Rice Science
  • 首页
  • 期刊介绍
  • 编委会
  • 学术伦理
  • 投稿指南
  • 期刊订阅
  • 联系我们
  • English

Rice Science ›› 2024, Vol. 31 ›› Issue (3): 241-244.DOI: 10.1016/j.rsci.2023.11.010

• • 上一篇    下一篇

  • 收稿日期:2023-09-09 接受日期:2023-11-16 出版日期:2024-05-28 发布日期:2024-06-04

RichHTML

PDF

补充材料

1

可视化

0
  • 1. supplemental data.pdf(469KB)

摘要/Abstract

引用本文

. [J]. Rice Science, 2024, 31(3): 241-244.

使用本文

推荐

导出引用管理器 EndNote|Ris|BibTeX

链接本文: http://www.ricesci.org/CN/10.1016/j.rsci.2023.11.010

               http://www.ricesci.org/CN/Y2024/V31/I3/241

图/表 1

Fig. 1. Phenotype, cadmium (Cd) accumulation, root cell wall Cd fixation capacity, nitric oxide (NO) accumulation, and effect of NO inhibitor cPTIO on Cd accumulation of Tianyouhuazhan (TYHZ) and Xiushui 14 (XS14) plants. A, Soil Cd content between two rice cultivars in field experiments in 2021 and 2022. B, Rice grain Cd content between two rice cultivars in field experiments in 2021 and 2022. C, Growth performances of two rice cultivars after treated with (+Cd) or without (-Cd) 1 μmol/L Cd. Scale bar, 5 cm. D, Root elongation of two rice cultivars with or without 1 μmol/L Cd treatments. E and F, Root (E) and shoot (F) biomass of two rice cultivars with or without 1 μmol/L Cd treatments. G and H, Accumulation of Cd in roots (G) and shoots (H) of two rice cultivars treated with or without 1 μmol/L Cd. I, The ratio of Cd accumulation in the shoots to the roots of two rice cultivars when treated with or without 1 μmol Cd. J, The amount of Cd in the xylem of two rice cultivars treated with or without 1 μmol/L Cd. K‒M, Cd concentrations in the root cell walls (K), hemicellulose (L), and pectin (M). N‒P, Cd concentrations in the shoot cell walls (N), hemicellulose (O), and pectin (P). Q, Production of NO after subjected to either 1 μmol/L Cd or Cd-free treatment. Scale bars, 1 mm. R, Relative fluorescence intensity (percentage of -Cd production) of NO production. S and T, Cd content in roots (S) and shoots (T) after two rice cultivar seedlings were given a 1 μmol/L Cd treatment with or without cPTIO. Data are Mean ± SD (n = 2‒32 in A and B, 5 in D to F, 3 in G to J, and 4 in K to P, and R to T). The lowercase letters and asterisks above the bars indicate significant differences at P < 0.05.

Fig. 1. Phenotype, cadmium (Cd) accumulation, root cell wall Cd fixation capacity, nitric oxide (NO) accumulation, and effect of NO inhibitor cPTIO on Cd accumulation of Tianyouhuazhan (TYHZ) and Xiushui 14 (XS14) plants. A, Soil Cd content between two rice cultivars in field experiments in 2021 and 2022. B, Rice grain Cd content between two rice cultivars in field experiments in 2021 and 2022. C, Growth performances of two rice cultivars after treated with (+Cd) or without (-Cd) 1 μmol/L Cd. Scale bar, 5 cm. D, Root elongation of two rice cultivars with or without 1 μmol/L Cd treatments. E and F, Root (E) and shoot (F) biomass of two rice cultivars with or without 1 μmol/L Cd treatments. G and H, Accumulation of Cd in roots (G) and shoots (H) of two rice cultivars treated with or without 1 μmol/L Cd. I, The ratio of Cd accumulation in the shoots to the roots of two rice cultivars when treated with or without 1 μmol Cd. J, The amount of Cd in the xylem of two rice cultivars treated with or without 1 μmol/L Cd. K‒M, Cd concentrations in the root cell walls (K), hemicellulose (L), and pectin (M). N‒P, Cd concentrations in the shoot cell walls (N), hemicellulose (O), and pectin (P). Q, Production of NO after subjected to either 1 μmol/L Cd or Cd-free treatment. Scale bars, 1 mm. R, Relative fluorescence intensity (percentage of -Cd production) of NO production. S and T, Cd content in roots (S) and shoots (T) after two rice cultivar seedlings were given a 1 μmol/L Cd treatment with or without cPTIO. Data are Mean ± SD (n = 2‒32 in A and B, 5 in D to F, 3 in G to J, and 4 in K to P, and R to T). The lowercase letters and asterisks above the bars indicate significant differences at P < 0.05.

参考文献 17

[1] Chang J D, Huang S, Yamaji N, Zhang W W, Ma J F, Zhao F J. 2020. OsNRAMP1 transporter contributes to cadmium and manganese uptake in rice. Plant Cell Environ, 43: 2476-2491.
[2] Fu S, Lu Y S, Zhang X, Yang G Z, Chao D, Wang Z G, Shi M X, Chen J G, Chao D Y, Li R B, Ma J F, Xia J X. 2019. The ABC transporter ABCG36 is required for cadmium tolerance in rice. J Exp Bot, 70(20): 5909-5918.
[3] Hao X H, Zeng M, Wang J, Zeng Z W, Dai J L, Xie Z J, Yang Y Z, Tian L F, Chen L B, Li D P. 2018. A node-expressed transporter OsCCX2 is involved in grain cadmium accumulation of rice. Front Plant Sci, 9: 476.
[4] Huang J, Jing H K, Zhang Y, Chen S Y, Wang H Y, Cao Y, Zhang Z, Lu Y H, Zheng Q S, Shen R F, Zhu X F. 2023. Melatonin reduces cadmium accumulation via mediating the nitric oxide accumulation and increasing the cell wall fixation capacity of cadmium in rice. J Hazard Mater, 445: 130529.
[5] Liu Y S, Tao Y, Yang X Z, Liu Y N, Shen R F, Zhu X F. 2022. Gibberellic acid alleviates cadmium toxicity in rice by regulating NO accumulation and cell wall fixation capacity of cadmium. J Hazard Mater, 439: 129597.
[6] Luo J S, Huang J, Zeng D L, Peng J S, Zhang G B, Ma H L, Guan Y, Yi H Y, Fu Y L, Han B, Lin H X, Qian Q, Gong J M. 2018. A defensin-like protein drives cadmium efflux and allocation in rice. Nat Commun, 9(1): 645.
[7] Nakanishi H, Ogawa I, Ishimaru Y, Mori S, Nishizawa N K. 2006. Iron deficiency enhances cadmium uptake and translocation mediated by the Fe2+ transporters OsIRT1 and OsIRT2 in rice. Soil Sci Plant Nutr, 52(4): 464-469.
[8] Rikans L E, Yamano T. 2000. Mechanisms of cadmium-mediated acute hepatotoxicity. J Biochem Mol Toxicol, 14(2): 110-117.
[9] Song Y, Wang Y, Mao W F, Sui H X, Yong L, Yang D J, Jiang D G, Zhang L, Gong Y Y. 2017. Dietary cadmium exposure assessment among the Chinese population. PLoS One, 12(5): e0177978.
[10] Takahashi R, Ishimaru Y, Shimo H, Ogo Y, Senoura T, Nishizawa N K, Nakanishi H. 2012. The OsHMA2 transporter is involved in root-to-shoot translocation of Zn and Cd in rice. Plant Cell Environ, 35(11): 1948-1957.
[11] Tan L T, Zhu Y X, Fan T, Peng C, Wang J R, Sun L, Chen C Y. 2019. OsZIP7 functions in xylem loading in roots and inter- vascular transfer in nodes to deliver Zn/Cd to grain in rice. Biochem Biophys Res Commun, 512(1): 112-118.
[12] Tan L T, Qu M M, Zhu Y X, Peng C, Wang J R, Gao D Y, Chen C Y. 2020. ZINC TRANSPORTER5 and ZINC TRANSPORTER9 function synergistically in zinc/cadmium uptake. Plant Physiol, 183(3): 1235-1249.
[13] Ueno D, Yamaji N, Kono I, Huang C F, Ando T, Yano M, Ma J F. 2010. Gene limiting cadmium accumulation in rice. Proc Natl Acad Sci USA, 107: 16500-16505.
[14] Yan H L, Xu W X, Xie J Y, Gao Y W, Wu L L, Sun L, Feng L, Chen X, Zhang T, Dai C H, Li T, Lin X N, Zhang Z Y, Wang X Q, Li F M, Zhu X Y, Li J J, Li Z C, Chen C Y, Ma M, Zhang H L, He Z Y. 2019. Variation of a major facilitator superfamily gene contributes to differential cadmium accumulation between rice subspecies. Nat Commun, 10(1): 2562.
[15] Zhang W X, Guan M Y, Wang J, Wang Y L, Zhang W G, Lu X Z, Xu P, Chen M X, Zhu Y W. 2023. Screening rice germplasm with different genetic backgrounds for cadmium accumulation in brown rice in cadmium-polluted soils. Rice Sci, 30(4): 267-270.
[16] Zhao F J, Ma Y B, Zhu Y G, Tang Z, McGrath S P. 2015. Soil contamination in China: Current status and mitigation strategies. Environ Sci Technol, 49(2): 750-759.
[17] Zhao F J, Wang P. 2020. Arsenic and cadmium accumulation in rice and mitigation strategies. Plant Soil, 446(1/2): 1-21.

相关文章 0

No related articles found!

编辑推荐

Metrics

阅读次数
全文


摘要

  • 摘要
  • 图/表
  • 参考文献
  • 相关文章
  • 编辑推荐
  • Metrics
回顶部
浙ICP备05004719号-15   公安备案号:33010302003355
版权所有 © 《Rice Science》编辑部
地址:浙江省杭州市体育场路359号 邮编:310006 电话:0571-63371017 E-mail:crrn@fy.hz.zn.cn; cjrs278@gmail.com
本系统由北京玛格泰克科技发展有限公司设计开发
总访问量: 今日访问: 在线人数: