooking loss rate ↑ Strong tensile force ↑ Large specific volume | ↓ Reduction in hardness, whiteness, chewiness, and resilience of rice noodles ↓ High cooking loss | ↑ Less cooking loss ↑ Good texture properties ↑ Better transmittance |
Reference | Heo et al, et al, 2019 | Hasjim et al, | Tong et al, |
Rice bread | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Milling method | Evaluation indicator | Reference | |||||||||||||||||||
Hardness | Resistance (%) | Cohesiveness | Springiness (%) | Chewiness (g) | |||||||||||||||||
Colloid mill | 47.64 ± 1.87 g | 47.64 ± 1.87 g | 0.89 ± 0.01 | 163.83 ± 5.58 | 69.56 ± 2.12 | Qin et al, | |||||||||||||||
Buhler Basf single-screw extruder | 1.723 ± 0.693 N | 0.348 ± 0.018 | 0.656 ± 0.067 | Martínez et al, | |||||||||||||||||
Sweet dumpling | |||||||||||||||||||||
Milling method | Evaluation indicator | Reference | |||||||||||||||||||
Adhesiveness (g/s) | Hardness (g) | Springiness | Chewiness (g) | Cooking loss (%) | Transmittance (%) | ||||||||||||||||
Wet milling with grinder | -29.3 ± 5.5 | 281.5 ± 30.2 | 0.74 ± 0.02 | 137.3 ± 12.7 | 0.17 ± 0.01 | 84.3 ± 0.3 | Tong et al, | ||||||||||||||
Dry milling with cyclone mill | -90.5 ± 17.5 | 629.2 ± 86.4 | 0.71 ± 0.03 | 237.0 ± 33.0 | 0.30 ± 0.05 | 77.9 ± 1.3 | |||||||||||||||
Semidry milling at 33% moisture | -26.7 ± 5.6 | 295.8 ± 46.8 | 0.73 ± 0.03 | 142.8 ± 28.4 | 0.21 ± 0.01 | 84.0 ± 0.6 | |||||||||||||||
Dry and semi-dry mixed with cyclone mill | 382.7 ± 36.3 | 246.7 ± 17.5 | 2.47 ± 0.26 | Lin et al, | |||||||||||||||||
Wet milling | -10.15 ± 1.37 | 287.05 ± 8.27 | 0.446 ± 0.004 | 79.4 ± 0.6 | Zhang et al, | ||||||||||||||||
Dry milling with roller mill | -76.19 ± 3.54 | 304.78 ± 9.67 | 0.253 ± 0.001 | 69.2 ± 2.0 | |||||||||||||||||
Dry milling at low-temperature | -61.45 ± 1.68 | 446.85 ± 16.03 | 0.322 ± 0.002 | 66.5 ± 0.7 | |||||||||||||||||
Rice cake | |||||||||||||||||||||
Milling method | Evaluation indicator | Reference | |||||||||||||||||||
Adhesiveness | Hardness | Springiness | Chewiness | Cohesiveness | Resistance | ||||||||||||||||
Dry milling with pin mill | -137.0 ± 17.2 g/s | 6 657.6 ± 53.1 g | 0.47 ± 0.03 | 2 056.0 ± 57.0 g | 0.65 ± 0.02 | 0.29 ± 0.02 | Ren and Shin, | ||||||||||||||
Wet milling with cyclone mill | 4 744 ± 158 g | 0.47 ± 0.01 | 1 312 ± 100 g | 0.64 ± 0.03 | Kim et al, | ||||||||||||||||
Dry milling with air mill | -0.258 ± 69.81 N/s | 42.72 ± 11.32 N | 0.36 ± 0.02 | 9.29 ± 51.96 N | 0.59 ± 0.01 | 0.22 | Lee et al, | ||||||||||||||
Dry milling with pin mill | 510.87 ± 29.51 g | 0.78 ± 0.03 | 262.25 ± 25.59 g | 0.66 ± 0.01 | 0.25 ± 0.00 | Park et al, | |||||||||||||||
Dry milling with Bühler MLI 300B mill | 5.41 ± 0.71 N | 0.91 ± 0.01 | 0.58 ± 0.00 | de la Hera et al, | |||||||||||||||||
Instant rice noodle | |||||||||||||||||||||
Milling method and rice type | Evaluation indicator | Reference | |||||||||||||||||||
Adhesiveness (g/s) | Hardness | Springiness | Chewiness | Cooking loss (%) | Cohesiveness | ||||||||||||||||
Grain Test Mill; indica rice | 506 ± 17 g | 409 ± 11 g/s | 7.45 ± 0.28 | Liu et al, | |||||||||||||||||
High-speed grinder; indica rice | 5.07 ± 1.15 N | 0.47 ± 0.05 | 1.77 ± 0.51 N/s | 2.18 ± 0.12 | Chen et al, | ||||||||||||||||
Dry milling; indica rice | -33 ± 8 | 1 386 ± 91 g | 11.04 ± 0.47 | Sutheeves et al, | |||||||||||||||||
Wet milling; indica rice | -64.96 ± 1.74 | 174.68 ± 2.11 g | 0.88 ± 0.01 | Jia et al, | |||||||||||||||||
Wet milling; indica rice | -30 ± 2 | 692 ± 4 g | 0.96 ± 0.01 | 578 ± 1 g/s | 12.96 ± 0.08 | 0.87 ± 0.00 | Xue et al, |
Table 3. Rice flour-based products and indicators.
Rice bread | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Milling method | Evaluation indicator | Reference | |||||||||||||||||||
Hardness | Resistance (%) | Cohesiveness | Springiness (%) | Chewiness (g) | |||||||||||||||||
Colloid mill | 47.64 ± 1.87 g | 47.64 ± 1.87 g | 0.89 ± 0.01 | 163.83 ± 5.58 | 69.56 ± 2.12 | Qin et al, | |||||||||||||||
Buhler Basf single-screw extruder | 1.723 ± 0.693 N | 0.348 ± 0.018 | 0.656 ± 0.067 | Martínez et al, | |||||||||||||||||
Sweet dumpling | |||||||||||||||||||||
Milling method | Evaluation indicator | Reference | |||||||||||||||||||
Adhesiveness (g/s) | Hardness (g) | Springiness | Chewiness (g) | Cooking loss (%) | Transmittance (%) | ||||||||||||||||
Wet milling with grinder | -29.3 ± 5.5 | 281.5 ± 30.2 | 0.74 ± 0.02 | 137.3 ± 12.7 | 0.17 ± 0.01 | 84.3 ± 0.3 | Tong et al, | ||||||||||||||
Dry milling with cyclone mill | -90.5 ± 17.5 | 629.2 ± 86.4 | 0.71 ± 0.03 | 237.0 ± 33.0 | 0.30 ± 0.05 | 77.9 ± 1.3 | |||||||||||||||
Semidry milling at 33% moisture | -26.7 ± 5.6 | 295.8 ± 46.8 | 0.73 ± 0.03 | 142.8 ± 28.4 | 0.21 ± 0.01 | 84.0 ± 0.6 | |||||||||||||||
Dry and semi-dry mixed with cyclone mill | 382.7 ± 36.3 | 246.7 ± 17.5 | 2.47 ± 0.26 | Lin et al, | |||||||||||||||||
Wet milling | -10.15 ± 1.37 | 287.05 ± 8.27 | 0.446 ± 0.004 | 79.4 ± 0.6 | Zhang et al, | ||||||||||||||||
Dry milling with roller mill | -76.19 ± 3.54 | 304.78 ± 9.67 | 0.253 ± 0.001 | 69.2 ± 2.0 | |||||||||||||||||
Dry milling at low-temperature | -61.45 ± 1.68 | 446.85 ± 16.03 | 0.322 ± 0.002 | 66.5 ± 0.7 | |||||||||||||||||
Rice cake | |||||||||||||||||||||
Milling method | Evaluation indicator | Reference | |||||||||||||||||||
Adhesiveness | Hardness | Springiness | Chewiness | Cohesiveness | Resistance | ||||||||||||||||
Dry milling with pin mill | -137.0 ± 17.2 g/s | 6 657.6 ± 53.1 g | 0.47 ± 0.03 | 2 056.0 ± 57.0 g | 0.65 ± 0.02 | 0.29 ± 0.02 | Ren and Shin, | ||||||||||||||
Wet milling with cyclone mill | 4 744 ± 158 g | 0.47 ± 0.01 | 1 312 ± 100 g | 0.64 ± 0.03 | Kim et al, | ||||||||||||||||
Dry milling with air mill | -0.258 ± 69.81 N/s | 42.72 ± 11.32 N | 0.36 ± 0.02 | 9.29 ± 51.96 N | 0.59 ± 0.01 | 0.22 | Lee et al, | ||||||||||||||
Dry milling with pin mill | 510.87 ± 29.51 g | 0.78 ± 0.03 | 262.25 ± 25.59 g | 0.66 ± 0.01 | 0.25 ± 0.00 | Park et al, | |||||||||||||||
Dry milling with Bühler MLI 300B mill | 5.41 ± 0.71 N | 0.91 ± 0.01 | 0.58 ± 0.00 | de la Hera et al, | |||||||||||||||||
Instant rice noodle | |||||||||||||||||||||
Milling method and rice type | Evaluation indicator | Reference | |||||||||||||||||||
Adhesiveness (g/s) | Hardness | Springiness | Chewiness | Cooking loss (%) | Cohesiveness | ||||||||||||||||
Grain Test Mill; indica rice | 506 ± 17 g | 409 ± 11 g/s | 7.45 ± 0.28 | Liu et al, | |||||||||||||||||
High-speed grinder; indica rice | 5.07 ± 1.15 N | 0.47 ± 0.05 | 1.77 ± 0.51 N/s | 2.18 ± 0.12 | Chen et al, | ||||||||||||||||
Dry milling; indica rice | -33 ± 8 | 1 386 ± 91 g | 11.04 ± 0.47 | Sutheeves et al, | |||||||||||||||||
Wet milling; indica rice | -64.96 ± 1.74 | 174.68 ± 2.11 g | 0.88 ± 0.01 | Jia et al, | |||||||||||||||||
Wet milling; indica rice | -30 ± 2 | 692 ± 4 g | 0.96 ± 0.01 | 578 ± 1 g/s | 12.96 ± 0.08 | 0.87 ± 0.00 | Xue et al, |
[1] | Amagliani L, O’Regan J, Kelly A L, O’Mahony J A. 2017. The composition, extraction, functionality and applications of rice proteins: A review. Trends Food Sci Technol, 64: 1-12. |
[2] | Aoki N, Kataoka T, Nishiba Y. 2020. Crucial role of amylose in the rising of gluten- and additive-free rice bread. J Cereal Sci, 92: 102905. |
[3] | Araki E, Ikeda T M, Ashida K, Takata K, Yanaka M, Iida S. 2009. Effects of rice flour properties on specific loaf volume of one- loaf bread made from rice flour with wheat vital gluten. Food Sci Technol Res, 15(4): 439-448. |
[4] | Asmeda R, Noorlaila A, Norziah M H. 2016. Relationships of damaged starch granules and particle size distribution with pasting and thermal profiles of milled MR263 rice flour. Food Chem, 191: 45-51. |
[5] | Baldwin P M. 2001. Starch granule-associated proteins and polypeptides: A review. Starch-Starke, 53(10): 475-503. |
[6] | Balindong J L, Ward R M, Liu L, Rose T J, Pallas L A, Ovenden B W, Snell P J, Waters D L E. 2018. Rice grain protein composition influences instrumental measures of rice cooking and eating quality. J Cereal Sci, 79: 35-42. |
[7] | Barrera G N, Calderón-Domínguez G, Chanona-Pérez J, Gutiérrez- López G F, León A E, Ribotta P D. 2013. Evaluation of the mechanical damage on wheat starch granules by SEM, ESEM, AFM and texture image analysis. Carbohydr Polym, 98(2): 1449-1457. |
[8] | Bertoft E. 2017. Understanding starch structure: Recent progress. Agronomy, 7(3): 56. |
[9] | Briffaz A, Mestres C, Matencio F, Pons B, Dornier M. 2013. Modelling starch phase transitions and water uptake of rice kernels during cooking. J Cereal Sci, 58(3): 387-392. |
[10] | Cappelli A, Oliva N, Cini E. 2020. Stone milling versus roller milling: A systematic review of the effects on wheat flour quality, dough rheology, and bread characteristics. Trends Food Sci Technol, 97: 147-155. |
[11] | Cham S, Suwannaporn P. 2010. Effect of hydrothermal treatment of rice flour on various rice noodles quality. J Cereal Sci, 51(3): 284-291. |
[12] | Chen J, Cai Y Y, Lv Y G, Wang C. 2011. Effect of raw material granularity on quality of rice noodles. Cereal Feed Ind, (2): 27-29/32. (in Chinese with English abstract) |
[13] | Chen J, Yang S, Zhang M N, Shan C S, Chen Z G. 2022. Effects of potato starch on the characteristics, microstructures and quality attributes of indica rice flour and instant rice noodles. Int J Food Sci Technol, 57(4): 2285-2297. |
[14] | Chen J J, Lu S, Li C Y. 1999. Effects of milling on the physicochemical characteristics of waxy rice in Taiwan. Cereal Chem, 76(5): 796-799. |
[15] | Chen L, Tian Y Q, Tong Q Y, Zhang Z P, Jin Z Y. 2017. Effect of pullulan on the water distribution, microstructure and textural properties of rice starch gels during cold storage. Food Chem, 214: 702-709. |
[16] | Chiang P Y, Yeh A I. 2002. Effect of soaking on wet-milling of rice. J Cereal Sci, 35(1): 85-94. |
[17] | Chu Z, Yu J. 2020. An end-to-end model for rice yield prediction using deep learning fusion. Comput Electron Agric, 174: 105471. |
[18] | Dalbhagat C G, Mahato D K, Mishra H N. 2019. Effect of extrusion processing on physicochemical, functional and nutritional characteristics of rice and rice-based products: A review. Trends Food Sci Technol, 85: 226-240. |
[19] | de la Hera E, Rosell C M, Gomez M. 2014. Effect of water content and flour particle size on gluten-free bread quality and digestibility. Food Chem, 151: 526-531. |
[20] | Dhital S, Brennan C, Gidley M J. 2019. Location and interactions of starches in planta: Effects on food and nutritional functionality. Trends Food Sci Technol, 93: 158-166. |
[21] | Edner C, Li J, Albrecht T, Mahlow S, Hejazi M, Hussain H, Kaplan F, Guy C, Smith S M, Steup M, Ritte G. 2007. Glucan, water dikinase activity stimulates breakdown of starch granules by plastidial β-amylases. Plant Physiol, 145(1): 17-28. |
[22] | Fu B X. 2008. Asian noodles: History, classification, raw materials, and processing. Food Res Int, 41(9): 888-902. |
[23] | Geng D H, Zhou S M, Wang L L, Zhou X R, Liu L, Lin Z X, Qin W Y, Liu L Y, Tong L T. 2020. Effects of slight milling combined with cellulase enzymatic treatment on the textural and nutritional properties of brown rice noodles. LWT, 128: 109520. |
[24] | Geng D H, Lin Z X, Liu L, Qin W Y, Wang A X, Wang F Z, Tong L T. 2021. Effects of ultrasound-assisted cellulase enzymatic treatment on the textural properties and in vitro starch digestibility of brown rice noodles. LWT, 146: 111543. |
[25] | Ghosh S, Datta K, Datta S K. 2019. Rice vitamins. In: Bao J S. Rice Chemistry and Technolggy. 4th edn. St. Paul, MN, USA: AACC International Press: 195-220. |
[26] | Hasjim J, Li E P, Dhital S. 2012. Milling of rice grains: The roles of starch structures in the solubility and swelling properties of rice flour. Starch-Starke, 64(8): 631-645. |
[27] | Hasjim J, Li E P, Dhital S. 2013. Milling of rice grains: Effects of starch/flour structures on gelatinization and pasting properties. Carbohydr Polym, 92(1): 682-690. |
[28] | He Y, Wang A X, Qin W Y, Chen Z Y, Xi H H, Nie M Z, Liu L Y, Wang L L, Sun J, Bai Y J, Huang Y T, Sun P P, Wang F Z, Tong L T. 2023. Effects of semidry-milling on the properties of highland barley flour and the quality of highland barley bread. J Sci Food Agric, 103(10): 5077-5086. |
[29] | Heo S, Lee S M, Shim J H, Yoo S H, Lee S. 2013. Effect of dry- and wet-milled rice flours on the quality attributes of gluten-free dough and noodles. J Food Eng, 116(1): 213-217. |
[30] | Hong S, Kim D. 2016. Interaction between bound water molecules and local protein structures: A statistical analysis of the hydrogen bond structures around bound water molecules. Proteins, 84(1): 43-51. |
[31] | Horigane A K, Suzuki K, Yoshida M. 2014. Moisture distribution in rice grains used for sake brewing analyzed by magnetic resonance imaging. J Cereal Sci, 60(1): 193-201. |
[32] | Hormdok R, Noomhorm A. 2007. Hydrothermal treatments of rice starch for improvement of rice noodle quality. LWT Food Sci Technol, 40(10): 1723-1731. |
[33] | Jia Y Z, Zhang Z, Li M, Ji N, Qin Y, Wang Y F, Shi R, Wang T, Liu X, Sun Q J. 2022. The effect of hydroxypropyl starch on the improvement of mechanical and cooking properties of rice noodles. Food Res Int, 162: 111922. |
[34] | Kadan R S, Bryant R J, Miller J A. 2008. Effects of milling on functional properties of rice flour. J Food Sci, 73(4): E151-E154. |
[35] | Khatun A, Waters D L E, Liu L. 2020. The impact of rice protein on in vitro rice starch digestibility. Food Hydrocoll, 109: 106072. |
[36] | Kihlberg I, Johansson L, Kohler A, Risvik E. 2004. Sensory qualities of whole wheat pan bread: Influence of farming system, milling and baking technique. J Cereal Sci, 39(1): 67-84. |
[37] | Kim J M, Shin M. 2014. Effects of particle size distributions of rice flour on the quality of gluten-free rice cupcakes. LWT Food Sci Technol, 59(1): 526-532. |
[38] | Kim M J, Oh S G, Chung H J. 2017. Impact of heat-moisture treatment applied to brown rice flour on the quality and digestibility characteristics of Korean rice cake. Food Sci Biotechnol, 26(6): 1579-1586. |
[39] | Kim R Y, Kim C S, Kim H I. 2009. Physicochemical properties of non-waxy rice flour affected by grinding methods and steeping times. J Korean Soc Food Sci Nutr, 38(8): 1076-1083. |
[40] | Kim Y, Kee J I, Lee S, Yoo S H. 2014. Quality improvement of rice noodle restructured with rice protein isolate and transglutaminase. Food Chem, 145: 409-416. |
[41] | Kumar C S, Malleshi N G, Bhattacharya S. 2008. A comparison of selected quality attributes of flours: Effects of dry and wet grinding methods. Int J Food Prop, 11(4): 845-857. |
[42] | Lee I Y, Park Y S, Shin W S. 2021. The particle size of rice flour greatly affects the structural, textural and masticatory properties of steamed rice cake (Baekseolgi). Food Sci Biotechnol, 30(13): 1657-1666. |
[43] | Lee Y T, Shim M J, Goh H K, Mok C, Puligundla P. 2019. Effect of jet milling on the physicochemical properties, pasting properties, and in vitro starch digestibility of germinated brown rice flour. Food Chem, 282: 164-168. |
[44] | Leewatchararongjaroen J, Anuntagool J. 2016. Effects of dry- milling and wet-milling on chemical, physical and gelatinization properties of rice flour. Rice Sci, 23(5): 274-281. |
[45] | Li C M, You Y X, Chen D, Gu Z B, Zhang Y Z, Holler T P, Ban X F, Hong Y, Cheng L, Li Z F. 2021. A systematic review of rice noodles: Raw material, processing method and quality improvement. Trends Food Sci Technol, 107: 389-400. |
[46] | Li E P, Dhital S, Hasjim J. 2014. Effects of grain milling on starch structures and flour/starch properties. Starch-Starke, 66(1/2): 15-27. |
[47] | Li J R, Hsieh Y H P. 2004. Traditional Chinese food technology and cuisine. Asia Pac J Clin Nutr, 13(2): 147-155. |
[48] | Li Z N, Wang L, Chen Z X, Yu Q S, Feng W. 2018. Impact of protein content on processing and texture properties of waxy rice flour and glutinous dumpling. J Cereal Sci, 81: 30-36. |
[49] | Lin Z X, Geng D H, Qin W Y, Huang J R, Wang L L, Liu L Y, Tong L T. 2021. Effects of damaged starch on glutinous rice flour properties and sweet dumpling qualities. Int J Biol Macromol, 181: 390-397. |
[50] | Lin Z X, Huang J R, Kawakami K, Liu H J, Fujishima T, Qin W Y, Geng D H, Wang L L, Liu L Y, Wang F Z, Tong L T. 2022. Effects of particle size of glutinous rice flour on the quality attributes of sweet dumplings. J Food Process Preserv, 46: e16388. |
[51] | Liu G. 2017. Hammer milling and jet milling fundamentals. Chem Eng Prog, 113: 48-54. |
[52] | Liu T N, Wang K, Xue W, Wang L, Zhang C N, Zhang X X, Chen Z X. 2021. In vitro starch digestibility, edible quality and microstructure of instant rice noodles enriched with rice bran insoluble dietary fiber. LWT, 142: 111008. |
[53] | Lu Z H, Collado L S. 2019. Rice noodles. In: Bao J S. Rice Chemistry and Technolggy. 4th edn. St. Paul, MN, USA: AACC International Press: 557-588. |
[54] | Martínez M M, Oliete B, Román L, Gómez M. 2014. Influence of the addition of extruded flours on rice bread quality. J Food Qual, 37(2): 83-94. |
[55] | Mestres C, Colonna P, Buleon A. 1988. Characteristics of starch networks within rice flour noodles and mungbean starch vermicelli. J Food Sci, 53(6): 1809-1812. |
[56] | Murakami S, Kuramochi M, Koda T, Nishio T, Nishioka A. 2016. Relationship between rice flour particle sizes and expansion ratio of pure rice bread. J Appl Glycosci, 63(1): 19-22. |
[57] | Ngamnikom P, Songsermpong S. 2011. The effects of freeze, dry, and wet grinding processes on rice flour properties and their energy consumption. J Food Eng, 104(4): 632-638. |
[58] | Park S J, Ha K Y, Shin M. 2012. Properties and qualities of rice flours and gluten-free cupcakes made with higher-yield rice varieties in Korea. Food Sci Biotechnol, 21(2): 365-372. |
[59] | Perez J H, Tanaka F, Uchino T. 2011. Comparative 3D simulation on water absorption and hygroscopic swelling in japonica rice grains under various isothermal soaking conditions. Food Res Int, 44(9): 2615-2623. |
[60] | Qin W Y, Lin Z X, Wang A X, Chen Z Y, He Y, Wang L L, Liu L Y, Wang F Z, Tong L T. 2021. Influence of particle size on the properties of rice flour and quality of gluten-free rice bread. LWT, 151: 112236. |
[61] | Rachtanapun P, Tangnonthaphat T. 2011. Effects of packaging types and storage temperatures on the shelf life of fresh rice noodles under vacuum conditions. Chiang Mai J Sci, 38(4): 579-589. |
[62] | Raiteri A, Granito A, Giamperoli A, Catenaro T, Negrini G, Tovoli F. 2022. Current guidelines for the management of celiac disease: A systematic review with comparative analysis. World J Gastroenterol, 28(1): 154-175. |
[63] | Ren C S, Shin M. 2013. Effects of cross-linked resistant rice starch on the quality of Korean traditional rice cake. Food Sci Biotechnol, 22(3): 697-704. |
[64] | Ren M Y, Tong L T, Li X H, Xie D, Wang L L, Zhou X R, Zhong K, Liu L Y, Zhou S M, Yi C P. 2018. Effects of hot air treatment on the quality attributes of semidry-milled Indica rice. J Cereal Sci, 79: 93-97. |
[65] | Sakač M, Torbica A, Sedej I, Hadnađev M. 2011. Influence of breadmaking on antioxidant capacity of gluten free breads based on rice and buckwheat flours. Food Res Int, 44(9): 2806-2813. |
[66] | Sharma P, Singh V, Subramanian R. 2013. Pasting, swelling, and solubility characteristics of rice batter prepared from different wet grinding systems. Starch-Starke, 65(5/6): 374-381. |
[67] | Shen Y, Zhang N, Xu Y R, Huang J J, Yuan M A, Wu D X, Shu X L. 2019. Physicochemical properties of hydroxypropylated and cross-linked rice starches differential in amylose content. Int J Biol Macromol, 128: 775-781. |
[68] | Singh Y, Prasad K. 2016. Effect of grinding methods for flour characterisation of Pusa 1121 basmati rice brokens. J Food Meas Charact, 10(1): 80-87. |
[69] | Solanki S N, Subramanian R, Singh V, Ali S Z, Manohar B. 2005. Scope of colloid mill for industrial wet grinding for batter preparation of some Indian snack foods. J Food Eng, 69(1): 23-30. |
[70] | Spigno G, De Faveri D M. 2004. Gelatinization kinetics of rice starch studied by non-isothermal calorimetric technique: Influence of extraction method, water concentration and heating rate. J Food Eng, 62(4): 337-344. |
[71] | Suksomboon A, Naivikul O. 2006. Effect of dry- and wet-milling processes on chemical, physicochemical properties and starch molecular structures of rice starches. Kasetsart J: Nat Sci, 40(Suppl.): 125-134. |
[72] | Sutheeves S, Chai-Uea P, Thirathumthavorn D. 2020. Impact of hydrocolloids on the physico-chemical and sensory properties of gluten-free instant noodles from rice flour and mung bean starch. Ital J Food Sci, 32(2): 438-449. |
[73] | Syahariza Z A, Sar S, Hasjim J, Tizzotti M J, Gilbert R G. 2013. The importance of amylose and amylopectin fine structures for starch digestibility in cooked rice grains. Food Chem, 136(2): 742-749. |
[74] | Tong L T, Gao X X, Lin L Z, Liu Y J, Zhong K, Liu L Y, Zhou X R, Wang L, Zhou S M. 2015. Effects of semidry flour milling on the quality attributes of rice flour and rice noodles in China. J Cereal Sci, 62: 45-49. |
[75] | Tong L T, Gao X X, Zhou X R, Zhong K, Liu L Y, Wang L L, Zhou S M. 2016. Milling of glutinous rice by semidry method to produce sweet dumplings. J Food Process Eng, 39(4): 330-334. |
[76] | Tong L T, Zhu R Z, Zhou X R, Zhong K, Wang L L, Liu L Y, Hu X Z, Zhou S M. 2017. Soaking time of rice in semidry flour milling was shortened by increasing the grains cracks. J Cereal Sci, 74: 121-126. |
[77] | Torbica A, Hadnađev M, Dapčević Hadnađev T. 2012. Rice and buckwheat flour characterisation and its relation to cookie quality. Food Res Int, 48(1): 277-283. |
[78] | Tran T T B, Shelat K J, Tang D, Li E P, Gilbert R G, Hasjim J. 2011. Milling of rice grains. The degradation on three structural levels of starch in rice flour can be independently controlled during grinding. J Agric Food Chem, 59(8): 3964-3973. |
[79] | Tian Y N, Ding L, Liu Y H, Shi L, Wang T, Wang X Q, Dang B, Li L L, Gou G Y, Wu G Y, Wang F Z, Wang L L. 2023. The effect of different milling methods on the physicochemical and in vitro digestibility of rice flour. Foods, 12(16): 3099. |
[80] | Wang Q F, Li L M, Zheng X L. 2020. A review of milling damaged starch: Generation, measurement, functionality and its effect on starch-based food systems. Food Chem, 315: 126267. |
[81] | Wang Y, Wang D J, Shi P H, Omasa K. 2014. Estimating rice chlorophyll content and leaf nitrogen concentration with a digital still color camera under natural light. Plant Methods, 10(1): 36. |
[82] | Wu T, Wang L L, Li Y, Qian H F, Liu L Y, Tong L T, Zhou X R, Wang L, Zhou S M. 2019. Effect of milling methods on the properties of rice flour and gluten-free rice bread. LWT, 108: 137-144. |
[83] | Xue W, Zhang C N, Wang K, Guang M, Chen Z X, Lu H, Feng X Y, Xu Z C, Wang L. 2021. Understanding the deterioration of fresh brown rice noodles from the macro and micro perspectives. Food Chem, 342: 128321. |
[84] | Yano H, Koda T, Fujita N, Nishioka A. 2020. Effect of amylose content in rice flour on batter rheology and bread baking quality. J Food Process Preserv, 44(6): e14462. |
[85] | Zhang H, Wu F F, Xu D, Xu X M. 2021. Effects of milling methods on the properties of glutinous rice flour and sweet dumplings. J Food Sci Technol, 58(5): 1848-1857. |
[86] | Zhang J Y, Kong H C, Ban X F, Li C M, Gu Z B, Li Z F. 2022. Rice noodle quality is structurally driven by the synergistic effect between amylose chain length and amylopectin unit-chain ratio. Carbohydr Polym, 295: 119834. |
[87] | Zhang L, Lv J H, Li X J, Jiang P. 2015. Study on the effect of rice moisture content on its glass-transition temperature. Cereal Food Ind, 22(5): 93-96. (in Chinese with English abstract) |
[1] | Leewatchararongjaroen Jitranut, Anuntagool Jirarat. Effects of Dry-Milling and Wet-Milling on Chemical, Physical and Gelatinization Properties of Rice Flour [J]. Rice Science, 2016, 23(5): 274-281. |
[2] | Subajiny VELUPPILLAI, Ketheeswary NITHYANANTHARAJAH, Seevaratnam VASANTHARUBA, Sandrasegarampillai BALAKUMAR, Vasanthy ARASARATNAM. Optimization of Bread Preparation from Wheat Flour and Malted Rice Flour [J]. RICE SCIENCE, 2010, 17(1): 51-59 . |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||