[1] |
Arima K, Imanaka H, Kousaka M, et al. 1964. Pyrrolnitrin, a new antibiotic substance, produced by Pseudomonas. Agric Biol Chem, 28(8): 575-576.
|
[2] |
Biniarz P, Coutte F, Gancel F, et al. 2018. High-throughput optimization of medium components and culture conditions for the efficient production of a lipopeptide pseudofactin by Pseudomonas fluorescens BD5. Microb Cell Fact, 17(1): 121.
|
[3] |
Blin K, Shaw S, Medema M H, et al. 2024. The antiSMASH database version 4:Additional genomes and BGCs, new sequence-based searches and more. Nucleic Acids Res, 52: D586-D589.
|
[4] |
Chernin L, Brandis A, Ismailov Z, et al. 1996. Pyrrolnitrin production by an Enterobacter agglomerans strain with a broad spectrum of antagonistic activity towards fungal and bacterial phytopathogens. Curr Microbiol, 32(4): 208-212.
|
[5] |
El-Banna N, Winkelmann G. 1998. Pyrrolnitrin from Burkholderia cepacia: Antibiotic activity against fungi and novel activities against streptomycetes. J Appl Microbiol, 85(1): 69-78.
|
[6] |
Euzéby J P. 1997. List of bacterial names with standing in nomenclature: A folder available on the Internet. Int J Syst Bacteriol, 47(2): 590-592.
|
[7] |
Gross H, Loper J E. 2009. Genomics of secondary metabolite production by Pseudomonas spp. Nat Prod Rep, 26(11): 1408-1446.
|
[8] |
Hammer P E, Hill D S, Lam S T, et al. 1997. Four genes from Pseudomonas fluorescens that encode the biosynthesis of pyrrolnitrin. Appl Environ Microbiol, 63(6): 2147-2154.
|
[9] |
Höfte M, Altier N. 2010. Fluorescent pseudomonads as biocontrol agents for sustainable agricultural systems. Res Microbiol, 161(6): 464-471.
|
[10] |
Janek T, Łukaszewicz M, Rezanka T, et al. 2010. Isolation and characterization of two new lipopeptide biosurfactants produced by Pseudomonas fluorescens BD5 isolated from water from the Arctic Archipelago of Svalbard. Bioresour Technol, 101(15): 6118-6123.
|
[11] |
Ke J, Shen J M, Wang H R, et al. 2024. Identification of an endogenous strong promoter in Burkholderia sp. JP2-270. Microorganisms, 12(9): 1818.
|
[12] |
Kwak Y, Shin J H. 2015. Complete genome sequence of Burkholderia pyrrocinia 2327(T), the first industrial bacterium which produced antifungal antibiotic pyrrolnitrin. J Biotechnol, 211: 3-4.
|
[13] |
Lee I, Kim Y O, Park S C, et al. 2016. OrthoANI: An improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol, 66(2): 1100-1103.
|
[14] |
Li D Y, Li S, Wei S H, et al. 2021. Strategies to manage rice sheath blight: Lessons from interactions between rice and Rhizoctonia solani. Rice, 14(1): 21.
|
[15] |
Lu C Y, Zhang X J, Jiang M, et al. 2016. Enhanced salinomycin production by adjusting the supply of polyketide extender units in Streptomyces albus. Metab Eng, 35: 129-137.
|
[16] |
Parry R, Nishino S, Spain J. 2011. Naturally-occurring nitro compounds. Nat Prod Rep, 28(1): 152-167.
|
[17] |
Pawar S, Chaudhari A, Prabha R, et al. 2019. Microbial pyrrolnitrin: Natural metabolite with immense practical utility. Biomolecules, 9(9): 443.
|
[18] |
Roberts D P, McKenna L F, Lakshman D K, et al. 2007. Suppression of damping-off of cucumber caused by Pythium ultimum with live cells and extracts of Serratia marcescens N4-5. Soil Biol Biochem, 39(9): 2275-2288.
|
[19] |
Senapati M, Tiwari A, Sharma N, et al. 2022. Rhizoctonia solani Kühn pathophysiology: Status and prospects of sheath blight disease management in rice. Front Plant Sci, 13: 881116.
|
[20] |
Singh P, Mazumdar P, Harikrishna J A, et al. 2019. Sheath blight of rice: A review and identification of priorities for future research. Planta, 250(5): 1387-1407.
|
[21] |
Sivolodskiĭ E P. 2012. The synthetic growth medium Kings BS for detection of synthesis of fluorescein by bacteria Pseudomonas. Klin Lab Diagn, (10): 60-62.
|
[22] |
Stringlis I A, Zhang H, Pieterse C M J, et al. 2018. Microbial small molecules-weapons of plant subversion. Nat Prod Rep, 35(5): 410-433.
|
[23] |
Sun J, Yang X Q, Wan J L, et al. 2023. The antifungal metabolites isolated from maize endophytic fungus Fusarium sp. induced by OSMAC strategy. Fitoterapia, 171: 105710.
|
[24] |
Zhao M, Liu X X, Wan J, et al. 2024. Host-induced gene silencing of eeffector AGLIP1 enhanced resistance of rice to Rhizoctonia solani AG1-IA. Rice Sci, 31(4): 463-474.
|