| [1] |
Amanullah, Inamullah, Alkahtani J, Elshikh M S, Alwahibi M S, Muhammad A, Imran, Khalid S. 2020. Phosphorus and zinc fertilization improve productivity and profitability of rice cultivars under rice-wheat system. Agronomy, 10(8): 1085.
|
| [2] |
Azeem M, Hassan T U, Tahir M I, Ali A, Jeyasundar P G S A, Hussain Q, Bashir S, Mehmood S, Zhang Z Q. 2021. Tea leaves biochar as a carrier of Bacillus cereus improves the soil function and crop productivity. Appl Soil Ecol, 157: 103732.
|
| [3] |
Bi Q F, Li K J, Zheng B X, Liu X P, Li H Z, Jin B J, Ding K, Yang X R, Lin X Y, Zhu Y G. 2020. Partial replacement of inorganic phosphorus (P) by organic manure reshapes phosphate mobilizing bacterial community and promotes P bioavailability in a paddy soil. Sci Total Environ, 703: 134977.
|
| [4] |
Billah M, Khan M, Bano A, Hassan T U, Munir A, Gurmani A R. 2019. Phosphorus and phosphate solubilizing bacteria: Keys for sustainable agriculture. Geomicrobiol J, 36(10): 904-916.
|
| [5] |
Cao N, Zhi M L, Zhao W Q, Pang J Y, Hu W, Zhou Z G, Meng Y L. 2022. Straw retention combined with phosphorus fertilizer promotes soil phosphorus availability by enhancing soil P-related enzymes and the abundance of phoC and phoD genes. Soil Tillage Res, 220: 105390.
|
| [6] |
Ding L J, Su J Q, Sun G X, Wu J S, Wei W X. 2018. Increased microbial functional diversity under long-term organic and integrated fertilization in a paddy soil. Appl Microbiol Biotechnol, 102(4): 1969-1982.
|
| [7] |
Ding Y, Liu Y G, Liu S B, Li Z W, Tan X F, Huang X X, Zeng G M, Zhou Lu, Zheng B H. 2016. Biochar to improve soil fertility: A review. Agron Sustain Dev, 36: 1-18.
|
| [8] |
Gul S, Whalen J K. 2016. Biochemical cycling of nitrogen and phosphorus in biochar-amended soils. Soil Biol Biochem, 103: 1-15.
|
| [9] |
Gorovtsov A V, Minkina T M, Mandzhieva S S, Perelomov L V, Soja G, Zamulina I V, Rajput V D, Sushkova S N, Mohan D, Yao J. 2020. The mechanisms of biochar interactions with microorganisms in soil. Environ Geochem Health, 42(8): 2495-2518.
|
| [10] |
Hinsinger P. 2001. Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: A review. Plant Soil, 237(2): 173-195.
|
| [11] |
Husna N, Budianta D, Munandar, Napoleon A. 2019. Evaluation of several biochar types as inoculant carrier for indigenous phosphate solubilizing microoorganism from acid sulphate soil. J Ecol Eng, 20(6): 1-8.
|
| [12] |
Jenkins J R, Viger M, Arnold E C, Harris Z M, Ventura M, Miglietta F, Girardin C, Edwards R J, Rumpel C, Fornasier F, Zavalloni C, Tonon G, Alberti G, Taylor G. 2017. Biochar alters the soil microbiome and soil function: Results of next-generation amplicon sequencing across Europe. GCB Bioenergy, 9(3): 591-612.
|
| [13] |
Jones D L, Magthab E A, Gleeson D B, Hill P W, Sánchez- Rodríguez A R, Roberts P, Ge T, Murphy D V. 2018. Microbial competition for nitrogen and carbon is as intense in the subsoil as in the topsoil. Soil Biol Biochem, 117: 72-82.
|
| [14] |
Khan M S, Zaidi A, Wani P A. 2007. Role of phosphate solubilizing microorganisms in sustainable agriculture: A review. Agron Sustain Dev, 27(1): 29-43.
|
| [15] |
Khan N, Clark I, Sánchez-Monedero M A, Shea S, Meier S, Qi F J, Kookana R S, Bolan N. 2016. Physical and chemical properties of biochars co-composted with biowastes and incubated with a chicken litter compost. Chemosphere, 142: 14-23.
|
| [16] |
Kouas S, Labidi N, Debez A, Abdelly C. 2005. Effect of P on nodule formation and N fixation in bean. Agron Sustain Dev, 25(3): 389-393.
|
| [17] |
Liang B, Lehmann J, Solomon D, Kinyangi J, Grossman J, O’Neill B, Skjemstad J O, Thies J, Luizão F J, Petersen J, Neves E G. 2006. Black carbon increases cation exchange capacity in soils. Soil Sci Soc Am J, 70(5): 1719-1730.
|
| [18] |
Lu J K, Liu S N, Chen W F, Meng J. 2023. Study on the mechanism of biochar affecting the effectiveness of phosphate solubilizing bacteria. World J Microbiol Biotechnol, 39(3): 87.
|
| [19] |
Maher F M, Thorrold B S. 1989. Accumulation of phosphorus fractions in yellow-brown pumice soils with development. N Z J Agric Res, 32(1): 53-62.
|
| [20] |
Masto R E, Kumar S, Rout T K, Sarkar P, George J, Ram L C. 2013. Biochar from water hyacinth (Eichornia crassipes) and its impact on soil biological activity. Catena, 111: 64-71.
|
| [21] |
Sakurai M, Wasaki J, Tomizawa Y, Shinano T, Osaki M. 2008. Analysis of bacterial communities on alkaline phosphatase genes in soil supplied with organic matter. Soil Sci Plant Nutr, 54(1): 62-71.
|
| [22] |
Saleque M A, Naher U A, Islam A, Pathan A B M B U, Hossain A T M S, Meisner C A. 2004. Inorganic and organic phosphorus fertilizer effects on the phosphorus fractionation in wetland rice soils. Soil Sci Soc Am J, 68(5): 1635-1644.
|
| [23] |
Sharma S B, Sayyed R Z, Trivedi M H, Gobi T A. 2013. Phosphate solubilizing microbes: Sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus, 2(1): 587.
|
| [24] |
Wang L, Wang J, Yuan J, Tang Z H, Wang J D, Zhang Y C. 2023. Long-term organic fertilization strengthens the soil phosphorus cycle and phosphorus availability by regulating the pqqC- and phoD-harboring bacterial communities. Microb Ecol, 86(4): 2716-2732.
|
| [25] |
Wang Y M, Peng S, Hua Q Q, Qiu C W, Wu P, Liu X L, Lin X G. 2021. The long-term effects of using phosphate-solubilizing bacteria and photosynthetic bacteria as biofertilizers on peanut yield and soil bacteria community. Front Microbiol, 12: 693535.
|
| [26] |
Zheng B X, Ding K, Yang X R, Wadaan M A M, Hozzein W N, Peñuelas J, Zhu Y G. 2019. Straw biochar increases the abundance of inorganic phosphate solubilizing bacterial community for better rape (Brassica napus) growth and phosphate uptake. Sci Total Environ, 647: 1113-1120.
|