Rice Science
  • 首页
  • 期刊介绍
  • 编委会
  • 学术伦理
  • 投稿指南
  • 期刊订阅
  • 联系我们
  • English

Rice Science ›› 2023, Vol. 30 ›› Issue (4): 294-305.DOI: 10.1016/j.rsci.2023.03.011

• • 上一篇    下一篇

  • 收稿日期:2022-11-13 接受日期:2023-03-02 出版日期:2023-07-28 发布日期:2023-05-26

RichHTML

PDF

可视化

0

摘要/Abstract

引用本文

. [J]. Rice Science, 2023, 30(4): 294-305.

使用本文

0
    /   推荐

导出引用管理器 EndNote|Ris|BibTeX

链接本文: http://www.ricesci.org/CN/10.1016/j.rsci.2023.03.011

               http://www.ricesci.org/CN/Y2023/V30/I4/294

图/表 4

Table 1. Genetic resources of popular aromatic rice varieties distributed throughout the world.
Country Popular variety Reference
Afghanistan Bahra, Lawangi, Sela Takhar, Bala, Lawangin, Pashadi, Germa Bala, Sarda Bala,
Luke Qasan, Torishi, Sela Doshi, Surkha-Bala, Pashadi Konar
Singh, 2000; Itani, 2002
Bangladesh Kataribhog, Bau-pagal, Badshabhog, Kala Namak, Dadkhani, Kalazira, Banshful, Kataribagh, Tulshimala, BR36, BR6, BR26, Dolhabhog (BR5), Chinigura,
BRRI dhan 70, Binadhan 13, BRRI dhan 38
Anik and Talukder, 2002; Vemireddy et al, 2021
Cambodia Somali, Phka Rumduol, Phka Rumdeng, Phka Roment Pachauri et al, 2010; Roy et al, 2020
China Xianggeng 3, Xiangyou 63, Zhe 9248, Ganwanxian 22, SR5041, Dechangxiangmi, Beijingkoutou, Shuangzhuzhan, Xiangnuo 4, Tainung Sen 20, Yongshunxingdao, Qingbuxiangjingmi, Congjiangxixiangmi, Jingxixiangdao, Huanglongxiangmi, Jingcixiangdao, Jiangyongxiangdao, Qufuxiangmi Yang et al, 2012; Verma et al, 2019
India Basmati 370, Haryana Basmati 1, Kalanamak, Ranbir Basmati, Taraori Basmati,
Basmati 386, Type 3, Pusa Basmati 1, Pusa Basmati 1121, Punjab Basmati 1, CSR30, Pusa 33, Amritsari Basmati
Nagaraju et al, 2002; Kiani et al, 2012; Singh et al, 2018; Verma et al, 2019
Indonesia Rojo Lele, Bengwan Solo, Pare Kembang, Batang Gadis, Mentik Wangi, Sukanandi, Sinyanur, Pulu Mandoti, Pandanawangi, Gunung Perak Kamath et al, 2008; Pachauri et al, 2010; Verma et al, 2019
Iran Tarom Mahalli, Anbar-boo, Mirza, Fajr, Champa, Mir tarom, Hassani, Shiroudi, Nemat, Mehr, Mosa Tarom, Poya, Domsiah, Hasan, Sadri, Hashemi Fukuoka et al, 2006; Kiani et al, 2012; Vemireddy et al, 2021
Iraq Anbarboo Pachauri et al, 2010
Japan Miyakaori, Iwaga, Sari Queen, Kouikuka 37, Hieri, Jakou, Kabashiko, Oitakoutou Hien et al, 2007; Ootsuka et al, 2014
Malaysia MRQ74 Vemireddy et al, 2021
Myanmar Boke Hmwe, Balugyun, Taungpyan Hmwe, Nyakywe, Nama Tha Lay, Pawsan Hmwe Pachauri et al, 2010
Nepal Basamati Pahade, Basmati Gola, Brahmaphool, Jetho Budho, Rato Basmati, Kalo,
Basmati Uzarka, Basmati Dhan, Lamo, Basmati Red
Pachauri et al, 2010; Kishor et al, 2020
Pakistan Basmati Pak, Basmati 385, Super Basmati, PK50005-3, Basmati 185, Basmati 50021-1, Basmati 377, Sathi Basmati Khush, 2000; Kishor et al, 2020
Thailand Buer Neo Moo, Hawm Klong Luang, Buer Ner Moo Pho Phi, Hawn Mali, RD15,
Baow Hawm 62, Buer Ner Moo Phardo, Jao Mali, KDML105, Siamati, Hawm,
Som Hung, Hawm Baow, RD6, Hawm Supanburi, Pla Sew, Nahng Nuan,
Khao Dawk Mali, Thung Kula Rang-Hai Tahi Hom Mali
Itani et al, 2004; Pachauri et al, 2010; Verma et al, 2019; Roy et al, 2020
the Philippines Azucena, Milagrosa, Binicol, Mangareez, Milfore 6(2) Pachauri et al, 2010; Ootsuka et al, 2014
the USA Texamati, Della, Carolina, A201, Dellamont, Kasmati, Jasmine 85, Sierra, Delrose, Delmont, Jazzman, JES Khush, 2000; Verma et al, 2019
Vietnam Di Huang, Tam Xuan Hai Hau, VD 20, Nang Thom, Nep Hoa Vang, Tam On,
Nang Huong Ran, Nang Thom Muong, Tam Canh, Lam Thao, Hai Hau, Nep Bac,
Tam Xoan, Can Duoc, Nep Rong, Lua Tam, Nam Dinh
Hien et al, 2007; Pachauri et al, 2010; Verma et al, 2019

Table 1. Genetic resources of popular aromatic rice varieties distributed throughout the world.

Country Popular variety Reference
Afghanistan Bahra, Lawangi, Sela Takhar, Bala, Lawangin, Pashadi, Germa Bala, Sarda Bala,
Luke Qasan, Torishi, Sela Doshi, Surkha-Bala, Pashadi Konar
Singh, 2000; Itani, 2002
Bangladesh Kataribhog, Bau-pagal, Badshabhog, Kala Namak, Dadkhani, Kalazira, Banshful, Kataribagh, Tulshimala, BR36, BR6, BR26, Dolhabhog (BR5), Chinigura,
BRRI dhan 70, Binadhan 13, BRRI dhan 38
Anik and Talukder, 2002; Vemireddy et al, 2021
Cambodia Somali, Phka Rumduol, Phka Rumdeng, Phka Roment Pachauri et al, 2010; Roy et al, 2020
China Xianggeng 3, Xiangyou 63, Zhe 9248, Ganwanxian 22, SR5041, Dechangxiangmi, Beijingkoutou, Shuangzhuzhan, Xiangnuo 4, Tainung Sen 20, Yongshunxingdao, Qingbuxiangjingmi, Congjiangxixiangmi, Jingxixiangdao, Huanglongxiangmi, Jingcixiangdao, Jiangyongxiangdao, Qufuxiangmi Yang et al, 2012; Verma et al, 2019
India Basmati 370, Haryana Basmati 1, Kalanamak, Ranbir Basmati, Taraori Basmati,
Basmati 386, Type 3, Pusa Basmati 1, Pusa Basmati 1121, Punjab Basmati 1, CSR30, Pusa 33, Amritsari Basmati
Nagaraju et al, 2002; Kiani et al, 2012; Singh et al, 2018; Verma et al, 2019
Indonesia Rojo Lele, Bengwan Solo, Pare Kembang, Batang Gadis, Mentik Wangi, Sukanandi, Sinyanur, Pulu Mandoti, Pandanawangi, Gunung Perak Kamath et al, 2008; Pachauri et al, 2010; Verma et al, 2019
Iran Tarom Mahalli, Anbar-boo, Mirza, Fajr, Champa, Mir tarom, Hassani, Shiroudi, Nemat, Mehr, Mosa Tarom, Poya, Domsiah, Hasan, Sadri, Hashemi Fukuoka et al, 2006; Kiani et al, 2012; Vemireddy et al, 2021
Iraq Anbarboo Pachauri et al, 2010
Japan Miyakaori, Iwaga, Sari Queen, Kouikuka 37, Hieri, Jakou, Kabashiko, Oitakoutou Hien et al, 2007; Ootsuka et al, 2014
Malaysia MRQ74 Vemireddy et al, 2021
Myanmar Boke Hmwe, Balugyun, Taungpyan Hmwe, Nyakywe, Nama Tha Lay, Pawsan Hmwe Pachauri et al, 2010
Nepal Basamati Pahade, Basmati Gola, Brahmaphool, Jetho Budho, Rato Basmati, Kalo,
Basmati Uzarka, Basmati Dhan, Lamo, Basmati Red
Pachauri et al, 2010; Kishor et al, 2020
Pakistan Basmati Pak, Basmati 385, Super Basmati, PK50005-3, Basmati 185, Basmati 50021-1, Basmati 377, Sathi Basmati Khush, 2000; Kishor et al, 2020
Thailand Buer Neo Moo, Hawm Klong Luang, Buer Ner Moo Pho Phi, Hawn Mali, RD15,
Baow Hawm 62, Buer Ner Moo Phardo, Jao Mali, KDML105, Siamati, Hawm,
Som Hung, Hawm Baow, RD6, Hawm Supanburi, Pla Sew, Nahng Nuan,
Khao Dawk Mali, Thung Kula Rang-Hai Tahi Hom Mali
Itani et al, 2004; Pachauri et al, 2010; Verma et al, 2019; Roy et al, 2020
the Philippines Azucena, Milagrosa, Binicol, Mangareez, Milfore 6(2) Pachauri et al, 2010; Ootsuka et al, 2014
the USA Texamati, Della, Carolina, A201, Dellamont, Kasmati, Jasmine 85, Sierra, Delrose, Delmont, Jazzman, JES Khush, 2000; Verma et al, 2019
Vietnam Di Huang, Tam Xuan Hai Hau, VD 20, Nang Thom, Nep Hoa Vang, Tam On,
Nang Huong Ran, Nang Thom Muong, Tam Canh, Lam Thao, Hai Hau, Nep Bac,
Tam Xoan, Can Duoc, Nep Rong, Lua Tam, Nam Dinh
Hien et al, 2007; Pachauri et al, 2010; Verma et al, 2019
Fig. 1. 2-Acetyl-1-pyrroline (2-AP) biosynthetic pathway (BADH2 dependent and BADH2 independent) for aroma production in aromatic rice.

Fig. 1. 2-Acetyl-1-pyrroline (2-AP) biosynthetic pathway (BADH2 dependent and BADH2 independent) for aroma production in aromatic rice.

Table 2. Potential candidate genes and their tissue specific expression associated with aroma in rice.
Candidate gene Chr Response to stress Tissue specificity Protein interaction Subcellular localization Reference
OsBadh1 8 Submergence, anoxia, salinity Flowers, roots before flowering Glutamate synthase Peroxisome, chloroplast, cytoplsam, nucleus Amarawathi et al, 2008; Pachauri et al, 2014
OsBadh2 3, 4
and 8
Anoxia, salinity, submergence Flower buds, flowers Glutamate synthase Chloroplast, peroxisome, cytoplasm, nucleus IRGSP, 2005
OsP5CS1 5 Salinity, anoxia, osmoregulation Milk grains, flower buds Ferredoxin-
dependent glutamate synthase
Chloroplast, endoplasmic reticulum, nucleus, cytoplasm, mitochondria, plasma membrane, extracellular, vacuole Kaikavoosi et al, 2015
OsP5CS2 5 Osmoregulation, anoxia, salinity Flower buds, flowers Glutamate synthase Chloroplast, extracellular, nucleus, vacuole Kaikavoosi et al, 2015
OsGlyI 5 Salinity, anoxia Flower buds, leaves before flowering Chloroplast, cytoplasm Talukdar et al, 2017
OsGlyII 3 Anoxia, salinity Flowers, flower buds Glyoxalase Cytoplasm, chloroplast, nucleus, extracellular Huang et al, 2008; Pachauri et al, 2014
OsGlyIII 3 Salinity, anoxia Leaves and roots before flowering Ferredoxin-nitrite reductase Chloroplast, peroxisome, cytoplasm, Golgi apparatus Huang et al, 2008; Pachauri et al, 2014

Table 2. Potential candidate genes and their tissue specific expression associated with aroma in rice.

Candidate gene Chr Response to stress Tissue specificity Protein interaction Subcellular localization Reference
OsBadh1 8 Submergence, anoxia, salinity Flowers, roots before flowering Glutamate synthase Peroxisome, chloroplast, cytoplsam, nucleus Amarawathi et al, 2008; Pachauri et al, 2014
OsBadh2 3, 4
and 8
Anoxia, salinity, submergence Flower buds, flowers Glutamate synthase Chloroplast, peroxisome, cytoplasm, nucleus IRGSP, 2005
OsP5CS1 5 Salinity, anoxia, osmoregulation Milk grains, flower buds Ferredoxin-
dependent glutamate synthase
Chloroplast, endoplasmic reticulum, nucleus, cytoplasm, mitochondria, plasma membrane, extracellular, vacuole Kaikavoosi et al, 2015
OsP5CS2 5 Osmoregulation, anoxia, salinity Flower buds, flowers Glutamate synthase Chloroplast, extracellular, nucleus, vacuole Kaikavoosi et al, 2015
OsGlyI 5 Salinity, anoxia Flower buds, leaves before flowering Chloroplast, cytoplasm Talukdar et al, 2017
OsGlyII 3 Anoxia, salinity Flowers, flower buds Glyoxalase Cytoplasm, chloroplast, nucleus, extracellular Huang et al, 2008; Pachauri et al, 2014
OsGlyIII 3 Salinity, anoxia Leaves and roots before flowering Ferredoxin-nitrite reductase Chloroplast, peroxisome, cytoplasm, Golgi apparatus Huang et al, 2008; Pachauri et al, 2014
Table 3. QTLs/genes incorporated/transferred to improve aromatic rice.
Developed improved variety Target trait Parent QTL/gene used Reference
HM80 Submergence resistance IR49830-7-1-2-2 and KDML105 Sub1 Siangliw et al, 2003
Pusa 1460 Bacterial blight tolerance IRBB55 and Pusa Basmati 1 xa13 and Xa21 Gopalakrishnan et al, 2008
HM812 Bacterial blight tolerance IR1188 and KDML105 Xa21, xa5, xa33(t),
xa34(t) and qBB11
Korinsak et al, 2009
IC-R28, IC-R68, IC-R32
and IC-R42
Bacterial blight tolerance IRBB60 and CSR30 Xa21, xa13 and xa5 Baliyan et al, 2018
Pusa Basmati 1 Salt tolerance FL478 and Pusa Basmati 1 Saltol QTL Singh V K et al, 2018
Pusa Basmati 1718 Bacterial blight tolerant SPS97 and PB1121 xa13 and Xa21 Singh V P et al, 2018
HM84 Brown planthopper, blast resistant, and salinity and drought tolerance Abhaya, Rathu Heenati and KDML105 Sub1A, Xa21, xa5,
BphQ12, Bph32, Bph3 and BLQ1
Vanavichit et al, 2018
Two superior BC2F1
recombinants
Semi-dwarf and blast tolerance Pusa Basmati 1637 and Ranbir Basmati Pi9 and sd1 Samal et al, 2019
Improved Kalanamak lines Semi-dwarf trait CSR10 and Kalanamak Sd1 Srivastava et al, 2019

Table 3. QTLs/genes incorporated/transferred to improve aromatic rice.

Developed improved variety Target trait Parent QTL/gene used Reference
HM80 Submergence resistance IR49830-7-1-2-2 and KDML105 Sub1 Siangliw et al, 2003
Pusa 1460 Bacterial blight tolerance IRBB55 and Pusa Basmati 1 xa13 and Xa21 Gopalakrishnan et al, 2008
HM812 Bacterial blight tolerance IR1188 and KDML105 Xa21, xa5, xa33(t),
xa34(t) and qBB11
Korinsak et al, 2009
IC-R28, IC-R68, IC-R32
and IC-R42
Bacterial blight tolerance IRBB60 and CSR30 Xa21, xa13 and xa5 Baliyan et al, 2018
Pusa Basmati 1 Salt tolerance FL478 and Pusa Basmati 1 Saltol QTL Singh V K et al, 2018
Pusa Basmati 1718 Bacterial blight tolerant SPS97 and PB1121 xa13 and Xa21 Singh V P et al, 2018
HM84 Brown planthopper, blast resistant, and salinity and drought tolerance Abhaya, Rathu Heenati and KDML105 Sub1A, Xa21, xa5,
BphQ12, Bph32, Bph3 and BLQ1
Vanavichit et al, 2018
Two superior BC2F1
recombinants
Semi-dwarf and blast tolerance Pusa Basmati 1637 and Ranbir Basmati Pi9 and sd1 Samal et al, 2019
Improved Kalanamak lines Semi-dwarf trait CSR10 and Kalanamak Sd1 Srivastava et al, 2019

参考文献 91

[1] Ahn S N, Bollich C N, Tanksley S D. 1992. RFLP tagging of a gene for aroma in rice. Theor Appl Genet, 84(7): 825-828.
[2] Amarawathi Y, Singh R, Singh A K, Singh V P, Mohapatra T, Sharma T R, Singh N K. 2008. Mapping of quantitative trait loci for basmati quality traits in rice (Oryza sativa L.). Mol Breed, 21(1): 49-65.
[3] Anik A R, Talukder R K. 2002. Economic and financial profitability of aromatic and fine rice production in Bangladesh. Bangladesh J Agric Econ, 25(2): 103-113.
[4] Ashokkumar S, Jaganathan D, Ramanathan V, Rahman H, Palaniswamy R, Kambale R, Muthurajan R. 2020. Creation of novel alleles of fragrance gene OsBADH2 in rice through CRISPR/Cas9 mediated gene editing. PLoS One, 15(8): e0237018.
[5] Baliyan N, Malik R, Rani R, Mehta K, Vashisth U, Dhillon S, Boora K S. 2018. Integrating marker-assisted background analysis with foreground selection for pyramiding bacterial blight resistance genes into Basmati rice. C R Biol, 341(1): 1-8.
[6] Bao G G, Ashraf U, Wan X R, Zhou Q, Li S Y, Wang C L, He L X, Tang X R. 2021. Transcriptomic analysis provides insights into foliar zinc application induced upregulation in 2-acetyl-1-pyrroline and related transcriptional regulatory mechanism in fragrant rice. J Agric Food Chem, 69(38): 11350-11360.
[7] Bergman C J, Delgado J T, Bryant R, Grimm C, Cadwallader K R, Webb B D. 2000. Rapid gas chromatographic technique for quantifying 2-acetyl-1-pyrroline and hexanal in rice (Oryza sativa L.). Cereal Chem J, 77(4): 454-458.
[8] Bounphanousay C, Jaisil P, Sanitchon J, Fitzgerald M, Hamilton N S. 2008. Chemical and molecular characterization of fragrance in black glutinous rice from Lao PDR. Asian J Plant Sci, 7(1): 1-7.
[9] Bradbury L M T, Fitzgerald T L, Henry R J, Jin Q S, Waters D L E. 2005. The gene for fragrance in rice. Plant Biotechnol J, 3(3): 363-370.
PMID
[10] Bradbury L M T, Gillies S A, Brushett D J, Waters D L E, Henry R J. 2008. Inactivation of an aminoaldehyde dehydrogenase is responsible for fragrance in rice. Plant Mol Biol, 68(4/5): 439-449.
[11] Buttery R G. 1982. 2-Acetyl-1-pyrroline: An important aroma component of cooked rice. Chem Ind, 12: 958-959.
[12] Caicedo A L, Williamson S H, Hernandez R D, Boyko A, Fledel-Alon A, York T L, Polato N R, Olsen K M, Nielsen R, McCouch S R, Bustamante C D, Purugganan M D. 2007. Genome-wide patterns of nucleotide polymorphism in domesticated rice. PLoS Genet, 3(9): 1745-1756.
PMID
[13] Chakraborty D, Deb D, Ray A. 2016. An analysis of variation of the aroma gene in rice (Oryza sativa L. subsp. indica Kato) landraces. Genet Resour Crop Evol, 63(6): 953-959.
[14] Chen S H, Wu J, Yang Y, Shi W W, Xu M L. 2006. The fgr gene responsible for rice fragrance was restricted within 69 kb. Plant Sci, 171(4): 505-514.
[15] Chen S H, Yang Y, Shi W W, Ji Q, He F, Zhang Z D, Cheng Z K, Liu X N, Xu M L. 2008. Badh2, encoding betaine aldehyde dehydrogenase, inhibits the biosynthesis of 2-acetyl-1-pyrroline, a major component in rice fragrance. Plant Cell, 20(7): 1850-1861.
PMID
[16] Chen Y B, Wang Z D, Wang C R, Li H, Huang D Q, Zhou D G, Zhao L, Pan Y Y, Gong R, Zhou S C. 2022. Comparisons of metabolic profiles for carbohydrates, amino acids, lipids, fragrance and flavones during grain development in indica rice cultivars. Rice Sci, 29(2): 155-165.
[17] Dela Cruz N, Khush G S. 2000. Rice grain quality evaluation procedures. In: Singh R K, Singh U S, Khush G S. Aromatic Rices. New Delhi, India: Oxford and IBH Publishing Co Pvt. Ltd: 15-28.
[18] Fitzgerald T L, Lex Ean Waters D, Brooks L O, Henry R J. 2010. Fragrance in rice (Oryza sativa) is associated with reduced yield under salt treatment. Environ Exp Bot, 68(3): 292-300.
[19] Fukuoka S, Suu T D, Ebana K, Trinh L N, Nagamine T, Okuno K. 2006. Diversity in phenotypic profiles in landrace populations of Vietnamese rice: A case study of agronomic characters for conserving crop genetic diversity on farm. Genet Resour Crop Evol, 53(4): 753-761.
[20] Garris A J, Tai T H, Coburn J, Kresovich S, McCouch S. 2005. Genetic structure and diversity in Oryza sativa L. Genetics, 169(3): 1631-1638.
[21] Ghosh P, Roychoudhury A. 2020. Aromatic rice:Biochemical and molecular basis of aroma production and stress response. In: Roychoudhury A. Rice Research for Quality Improvement: Genomics and Genetic Engineering. Singapore: Springer: 373-408.
[22] Glaszmann J C. 1987. Isozymes and classification of Asian rice varieties. Theor Appl Genet, 74(1): 21-30.
PMID
[23] Gopalakrishnan S, Sharma R K, Anand Rajkumar K, Joseph M, Singh V P, Singh A K, Bhat K V, Singh N K, Mohapatra T. 2008. Integrating marker assisted background analysis with foreground selection for identification of superior bacterial blight resistant recombinants in Basmati rice. Plant Breed, 127(2): 131-139.
[24] Grimm C C, Champagne E T, Lloyd S W, Easson M, Condon B, McClung A. 2011. Analysis of 2-acetyl-1-pyrroline in rice by HSSE/GC/MS. Cereal Chem, 88(3): 271-277.
[25] He Q, Yu J, Kim T S, Cho Y H, Lee Y S, Park Y J. 2015. Resequencing reveals different domestication rate for BADH1 and BADH2 in rice (Oryza sativa). PLoS One, 10(8): e0134801.
[26] Hien N L, Ahmad Sarhadi W, Oikawa Y, Hirata Y. 2007. Genetic diversity of morphological responses and the relationships among Asia aromatic rice (Oryza sativa L.) cultivars. Tropics, 16(4): 343-355.
[27] Hinge V, Zanan R, Rashmi D, Nadaf A. 2019. Aroma volatiles as biomarkers for characterizing rice (Oryza sativa L.): Flavor types and their biosynthesis. In: Verma D K, Srivastav P P. Science and Technology of Aroma, Flavor and Fragrance in Rice. Florida, USA: Apple Academic Press: 200-269.
[28] Hinge V R, Patil H B, Nadaf A B. 2016. Aroma volatile analyses and 2AP characterization at various developmental stages in Basmati and non-Basmati scented rice (Oryza sativa L.) cultivars. Rice, 9(1): 38.
[29] Hofmann T, Schieberle P. 1998. 2-Oxopropanal, hydroxy-2-propanone, and 1-pyrrolineImportant intermediates in the generation of the roast-smelling food flavor compounds 2-acetyl-1-pyrroline and 2-acetyltetrahydropyridine. J Agric Food Chem, 46(6): 2270-2277.
[30] Hu X Q, Lu L, Guo Z L, Zhu Z W. 2020. Volatile compounds, affecting factors and evaluation methods for rice aroma: A review. Trends Food Sci Technol, 97: 136-146.
[31] Huang T C, Teng C S, Chang J L, Chuang H S, Ho C T, Wu M L. 2008. Biosynthetic mechanism of 2-acetyl-1-pyrroline and its relationship with Δ1-pyrroline-5-carboxylic acid and methylglyoxal in aromatic rice (Oryza sativa L.) callus. J Agric Food Chem, 56(16): 7399-7404.
[32] Imran M, Liu Y H, Shafiq S, Abbas F, Ilahi S, Rehman N, Ahmar S, Fiaz S, Baran N, Pan S G, Mo Z W, Tang X R. 2022. Transcriptional cascades in the regulation of 2-AP biosynthesis under Zn supply in fragrant rice. Physiol Plant, 174(3): e13721.
[33] IRGSP International Rice Genome Sequencing Project. 2005. The map-based sequence of the rice genome. Nature, 436: 793-800.
[34] Itani T. 2002. Agronomic characteristics of rice cultivars collected from Japan and other countries. Jpn J Crop Sci, 71: 68-75. (in Japanese with English abstract)
[35] Itani T, Tamaki M, Hayata Y, Fushimi T, Hashizume K. 2004. Variation of 2-acetyl-1-pyrroline concentration in aromatic rice grains collected in the same region in Japan and factors affecting its concentration. Plant Prod Sci, 7(2): 178-183.
[36] Kaikavoosi K, Kad T D, Zanan R L, Nadaf A B. 2015. 2-Acetyl-1-pyrroline augmentation in scented indica rice (Oryza sativa L.) varieties through Δ(1)-pyrroline-5-carboxylate synthetase (P5CS) gene transformation. Appl Biochem Biotechnol, 177(7): 1466-1479.
PMID
[37] Kamath S, Stephen J C, Suresh S, Barai B K, Sahoo A K, Reddy K R, Bhattacharya K R. 2008. Basmati rice: Its characteristics and identification. J Sci Food Agric, 88(10): 1821-1831.
[38] Khush G S. 2000. Taxonomy and origin of rice. In: Singh R K, Singh U S, Khush G S. Aromatic Rices. New Delhi, India: Oxford and IBH Publishing Co Pvt. Ltd: 5-13.
[39] Kiani G, Nematzadeh G A, Ghareyazie B, Sattari M. 2012. Pyramiding of cry1Ab and fgr genes in two Iranian rice cultivars Neda and Nemat. J Agric Sci Technol, 14: 1087-1092.
[40] Kishor D S, Seo J, Chin J H, Koh H J. 2020. Evaluation of whole-genome sequence, genetic diversity, and agronomic traits of Basmati rice (Oryza sativa L.). Front Genet, 11: 86.
PMID
[41] Korinsak S, Sriprakhon S, Sirithanya P, Jairin J, Korinsak S, Vanavichit A, Toojinda T. 2009. Identification of microsatellite markers (SSR) linked to a new bacterial blight resistance gene xa33(t) in rice cultivar ‘Ba7’. Maejo Int J Sci Technol, 3(2): 235-247.
[42] Kovach M J, Calingacion M N, Fitzgerald M A, McCouch S R. 2009. The origin and evolution of fragrance in rice (Oryza sativa L.). Proc Natl Acad Sci USA, 106(34): 14444-14449.
[43] Kumari A, Kumar J, Kumar A, Gaur A K. 2019. Physico-chemical and epigenetic aspects towards revealing aroma biology in Oryza sativa L. Genome Gene Ther Int J, 3(1): 000111.
[44] Lorieux M, Petrov M, Huang N, Guiderdoni E, Ghesquière A. 1996. Aroma in rice: Genetic analysis of a quantitative trait. Theor Appl Genet, 93(7): 1145-1151.
PMID
[45] Luo H W, He L X, Du B, Pan S G, Mo Z W, Yang S Y, Zou Y B, Tang X R. 2022. Epoxiconazole improved photosynthesis, yield formation, grain quality and 2-acetyl-1-pyrroline biosynthesis of fragrant rice. Rice Sci, 29(2): 189-196.
[46] Maraval I, Sen K, Agrebi A, Menut C, Morere A, Boulanger R, Gay F, Mestres C, Gunata Z. 2010. Quantification of 2-acetyl-1-pyrroline in rice by stable isotope dilution assay through headspace solid-phase microextraction coupled to gas chromatography-tandem mass spectrometry. Anal Chim Acta, 675(2): 148-155.
PMID
[47] Mathure S V, Jawali N, Thengane R J, Nadaf A B. 2014. Comparative quantitative analysis of headspace volatiles and their association with BADH2 marker in non-basmati scented, basmati and non-scented rice (Oryza sativa L.) cultivars of India. Food Chem, 142: 383-391.
PMID
[48] Nadaf A, Mathure S, Jawali N. 2016. Quality parameter assessment in scented rice cultivars. In: Nadaf A, Mathure S, Jawali N. Scented Rice (Oryza sativa L.) Cultivars of India:A Perspective on Quality and Diversity. New Delhi, India: Springer: 31-56.
[49] Nagaraju J, Kathirvel M, Kumar R R, Siddiq E A, Hasnain S E. 2002. Genetic analysis of traditional and evolved Basmati and non-Basmati rice varieties by using fluorescence-based ISSR-PCR and SSR markers. Proc Natl Acad Sci USA, 99(9): 5836-5841.
PMID
[50] Nematzadeh G A, Karbalaie M T, Farrokhzad F, Ghareyazie B. 2000. Aromatic rices of Iran. In: Singh R K, Singh U S, Khush G S. Aromatic Rices. New Delhi, India: Oxford and IBH Publishing Co Pvt. Ltd: 191-200.
[51] Ootsuka K, Takahashi I, Tanaka K, Itani T, Tabuchi H, Yoshihashi T, Tonouchi A, Ishikawa R. 2014. Genetic polymorphisms in Japanese fragrant landraces and novel fragrant allele domesticated in northern Japan. Breed Sci, 64(2): 115-124.
[52] Pachauri V, Singh M K, Singh A K, Singh S, Shakeel N A, Singh V P, Singh N K. 2010. Origin and genetic diversity of aromatic rice varieties, molecular breeding and chemical and genetic basis of rice aroma. J Plant Biochem Biotechnol, 19(2): 127-143.
[53] Pachauri V, Mishra V, Mishra P, Singh A K, Singh S, Singh R, Singh N K. 2014. Identification of candidate genes for rice grain aroma by combining QTL mapping and transcriptome profiling approaches. Cereal Res Commun, 42(3): 376-388.
[54] Peng B, Zuo Y H, Hao Y L, Peng J, Kong D Y, Peng Y, Nassirou T Y, He L L, Sun Y F, Liu L, Pang R H, Chen Y X, Li J T, Zhou Q Y, Duan B, Song X H, Song S Z, Yuan H Y. 2018. Studies on aroma gene and its application in rice genetics and breeding. J Plant Stud, 7(2): 29.
[55] Prasad G S V, Padmavathi G, Suneetha K, Madhav M S, Muralidharan K. 2020. Assessment of diversity of Indian aromatic rice germplasm collections for morphological, agronomical, quality traits and molecular characters to identify a core set for crop improvement. CABI Agric BioSci, 1: 13.
[56] Prodhan Z H, Shu Q Y. 2020. Rice aroma: A natural gift comes with price and the way forward. Rice Sci, 27(2): 86-100.
[57] Ramaiah K, Rao M V. 1953. Rice Breeding and Genetics. New Delhi, India: Indian Council of Agricultural Research.
[58] Roy S, Banerjee A, Basak N, Kumar J, Mandal N P. 2020. Aromatic rice. In: de Oliveira A C, Pegoraro C, Viana V E. The Future of Rice Demand: Quality Beyond Productivity. Cham: Springer: 251-282.
[59] Sakthivel K, Sundaram R M, Shobha Rani N, Balachandran S M, Neeraja C N. 2009. Genetic and molecular basis of fragrance in rice. Biotechnol Adv, 27(4): 468-473.
PMID
[60] Samal P, Pote T D, Krishnan S G, Singh A K, Salgotra R K, Rathour R. 2019. Integrating marker-assisted selection and doubled haploidy for rapid introgression of semi-dwarfing and blast resistance genes into a basmati rice variety ‘Ranbir Basmati’. Euphytica, 215: 149.
[61] Sansenya S, Hua Y L, Chumanee S. 2018. The correlation between 2-acetyl-1-pyrroline content, biological compounds and molecular characterization to the aroma intensities of Thai local rice. J Oleo Sci, 67(7): 893-904.
PMID
[62] Shan Q W, Wang Y P, Chen K L, Liang Z, Li J, Zhang Y, Zhang K, Liu J X, Voytas D F, Zheng X L, Zhang Y, Gao C X. 2013. Rapid and efficient gene modification in rice and Brachypodium using TALENs. Mol Plant, 6(4): 1365-1368.
[63] Shao G N, Tang A, Tang S Q, Luo J, Jiao G A, Wu J L, Hu P S. 2011. A new deletion mutation of fragrant gene and the development of three molecular markers for fragrance in rice. Plant Breed, 130(2): 172-176.
[64] Shi Y Q, Zhao G C, Xu X L, Li J Y. 2014. Discovery of a new fragrance allele and development of functional markers for identifying diverse fragrant genotypes in rice. Mol Breed, 33(3): 701-708.
[65] Siangliw M, Toojinda T, Tragoonrung S, Vanavichit A. 2003. Thai jasmine rice carrying QTLch9 (SubQTL) is submergence tolerant. Ann Bot, 91(S2): 255-261.
[66] Siddiq E A, Vemireddy L R, Nagaraju J. 2012. Basmati rices: Genetics, breeding and trade. Agric Res, 1(1): 25-36.
[67] Singh R K, Singh U S, Khush G S, Rohilla R. 2000. Genetics and biotechnology of quality traits in aromatic rices. In: Singh R K, Singh U S, Khush G S. Aromatic Rices. New Delhi, India: Oxford and IBH Publishing Co Pvt. Ltd: 47-70.
[68] Singh S P, Singh M K, Kumar S, Sravan U S. 2019. Cultivation of aromatic rice: A review. In: Hasanuzzaman M. Agronomic Crops. Singapore: Springer: 175-198.
[69] Singh V K, Singh B D, Kumar A, Maurya S, Krishnan S G, Vinod K K, Singh M P, Ellur R K, Bhowmick P K, Singh A K. 2018. Marker-assisted introgression of Saltol QTL enhances seedling stage salt tolerance in the rice variety Pusa Basmati 1. Int J Genom, 2018: 8319879.
[70] Singh V P. 2000. Basmati rice of India. In: Singh R K, Singh U S, Khush G S. Aromatic Rices. New Delhi, India: Oxford and IBH Publishing Co Pvt. Ltd: 135-154.
[71] Singh V P, Singh A K. 2010. Role of Indian agricultural research institute in collection, acquisition, evaluation, enhancement, utilization and conservation of rice germplasm. In: Sharma S D, Rap P. Genetic Resources of Rice in India. New Delhi, India: Today and Tomorrow’s Printers and Publications: 135-150.
[72] Singh V P, Singh A K, Mohapatra T, Gopala Krishnan S, Ellur R K. 2018. Pusa Basmati 1121: A rice variety with exceptional kernel elongation and volume expansion after cooking. Rice, 11: 19.
[73] Srivastava D, Shamim M, Mishra A, Yadav P, Kumar D, Pandey P, Khan N A, Singh K N. 2019. Introgression of semi-dwarf gene in Kalanamak rice using marker-assisted selection breeding. Curr Sci, 116(4): 597-603.
[74] Sun P Y, Zhang W H, Zhang L, Shu F, He Q, Xu N, Peng Z R, Zeng J, Fang P P, Deng H F. 2023. Development and application of a novel functional marker for fragrance in rice. Rice Sci, 30(3): 176-180.
[75] Talukdar P R, Rathi S, Pathak K, Chetia S K, Sarma R N. 2017. Population structure and marker-trait association in indigenous aromatic rice. Rice Sci, 24(3): 145-154.
[76] Tama R A Z, Begum I A, Alam M J, Islam S. 2015. Financial profitability of aromatic rice production in some selected areas of Bangladesh. Int J Innov Appl Stud, 12(1): 235-242.
[77] Tanchotikul U, Hsieh T C Y. 1991. An improved method for quantification of 2-acetyl-1-pyrroline, a “popcorn”-like aroma, in aromatic rice by high-resolution gas chromatography/mass spectrometry/selected ion monitoring. J Agric Food Chem, 39(5): 944-947.
[78] van Quoc G, Huynh K, Nguyen C T T, Nguyen L H, van Nguyen M, Nguyen N T, Vo C T, Swee K Y. 2023. Novel deletion in exon 7 of Betaine Aldehyde Dehydrogenase 2 (BADH2). Rice Sci, 30(2): 104-112.
[79] Vanavichit A, Yoshihashi T, Wanchana S, Areekit S, Saengsraku D, Kamolsukyunyong W. 2005. Cloning of Os2AP, the aromatic gene controlling the biosynthetic switch of 2-acetyl-1-pyrroline and gamma aminobutyric acid (GABA) in rice. In: 5th International Rice Genetics Symposium. Manila, the Philippines: IRRI: 44.
[80] Vanavichit A, Kamolsukyeunyong W, Siangliw M, Siangliw J L, Traprab S, Ruengphayak S, Chaichoompu E, Saensuk C, Phuvanartnarubal E, Toojinda T, Tragoonrung S. 2018. Thai hom Mali rice: Origin and breeding for subsistence rainfed lowland rice system. Rice, 11(1): 20.
PMID
[81] Vemireddy L R, Tanti B, Lahakar L, Shandilya Z M. 2021. Aromatic rices: Evolution, genetics and improvement through conventional breeding and biotechnological methods. In: Hossain M A, Hassan L, Iftekharudaula K M, Kumar A, Henry R. Molecular Breeding for Rice Abiotic Stress Tolerance and Nutritional Quality. NY, USA: John Wiley & Sons Ltd: 341-357.
[82] Verma D K, Mohan M, Yadav V K, Asthir B, Soni S K. 2012. Inquisition of some physico-chemical characteristics of newly evolved basmati rice. Environ Ecol, 30(1): 114-117.
[83] Verma D K, Mohan M, Asthir B. 2013. Physicochemical and cooking characteristics of some promising basmati genotypes. Asian J Food Agro-Ind, 6(2): 94-99.
[84] Verma D K, Mohan M, Prabhakar P K, Srivastav P P. 2015. Physico-chemical and cooking characteristics of Azad basmati. Int Food Res J, 22(4): 1380-1389.
[85] Verma D K, Srivastav P P. 2017. Proximate composition, mineral content and fatty acids analyses of aromatic and non-aromatic Indian rice. Rice Sci, 24(1): 21-31.
[86] Verma D K, Srivastav P P, Nadaf A. 2019. Aromatic rice from different countries: An overview. In: Verma D K, Srivastav P P. Science and Technology of Aroma, Flavour and Fragrance in Rice. Florida, USA: Apple Academic Press: 35-58.
[87] Wakte K, Zanan R, Hinge V, Khandagale K, Nadaf A, Henry R. 2017. Thirty-three years of 2-acetyl-1-pyrroline, a principal basmati aroma compound in scented rice (Oryza sativa L.): A status review. J Sci Food Agric, 97(2): 384-395.
[88] Yang D S, Shewfelt R L, Lee K S, Kays S J. 2008. Comparison of odor-active compounds from six distinctly different rice flavor types. J Agric Food Chem, 56(8): 2780-2787.
[89] Yang S Y, Zou Y B, Liang Y Z, Xia B, Liu S K, Ibrahim M, Li D Q, Li Y Q, Chen L, Zeng Y, Liu L, Chen Y, Li P, Zhu J W. 2012. Role of soil total nitrogen in aroma synthesis of traditional regional aromatic rice in China. Field Crops Res, 125: 151-160.
[90] Yi M, Nwe K T, Vanavichit A, Chai-arree W, Toojinda T. 2009. Marker assisted backcross breeding to improve cooking quality traits in Myanmar rice cultivar Manawthukha. Field Crops Res, 113(2): 178-186.
[91] Yoshihashi T. 2002. Quantitative analysis on 2-acetyl-1-pyrroline of an aromatic rice by stable isotope dilution method and model studies on its formation during cooking. J Food Sci, 67(2): 619-622.

相关文章 0

No related articles found!

编辑推荐

Metrics

阅读次数
全文


摘要

  • 摘要
  • 图/表
  • 参考文献
  • 相关文章
  • 编辑推荐
  • Metrics
回顶部
浙ICP备05004719号-15   公安备案号:33010302003355
版权所有 © 《Rice Science》编辑部
地址:浙江省杭州市体育场路359号 邮编:310006 电话:0571-63371017 E-mail:crrn@fy.hz.zn.cn; cjrs278@gmail.com
本系统由北京玛格泰克科技发展有限公司设计开发
总访问量: 今日访问: 在线人数: