Rice Science
  • 首页
  • 期刊介绍
  • 编委会
  • 学术伦理
  • 投稿指南
  • 期刊订阅
  • 联系我们
  • English

Rice Science ›› 2024, Vol. 31 ›› Issue (3): 285-299.DOI: 10.1016/j.rsci.2023.12.003

• • 上一篇    下一篇

  • 收稿日期:2023-10-15 接受日期:2023-12-07 出版日期:2024-05-28 发布日期:2024-06-04

RichHTML

PDF

可视化

0

摘要/Abstract

引用本文

. [J]. Rice Science, 2024, 31(3): 285-299.

使用本文

推荐

导出引用管理器 EndNote|Ris|BibTeX

链接本文: http://www.ricesci.org/CN/10.1016/j.rsci.2023.12.003

               http://www.ricesci.org/CN/Y2024/V31/I3/285

图/表 9

Fig. 1. Causes of rice necrotic lesion formation. Alterations in the expression of related genes, ROS enzyme system, PCD, membrane proteins, chloroplast structure, chloroplast synthesis, and environmental factors (light and humidity) lead to cell death, ROS accumulation, thereby producing necrotic lesions. ROS, Reactive oxygen species; PCD, Programmed cell death; JA, Jasmonic acid; SA, Salicylic acid; ET, Ethylene; CAT, Catalase; SOD, Superoxide dismutase; APX, Ascorbate peroxidase; PRs, Pathogenesis-related genes. ‘→’ symbol indicates activation or next step, and ‘├’ symbol indicates inhibition.

Fig. 1. Causes of rice necrotic lesion formation. Alterations in the expression of related genes, ROS enzyme system, PCD, membrane proteins, chloroplast structure, chloroplast synthesis, and environmental factors (light and humidity) lead to cell death, ROS accumulation, thereby producing necrotic lesions. ROS, Reactive oxygen species; PCD, Programmed cell death; JA, Jasmonic acid; SA, Salicylic acid; ET, Ethylene; CAT, Catalase; SOD, Superoxide dismutase; APX, Ascorbate peroxidase; PRs, Pathogenesis-related genes. ‘→’ symbol indicates activation or next step, and ‘├’ symbol indicates inhibition.

Fig. 2. Necrotic lesion genes are involved in mitogen-activated protein kinase (MAPK) signaling and ubiquitine pathways. Plants regulate in vivo defense responses by adjusting EDS1 phosphorylation and MPKK10.2 cascade status. SPL11-SDS2, SPL11-SPIN6, and RAC1 can jointly participate in pathogen resistance signaling pathways. SPL11 is a negative regulator of plant cell death and defense, and plays a critical role in SPIN6 and SDS2-mediated defense responses. BAG4 and SPL35 are positive regulators of programmed cell death (PCD), and excessive accumulation can lead to PCD. They are degraded by an E3 ubiquitin ligase. The NPR1 is degraded by enhancing the association between NPR1 and CUL3a, which disrupts the salicylic acid (SA)- and jasmonic acid (JA)-mediated synergistic immunity in rice.

Fig. 2. Necrotic lesion genes are involved in mitogen-activated protein kinase (MAPK) signaling and ubiquitine pathways. Plants regulate in vivo defense responses by adjusting EDS1 phosphorylation and MPKK10.2 cascade status. SPL11-SDS2, SPL11-SPIN6, and RAC1 can jointly participate in pathogen resistance signaling pathways. SPL11 is a negative regulator of plant cell death and defense, and plays a critical role in SPIN6 and SDS2-mediated defense responses. BAG4 and SPL35 are positive regulators of programmed cell death (PCD), and excessive accumulation can lead to PCD. They are degraded by an E3 ubiquitin ligase. The NPR1 is degraded by enhancing the association between NPR1 and CUL3a, which disrupts the salicylic acid (SA)- and jasmonic acid (JA)-mediated synergistic immunity in rice.

Table 1. Necrotic lesion genes are involved in mitogen-activated protein kinase signaling and ubiquitination pathways and clathrin-mediated vesicle transport pathway.
Gene name Accession number Protein function Disease resistance Reference
SPL28, PSL50 Os01g0703600 A subunit of clathrin-associated adaptor protein Magnaporthe oryzae and Xanthomonas oryzae (Xoo) Qiao et al, 2010; Yao et al, 2021
NPR1, NH1 Os01g0194300 Salicylic acid receptor M. oryzae and Xoo Li et al, 2013; Li et al, 2016; Liu et al, 2017; Zhao et al, 2021; Zhang H H et al, 2023
LMR, LRD6-6 Os06g0130000 ATP; AAA ATPase M. oryzae and Xoo Fekih et al, 2015; Zhu et al, 2016
SPIN6 Os07g0658300 Rho GTPase activating protein M. oryzae and Xoo Liu et al, 2015
SPL11 Os12g0570000 E3 ubiquitin ligase M. oryzae and Xoo Liu et al, 2015; Fan et al, 2018
EBR1 Os05g0279400 E3 ubiquitin ligase M. oryzae and Xoo You et al, 2016
BAG4 Os01g0831200 BAG protein; Molecular chaperone regulatory proteins M. oryzae and Xoo You et al, 2016
CUL3a Os02g0746000 Cullin protein M. oryzae and Xoo Liu et al, 2017
SDS2 Os01g0783800 Receptor-like kinase M. oryzae Fan et al, 2018
SCYL2 Os01g0616100 Clathrin-coated vesicle components Xoo Yao et al, 2021

Table 1. Necrotic lesion genes are involved in mitogen-activated protein kinase signaling and ubiquitination pathways and clathrin-mediated vesicle transport pathway.

Gene name Accession number Protein function Disease resistance Reference
SPL28, PSL50 Os01g0703600 A subunit of clathrin-associated adaptor protein Magnaporthe oryzae and Xanthomonas oryzae (Xoo) Qiao et al, 2010; Yao et al, 2021
NPR1, NH1 Os01g0194300 Salicylic acid receptor M. oryzae and Xoo Li et al, 2013; Li et al, 2016; Liu et al, 2017; Zhao et al, 2021; Zhang H H et al, 2023
LMR, LRD6-6 Os06g0130000 ATP; AAA ATPase M. oryzae and Xoo Fekih et al, 2015; Zhu et al, 2016
SPIN6 Os07g0658300 Rho GTPase activating protein M. oryzae and Xoo Liu et al, 2015
SPL11 Os12g0570000 E3 ubiquitin ligase M. oryzae and Xoo Liu et al, 2015; Fan et al, 2018
EBR1 Os05g0279400 E3 ubiquitin ligase M. oryzae and Xoo You et al, 2016
BAG4 Os01g0831200 BAG protein; Molecular chaperone regulatory proteins M. oryzae and Xoo You et al, 2016
CUL3a Os02g0746000 Cullin protein M. oryzae and Xoo Liu et al, 2017
SDS2 Os01g0783800 Receptor-like kinase M. oryzae Fan et al, 2018
SCYL2 Os01g0616100 Clathrin-coated vesicle components Xoo Yao et al, 2021
Fig. 3. Reactive oxygen species, clathrin-mediated vesicle transport, and other signaling pathways regulate necrotic lesion formation. WRK26, MED16, and NBL3 activate resistance genes, CNGC9 regulates resistance gene activation by regulating Ca2+ concentration, and RLR1 works with WRKY19 to activate resistance gene. SPL28- SCYL2 and LMR participate in the defense response by mediating vesicle transport. DjA9 and DRP1E affect mitochondrial size, thereby affecting reactive oxygen species, ultimately participating in immune regulation. LSL1 interacts with PsaD and PAP10 to affect chloroplast homeostasis, and RLIN1 and LC7 also participate in disease resistance by affecting chloroplast homeostasis. SPL7 regulates resistance by inhibiting NADPH enzyme activity, Pti1a inhibits RAR1 activity, while RMC and RLS1 both participate in disease resistance by inhibiting self-immunity. LML1 and SPL33 interact in the endoplasmic reticulum, thereby affecting protein folding. ‘→’ symbol indicates activation or next step, and ‘├’ symbol indicates inhibition.

Fig. 3. Reactive oxygen species, clathrin-mediated vesicle transport, and other signaling pathways regulate necrotic lesion formation. WRK26, MED16, and NBL3 activate resistance genes, CNGC9 regulates resistance gene activation by regulating Ca2+ concentration, and RLR1 works with WRKY19 to activate resistance gene. SPL28- SCYL2 and LMR participate in the defense response by mediating vesicle transport. DjA9 and DRP1E affect mitochondrial size, thereby affecting reactive oxygen species, ultimately participating in immune regulation. LSL1 interacts with PsaD and PAP10 to affect chloroplast homeostasis, and RLIN1 and LC7 also participate in disease resistance by affecting chloroplast homeostasis. SPL7 regulates resistance by inhibiting NADPH enzyme activity, Pti1a inhibits RAR1 activity, while RMC and RLS1 both participate in disease resistance by inhibiting self-immunity. LML1 and SPL33 interact in the endoplasmic reticulum, thereby affecting protein folding. ‘→’ symbol indicates activation or next step, and ‘├’ symbol indicates inhibition.

Table 2. Necrotic lesion genes are involved in reactive oxygen species pathways.
Gene name Accession number Protein function Disease resistance Reference
LSD1, LOL1 Os08g0159500 Zinc finger protein Magnaporthe oryzae Wang et al, 2005
OsHsfA4d, SPL7 Os05g0530400 Heat shock transcription factors M. oryzae and Xanthomonas oryzae (Xoo) Hoang et al, 2019
RLIN1, LLM1 Os04g0610800 Coproporphyrinogen III oxidase Xoo Sun et al, 2011; Wang et al, 2015
lc7, SPL32, Fd-GOGAT1, ABC1 Os07g0658400 Glutamate synthase Xoo Chen et al, 2016
SPL33 Os01g0116600 Eef1a-like protein; Eukaryotic translation extension factor alpha protein M. oryzae and blight Wang et al, 2017
LMM5 Os04g0596500 Eef1a-like protein M. oryzae and Xoo Zhao et al, 2017
LML1 Os04g0659900 Eukaryotic release factor 1 albumen M. oryzae and Xoo Qin et al, 2018
spl26 Os07g0141200 Protein kinase M. oryzae and Xoo Chen et al, 2019; Shang et al, 2022
SPL35 Os03g0205000 CUE domain protein M. oryzae and Xoo Ma et al, 2019
LMM24 Os03g0364400 Receptor-like cytoplasmic kinase M. oryzae Zhang et al, 2019
NRAMP1 Os07g0258400 Metal ion transporter; Natural resistance- associated macrophage proteins. M. oryzae and Xoo Chang et al, 2020; Chu et al, 2022
SPL36 Os12g0182300 Receptor-like protein kinase Xoo Rao et al, 2021
LSL1/GRDP1 Os11g0621300 Glycine-enriched domain proteins M. oryzae and Xoo Zhao et al, 2021; Ren et al, 2022

Table 2. Necrotic lesion genes are involved in reactive oxygen species pathways.

Gene name Accession number Protein function Disease resistance Reference
LSD1, LOL1 Os08g0159500 Zinc finger protein Magnaporthe oryzae Wang et al, 2005
OsHsfA4d, SPL7 Os05g0530400 Heat shock transcription factors M. oryzae and Xanthomonas oryzae (Xoo) Hoang et al, 2019
RLIN1, LLM1 Os04g0610800 Coproporphyrinogen III oxidase Xoo Sun et al, 2011; Wang et al, 2015
lc7, SPL32, Fd-GOGAT1, ABC1 Os07g0658400 Glutamate synthase Xoo Chen et al, 2016
SPL33 Os01g0116600 Eef1a-like protein; Eukaryotic translation extension factor alpha protein M. oryzae and blight Wang et al, 2017
LMM5 Os04g0596500 Eef1a-like protein M. oryzae and Xoo Zhao et al, 2017
LML1 Os04g0659900 Eukaryotic release factor 1 albumen M. oryzae and Xoo Qin et al, 2018
spl26 Os07g0141200 Protein kinase M. oryzae and Xoo Chen et al, 2019; Shang et al, 2022
SPL35 Os03g0205000 CUE domain protein M. oryzae and Xoo Ma et al, 2019
LMM24 Os03g0364400 Receptor-like cytoplasmic kinase M. oryzae Zhang et al, 2019
NRAMP1 Os07g0258400 Metal ion transporter; Natural resistance- associated macrophage proteins. M. oryzae and Xoo Chang et al, 2020; Chu et al, 2022
SPL36 Os12g0182300 Receptor-like protein kinase Xoo Rao et al, 2021
LSL1/GRDP1 Os11g0621300 Glycine-enriched domain proteins M. oryzae and Xoo Zhao et al, 2021; Ren et al, 2022
Fig. 4. Necrotic lesion genes are involved in hormone signaling pathways. NPR1 is involved in rice defense response by CUL3a ubiquitination degration and hormone level regulation. ICS1 is a key enzyme in the salicylic acid (SA) synthesis pathway and is regulated by WRKY6. WRKY6 also activates pathogenic resistance genes to participate in defense response by activating WRKY45 and WRKY47. SSI2, WED, PELOTA, and GF14E contribute to disease resistance by influencing salicylic acid content. HPL3 affects rice disease resistance by inhibiting linolenic acid. SPL3 and GF14E directly inhibit the jasmonic acid (JA) participation in rice defense response. EDR1 and SPL40 participate in the defense response by influencing SA and JA content.

Fig. 4. Necrotic lesion genes are involved in hormone signaling pathways. NPR1 is involved in rice defense response by CUL3a ubiquitination degration and hormone level regulation. ICS1 is a key enzyme in the salicylic acid (SA) synthesis pathway and is regulated by WRKY6. WRKY6 also activates pathogenic resistance genes to participate in defense response by activating WRKY45 and WRKY47. SSI2, WED, PELOTA, and GF14E contribute to disease resistance by influencing salicylic acid content. HPL3 affects rice disease resistance by inhibiting linolenic acid. SPL3 and GF14E directly inhibit the jasmonic acid (JA) participation in rice defense response. EDR1 and SPL40 participate in the defense response by influencing SA and JA content.

Table 3. Necrotic lesion genes are involved in hormonal pathways.
Gene name Accession number Protein function Disease resistance Reference
Salicylic acid signaling pathway
SSI2 Os01g0919900 Fatty acid dehydrogenase Magnaporthe oryzae and Xanthomonas oryzae (Xoo) Jiang et al, 2009
NPR1, NH1 Os01g0194300 Salicylic acid receptor M. oryzae and Xoo Li et al, 2013; Li et al, 2016; Liu et al, 2017; Zhao et al, 2021; Zhang H H et al, 2023
WRKY6 Os03g0798500 WRKY transcriptional factor M. oryzae Choi et al, 2015; Gao et al, 2020; Im et al, 2022
CUL3a Os02g0746000 Cullin protein M. oryzae and Xoo Liu et al, 2017
PELOTA Os04g0659900 Eukaryotic translation release factor Xoo Zhang et al, 2018
WED Os11g0646300 NLR protein Xoo Tang et al, 2019
Jasmonic acid signaling pathway
HPL3, cea62 Os02g0110200 Hydroperoxide lyase Xoo Liu et al, 2012
LLB, SPL3, MTS1 Os07g0247100 Leucine carboxymethyltransferase M. oryzae and Xoo Tamiru et al, 2016
Salicylic acid and jasmonic acid signaling pathways
SPL3, EDR1, ACDR1, MAPKKK1 Os03g0160100 Mitogen-activated protein kinase kinase kinase kinase M. oryzae Shen et al, 2011
GF14e Os02g0580300 14-3-3 protein Xoo and corn sheath blight Liu et al, 2016
SPL40 Os05g0312000 Structural components of ribosomes Xoo Sathe et al, 2019
Other hormone signaling pathway
SL, ELL1, T5H, CYP71P1, CYP71A1 Os12g0268000 Tryptamine hydroxylase; Cytochrome
P450 monooxygenase
M. oryzae and Xoo Fujiwara et al, 2010; Tian
et al, 2020; Cui et al, 2021
SPL29, UAP1 Os08g0206900 Uridine diphosphate N-acetylglucosamine pyrophosphorylase Xoo Wang et al, 2015

Table 3. Necrotic lesion genes are involved in hormonal pathways.

Gene name Accession number Protein function Disease resistance Reference
Salicylic acid signaling pathway
SSI2 Os01g0919900 Fatty acid dehydrogenase Magnaporthe oryzae and Xanthomonas oryzae (Xoo) Jiang et al, 2009
NPR1, NH1 Os01g0194300 Salicylic acid receptor M. oryzae and Xoo Li et al, 2013; Li et al, 2016; Liu et al, 2017; Zhao et al, 2021; Zhang H H et al, 2023
WRKY6 Os03g0798500 WRKY transcriptional factor M. oryzae Choi et al, 2015; Gao et al, 2020; Im et al, 2022
CUL3a Os02g0746000 Cullin protein M. oryzae and Xoo Liu et al, 2017
PELOTA Os04g0659900 Eukaryotic translation release factor Xoo Zhang et al, 2018
WED Os11g0646300 NLR protein Xoo Tang et al, 2019
Jasmonic acid signaling pathway
HPL3, cea62 Os02g0110200 Hydroperoxide lyase Xoo Liu et al, 2012
LLB, SPL3, MTS1 Os07g0247100 Leucine carboxymethyltransferase M. oryzae and Xoo Tamiru et al, 2016
Salicylic acid and jasmonic acid signaling pathways
SPL3, EDR1, ACDR1, MAPKKK1 Os03g0160100 Mitogen-activated protein kinase kinase kinase kinase M. oryzae Shen et al, 2011
GF14e Os02g0580300 14-3-3 protein Xoo and corn sheath blight Liu et al, 2016
SPL40 Os05g0312000 Structural components of ribosomes Xoo Sathe et al, 2019
Other hormone signaling pathway
SL, ELL1, T5H, CYP71P1, CYP71A1 Os12g0268000 Tryptamine hydroxylase; Cytochrome
P450 monooxygenase
M. oryzae and Xoo Fujiwara et al, 2010; Tian
et al, 2020; Cui et al, 2021
SPL29, UAP1 Os08g0206900 Uridine diphosphate N-acetylglucosamine pyrophosphorylase Xoo Wang et al, 2015
Table 4. Necrotic lesion genes are involved in other signaling pathways.
Gene name Accession number Protein function Disease resistance Reference
SPL18 Os10g0195600 Acyltransferase Magnaporthe oryzae and Xanthomonas oryzae (Xoo) Mori et al, 2007
PTI1A, TTM1 Os05g0135800 Protein kinase M. oryzae and Xoo Takahashi et al, 2007; Matsui et al, 2014
PLDβ1 Os10g0524400 Phospholipase D M. oryzae and Xoo Yamaguchi et al, 2009
NLS1 Os11g0249000 CC-NB-LRR protein Xoo Tang et al, 2011
SPL5, SF3b3, SL5 Os07g0203700 Splicing factor 3b subunit M. oryzae and Xoo Chen et al, 2012
LMS Os02g0639000 Double-stranded RNA binding domain M. oryzae Undan et al, 2012
CslF6 Os08g0160500 Cellulose-like synthase Xoo Vega-Sánchez et al, 2012
DPF, bHLH025 Os01g0196300 bHLH transcription factor M. oryzae Yamamura et al, 2015
WAK25 Os03g0225700 Cell wall associated receptor-like kinases M. oryzae and Xoo Harkenrider et al, 2016
DRP1E Os09g0572900 Motor protein M. oryzae and Xoo Li et al, 2017; Xu et al, 2020
SPL30, ACL-A2, ACLA-3 Os12g0566300 ATP-citrate lyase Xoo Ruan et al, 2019
CNGC9, CDS1 Os09g0558300 Cyclic nucleotide-gated ion channel M. oryzae Wang et al, 2019
RLR1 Os10g0163040 CC-NB-LRR protein M. oryzae and Xoo Du et al, 2021
NBL3 Os03g0159700 Triangular pentapeptide repeat protein M. oryzae and Xoo Qiu et al, 2021
RBL1 Os01g0758400 CDP-DAG M. oryzae and Xoo Sha et al, 2023
RLS1 Os02g0203500 NB-ARM protein Xoo Wang et al, 2023
SPL38, MED16, SFR6 Os10g0498700 RNA polymerase II transcriptional
mediator subunit
M. oryzae and Xoo Zhang P et al, 2023

Table 4. Necrotic lesion genes are involved in other signaling pathways.

Gene name Accession number Protein function Disease resistance Reference
SPL18 Os10g0195600 Acyltransferase Magnaporthe oryzae and Xanthomonas oryzae (Xoo) Mori et al, 2007
PTI1A, TTM1 Os05g0135800 Protein kinase M. oryzae and Xoo Takahashi et al, 2007; Matsui et al, 2014
PLDβ1 Os10g0524400 Phospholipase D M. oryzae and Xoo Yamaguchi et al, 2009
NLS1 Os11g0249000 CC-NB-LRR protein Xoo Tang et al, 2011
SPL5, SF3b3, SL5 Os07g0203700 Splicing factor 3b subunit M. oryzae and Xoo Chen et al, 2012
LMS Os02g0639000 Double-stranded RNA binding domain M. oryzae Undan et al, 2012
CslF6 Os08g0160500 Cellulose-like synthase Xoo Vega-Sánchez et al, 2012
DPF, bHLH025 Os01g0196300 bHLH transcription factor M. oryzae Yamamura et al, 2015
WAK25 Os03g0225700 Cell wall associated receptor-like kinases M. oryzae and Xoo Harkenrider et al, 2016
DRP1E Os09g0572900 Motor protein M. oryzae and Xoo Li et al, 2017; Xu et al, 2020
SPL30, ACL-A2, ACLA-3 Os12g0566300 ATP-citrate lyase Xoo Ruan et al, 2019
CNGC9, CDS1 Os09g0558300 Cyclic nucleotide-gated ion channel M. oryzae Wang et al, 2019
RLR1 Os10g0163040 CC-NB-LRR protein M. oryzae and Xoo Du et al, 2021
NBL3 Os03g0159700 Triangular pentapeptide repeat protein M. oryzae and Xoo Qiu et al, 2021
RBL1 Os01g0758400 CDP-DAG M. oryzae and Xoo Sha et al, 2023
RLS1 Os02g0203500 NB-ARM protein Xoo Wang et al, 2023
SPL38, MED16, SFR6 Os10g0498700 RNA polymerase II transcriptional
mediator subunit
M. oryzae and Xoo Zhang P et al, 2023
Fig. 5. Mining and application potential of necrotic lesion genes. In the process of agricultural production, necrotic lesion mutants can reduce the use of pesticides and save on environmental costs because of their high resistance characteristics. However, it is difficult to implement them in agricultural production under normal conditions. We need to analyze the disease resistance mechanism of necrotic lesion genes using current molecular technology, establish germplasm resource banks through high-throughput genome sequencing, genome-wide association studies (GWAS), and QTL mapping. By integrating gene editing with traditional breeding methods, we can create a new balance of ‘high-yield and high-resistance’.

Fig. 5. Mining and application potential of necrotic lesion genes. In the process of agricultural production, necrotic lesion mutants can reduce the use of pesticides and save on environmental costs because of their high resistance characteristics. However, it is difficult to implement them in agricultural production under normal conditions. We need to analyze the disease resistance mechanism of necrotic lesion genes using current molecular technology, establish germplasm resource banks through high-throughput genome sequencing, genome-wide association studies (GWAS), and QTL mapping. By integrating gene editing with traditional breeding methods, we can create a new balance of ‘high-yield and high-resistance’.

参考文献 96

[1] Bruggeman Q, Raynaud C, Benhamed M, Delarue M. 2015. To die or not to die? Lessons from lesion mimic mutants. Front Plant Sci, 6: 24.
[2] Chang J D, Huang S, Yamaji N, Zhang W W, Ma J F, Zhao F J. 2020. OsNRAMP1 transporter contributes to cadmium and manganese uptake in rice. Plant Cell Environ, 43(10): 2476-2491.
[3] Chen H L, Li C R, Liu L P, Zhao J Y, Cheng X Z, Jiang G H, Zhai W X. 2016. The Fd-GOGAT1 mutant gene lc7 confers resistance to Xanthomonas oryzae pv. oryzae in rice. Sci Rep, 6: 26411.
[4] Chen T, Chen Z, Sathe A P, Zhang Z H, Li L J, Shang H H, Tang S Q, Zhang X B, Wu J L. 2019. Characterization of a novel gain-of-function spotted-leaf mutant with enhanced disease resistance in rice. Rice Sci, 26(6): 372-383.
[5] Chen X F, Hao L, Pan J W, Zheng X X, Jiang G H, Jin Y, Gu Z M, Qian Q, Zhai W X, Ma B J. 2012. SPL5, a cell death and defense- related gene, encodes a putative splicing factor 3b subunit 3 (SF3b3) in rice. Mol Breed, 30(2): 939-949.
[6] Choi C, Hwang S H, Fang I R, Kwon S I, Park S R, Ahn I, Kim J B, Hwang D J. 2015. Molecular characterization of Oryza sativa WRKY6, which binds to W-box-like element 1 of the Oryza sativa pathogenesis-related (PR) 10a promoter and confers reduced susceptibility to pathogens. New Phytol, 208(3): 846-859.
[7] Chu C L, Huang R Y, Liu L P, Tang G L, Xiao J H, Yoo H, Yuan M. 2022. The rice heavy-metal transporter OsNRAMP1 regulates disease resistance by modulating ROS homoeostasis. Plant Cell Environ, 45(4): 1109-1126.
[8] Cui Y J, Peng Y L, Zhang Q, Xia S S, Ruan B P, Xu Q K, Yu X Q, Zhou T T, Liu H, Zeng D L, Zhang G H, Gao Z Y, Hu J, Zhu L, Shen L, Guo L B, Qian Q, Ren D Y. 2021. Disruption of early lesion leaf 1, encoding a cytochrome p450 monooxygenase, induces ROS accumulation and cell death in rice. Plant J, 105(4): 942-956.
[9] Damalas C A, Eleftherohorinos I G. 2011. Pesticide exposure, safety issues, and risk assessment indicators. Int J Environ Res Public Health, 8(5): 1402-1419.
[10] Danon A, Miersch O, Felix G, Camp R G L, Apel K. 2005. Concurrent activation of cell death-regulating signaling pathways by singlet oxygen in Arabidopsis thaliana. Plant J, 41(1): 68-80.
[11] Du D, Zhang C W, Xing Y D, Lu X, Cai L J, Yun H, Zhang Q L, Zhang Y Y, Chen X L, Liu M M, Sang X C, Ling Y H, Yang Z L, Li Y F, Lefebvre B, He G H. 2021. The CC-NB-LRR OsRLR1 mediates rice disease resistance through interaction with OsWRKY19. Plant Biotechnol J, 19(5): 1052-1064.
[12] Fan J B, Bai P F, Ning Y S, Wang J Y, Shi X T, Xiong Y H, Zhang K, He F, Zhang C Y, Wang R Y, Meng X Z, Zhou J G, Wang M, Shirsekar G, Park C H, Bellizzi M, Liu W D, Jeon J S, Xia Y, Shan L B, Wang G L. 2018. The monocot-specific receptor-like kinase SDS2 controls cell death and immunity in rice. Cell Host Microbe, 23(4): 498-510.e5.
[13] Fekih R, Tamiru M, Kanzaki H, Abe A, Yoshida K, Kanzaki E, Saitoh H, Takagi H, Natsume S, Undan J R, Undan J, Terauchi R. 2015. The rice (Oryza sativa L.) LESION MIMIC RESEMBLING, which encodes an AAA-type ATPase, is implicated in defense response. Mol Genet Genomics, 290(2): 611-622.
[14] Feng X J, Zhang L, Wei X L, Zhou Y, Dai Y, Zhu Z. 2020. OsJAZ13 negatively regulates jasmonate signaling and activates hypersensitive cell death response in rice. Int J Mol Sci, 21(12): 4379.
[15] Fujiwara T, Maisonneuve S, Isshiki M, Mizutani M, Chen L T, Wong H L, Kawasaki T, Shimamoto K. 2010. Sekiguchi lesion gene encodes a cytochrome P450 monooxygenase that catalyzes conversion of tryptamine to serotonin in rice. J Biol Chem, 285(15): 11308-11313.
[16] Gao C X. 2021. Genome engineering for crop improvement and future agriculture. Cell, 184(6): 1621-1635.
[17] Gao X Q, Sun X Y, Peng Y Y, Huang Y Y, Liu M Q, Weng X Y. 2020. WRKY transcription factor functions as a transcriptional regulator of xylanase inhibitor RIXI, involved in rice disease resistance to Magnaporthe oryzae. J Plant Biol, 63(3): 177-188.
[18] Harkenrider M, Sharma R, de Vleesschauwer D, Tsao L, Zhang X T, Chern M, Canlas P, Zuo S M, Ronald P C. 2016. Overexpression of rice wall-associated kinase 25 (OsWAK25) alters resistance to bacterial and fungal pathogens. PLoS One, 11(1): e0147310.
[19] Hoang T V, Vo K T X, Rahman M M, Choi S H, Jeon J S. 2019. Heat stress transcription factor OsSPL7 plays a critical role in reactive oxygen species balance and stress responses in rice. Plant Sci, 289: 110273.
[20] Im J H, Choi C, Park S R, Hwang D J. 2022. The OsWRKY6 transcriptional cascade functions in basal defense and Xa1- mediated defense of rice against Xanthomonas oryzae pv. oryzae. Planta, 255(2): 47.
[21] Jiang C J, Shimono M, Maeda S, Inoue H, Mori M, Hasegawa M, Sugano S, Takatsuji H. 2009. Suppression of the rice fatty-acid desaturase gene OsSSI2 enhances resistance to blast and leaf blight diseases in rice. Mol Plant-Microbe Interact, 22(7): 820-829.
[22] Jiao B B, Wang J J, Zhu X D, Zeng L J, Li Q, He Z H. 2012. A novel protein RLS1 with NB-ARM domains is involved in chloroplast degradation during leaf senescence in rice. Mol Plant, 5(1): 205-217.
[23] Jiao R, Xu N, Hu J, Song Z L, Hu J Q, Rao Y C, Wang Y X. 2018. Advances in traits of lesion mimic mutants and its molecular mechanisms in rice. Chin J Rice Sci, 32(3): 285-295. (in Chinese with English abstract)
[24] Jung Y H, Lee J H, Agrawal G K, Rakwal R, Kim J A, Shim J K, Lee S K, Jeon J S, Koh H J, Lee Y H, Iwahashi H, Jwa N S. 2005. The rice (Oryza sativa) blast lesion mimic mutant, blm, may confer resistance to blast pathogens by triggering multiple defense-associated signaling pathways. Plant Physiol Biochem, 43(4): 397-406.
[25] Li R, Afsheen S, Xin Z J, Han X, Lou Y G. 2013. OsNPR1 negatively regulates herbivore-induced JA and ethylene signaling and plant resistance to a chewing herbivore in rice. Physiol Plant, 147(3): 340-351.
[26] Li X Z, Yang D L, Sun L, Li Q, Mao B Z, He Z H. 2016. The systemic acquired resistance regulator OsNPR1 attenuates growth by repressing auxin signaling through promoting IAA-amido synthase expression. Plant Physiol, 172(1): 546-558.
[27] Li Z Q, Ding B, Zhou X P, Wang G L. 2017. The rice dynamin- related protein OsDRP1E negatively regulates programmed cell death by controlling the release of cytochrome c from mitochondria. PLoS Pathog, 13(1): e1006157.
[28] Li Z Y, Mo W P, Jia L Q, Xu Y C, Tang W J, Yang W Q, Guo Y L, Lin R C. 2019. Rice FLUORESCENT1 is involved in the regulation of chlorophyll. Plant Cell Physiol, 60(10): 2307-2318.
[29] Liang C Z, Zheng G Y, Li W Z, Wang Y Q, Hu B, Wang H R, Wu H K, Qian Y W, Zhu X G, Tan D X, Chen S Y, Chu C C. 2015. Melatonin delays leaf senescence and enhances salt stress tolerance in rice. J Pineal Res, 59(1): 91-101.
[30] Lin Z P, Zeng W, Guo H Y, Ye S H, Zhu G F, Zhai R R, Ye J, Wu M M, Zhang X M. 2022. Research progress on cloning and regulation mechanism of lesion mimic related genes in rice. Mol Plant Breed, 2022: 1-13. (in Chinese with English abstract)
[31] Liu C T, Mao B G, Yuan D Y, Chu C C, Duan M J. 2022. Salt tolerance in rice: Physiological responses and molecular mechanisms. Crop J, 10(1): 13-25.
[32] Liu J L, Park C H, He F, Nagano M, Wang M, Bellizzi M, Zhang K, Zeng X S, Liu W D, Ning Y S, Kawano Y, Wang G L. 2015. The RhoGAP SPIN6 associates with SPL11 and OsRac1 and negatively regulates programmed cell death and innate immunity in rice. PLoS Pathog, 11(2): e1004629.
[33] Liu M M, Shi Z Y, Zhang X H, Wang M X, Zhang L, Zheng K Z, Liu J Y, Hu X M, Di C R, Qian Q, He Z H, Yang D L. 2019. Inducible overexpression of Ideal Plant Architecture1 improves both yield and disease resistance in rice. Nat Plants, 5(4): 389-400.
[34] Liu Q, Yang J Y, Zhang S H, Zhao J L, Feng A Q, Yang T F, Wang X F, Mao X X, Dong J F, Zhu X Y, Leung H, Leach J E, Liu B. 2016. OsGF14e positively regulates panicle blast resistance in rice. Biochem Biophys Res Commun, 471(1): 247-252.
[35] Liu Q E, Ning Y S, Zhang Y X, Yu N, Zhao C D, Zhan X D, Wu W X, Chen D B, Wei X J, Wang G L, Cheng S H, Cao L Y. 2017. OsCUL3a negatively regulates cell death and immunity by degrading OsNPR1 in rice. Plant Cell, 29(2): 345-359.
[36] Liu X Q, Li F, Tang J Y, Wang W H, Zhang F X, Wang G D, Chu J F, Yan C Y, Wang T Q, Chu C C, Li C Y. 2012. Activation of the jasmonic acid pathway by depletion of the hydroperoxide lyase OsHPL3 reveals crosstalk between the HPL and AOS branches of the oxylipin pathway in rice. PLoS One, 7(11): e50089.
[37] Ma H G, Li J, Ma L, Wang P L, Xue Y, Yin P, Xiao J H, Wang S P. 2021. Pathogen-inducible OsMPKK10.2-OsMPK 6 cascade phosphorylates the Raf-like kinase OsEDR1 and inhibits its scaffold function to promote rice disease resistance. Mol Plant, 14(4): 620-632.
[38] Ma J, Wang Y F, Ma X D, Meng L Z, Jing R N, Wang F, Wang S, Cheng Z J, Zhang X, Jiang L, Wang J L, Wang J, Zhao Z C, Guo X P, Lin Q B, Wu F Q, Zhu S S, Wu C Y, Ren Y L, Lei C L, Zhai H Q, Wan J M. 2019. Disruption of gene SPL35, encoding a novel CUE domain-containing protein, leads to cell death and enhanced disease response in rice. Plant Biotechnol J, 17(8): 1679-1693.
[39] Matsui H, Fujiwara M, Hamada S, Shimamoto K, Nomura Y, Nakagami H, Takahashi A, Hirochika H. 2014. Plasma membrane localization is essential for Oryza sativa Pto-interacting protein 1a-mediated negative regulation of immune signaling in rice. Plant Physiol, 166(1): 327-336.
[40] McGrann G R D, Steed, Burt C, Nicholson P, Brown J K M. 2015. Differential effects of lesion mimic mutants in barley on disease development by facultative pathogens. J Exp Bot, 66(11): 3417-3428.
[41] Meng X Z, Zhang S Q. 2013. MAPK cascades in plant disease resistance signaling. Annu Rev Phytopathol, 51: 245-266.
[42] Mori M, Tomita C, Sugimoto K, Hasegawa M, Hayashi N, Dubouzet J G, Ochiai H, Sekimoto H, Hirochika H, Kikuchi S. 2007. Isolation and molecular characterization of a Spotted leaf 18 mutant by modified activation-tagging in rice. Plant Mol Biol, 63(6): 847-860.
[43] Nalley L, Tsiboe F, Durand-Morat A, Shew A, Thoma G. 2016. Economic and environmental impact of rice blast pathogen (Magnaporthe oryzae) alleviation in the United States. PLoS One, 11(12): e0167295.
[44] Qiao Y L, Jiang W Z, Lee J, Park B, Choi M S, Piao R H, Woo M O, Roh J H, Han L Z, Paek N C, Seo H S, Koh H J. 2010. SPL28 encodes a clathrin-associated adaptor protein complex 1, medium subunit μ1 (AP1M1) and is responsible for spotted leaf and early senescence in rice (Oryza sativa). New Phytol, 185(1): 258-274.
[45] Qin P, Fan S J, Deng L C, Zhong G R, Zhang S W, Li M, Chen W L, Wang G L, Tu B, Wang Y P, Chen X W, Ma B T, Li S G. 2018. LML1, encoding a conserved eukaryotic release factor 1 protein, regulates cell death and pathogen resistance by forming a conserved complex with SPL33 in rice. Plant Cell Physiol, 59(5): 887-902.
[46] Qiu T C, Zhao X S, Feng H J, Qi L L, Yang J, Peng Y L, Zhao W S. 2021. OsNBL3, a mitochondrion-localized pentatricopeptide repeat protein, is involved in splicing nad5 intron 4 and its disruption causes lesion mimic phenotype with enhanced resistance to biotic and abiotic stresses. Plant Biotechnol J, 19(11): 2277-2290.
[47] Rao Y C, Jiao R, Wang S, Wu X M, Ye H F, Pan C Y, Li S F, Xin D D, Zhou W Y, Dai G X, Hu J, Ren D Y, Wang Y X. 2021. SPL36 encodes a receptor-like protein kinase that regulates programmed cell death and defense responses in rice. Rice, 14(1): 34.
[48] Ren D Y, Xie W, Xu Q K, Hu J, Zhu L, Zhang G H, Zeng D L, Qian Q. 2022. LSL1 controls cell death and grain production by stabilizing chloroplast in rice. Sci China: Life Sci, 65(11): 2148-2161.
[49] Ren D Y, Ding C Q, Qian Q. 2023. Molecular bases of rice grain size and quality for optimized productivity. Sci Bull, 68(3): 314-350.
[50] Reyes V P. 2023. Fantastic genes: Where and how to find them? Exploiting rice genetic resources for the improvement of yield, tolerance, and resistance to a wide array of stresses in rice. Funct Integr Genomic, 23(3): 238.
[51] Ruan B P, Hua Z H, Zhao J, Zhang B, Ren D Y, Liu C L, Yang S L, Zhang A P, Jiang H Z, Yu H P, Hu J, Zhu L, Chen G, Shen L, Dong G J, Zhang G H, Zeng D L, Guo L B, Qian Q, Gao Z Y. 2019. OsACL-A2 negatively regulates cell death and disease resistance in rice. Plant Biotechnol J, 17(7): 1344-1356.
[52] Saijo Y, Loo E P I. 2020. Plant immunity in signal integration between biotic and abiotic stress responses. New Phytol, 225(1): 87-104.
[53] Sakuraba Y, Rahman M L, Cho S H, Kim Y S, Koh H J, Yoo S C, Paek N C. 2013. The rice faded green leaf locus encodes protochlorophyllide oxidoreductase B and is essential for chlorophyll synthesis under high light conditions. Plant J, 74(1): 122-133.
[54] Sathe A P, Su X N, Chen Z, Chen T, Wei X J, Tang S Q, Zhang X B, Wu J L. 2019. Identification and characterization of a spotted- leaf mutant spl40 with enhanced bacterial blight resistance in rice. Rice, 12(1): 68.
[55] Sha G, Sun P, Kong X J, Han X Y, Sun Q P, Fouillen L, Zhao J, Li Y, Yang L, Wang Y, Gong Q W, Zhou Y R, Zhou W Q, Jain R, Gao J, Huang R L, Chen X Y, Zheng L, Zhang W Y, Qin Z T, Zhou Q, Zeng Q D, Xie K B, Xu J D, Chiu T Y, Guo L, Mortimer J C, Boutté Y, Li Q, Kang Z S, Ronald P C, Li G T. 2023. Genome editing of a rice CDP-DAG synthase confers multipathogen resistance. Nature, 618: 1017-1023.
[56] Shang H H, Li P P, Zhang X B, Xu X, Gong J Y, Yang S H, He Y Q, Wu J L. 2022. The gain-of-function mutation, OsSpl26, positively regulates plant immunity in rice. Int J Mol Sci, 23(22): 14168.
[57] Shen W X, Shi X P, Du H B, Feng Z M, Chen Z X, Hu K M, Fan J B, Zuo S M. 2022. Research advances in gene cloning and occurrence mechanism of rice lesion mimic mutants. Jiangsu J Agric Sci, 38(3): 837-848. (in Chinese with English abstract)
[58] Shen X L, Liu H B, Yuan B, Li X H, Xu C G, Wang S P. 2011. OsEDR1 negatively regulates rice bacterial resistance via activation of ethylene biosynthesis. Plant Cell Environ, 34(2): 179-191.
[59] Sun C H, Liu L C, Tang J Y, Lin A H, Zhang F T, Fang J, Zhang G F, Chu C C. 2011. RLIN1, encoding a putative coproporphyrinogen III oxidase, is involved in lesion initiation in rice. J Genet Genomics, 38(1): 29-37.
[60] Sun X B, Dai X M, Wang Y J, Han L B. 2010. Advances in programmed cell death in plants. Biotechnol Bull, (11): 1-6. (in Chinese with English abstract)
[61] Takahashi A, Agrawal G K, Yamazaki M, Onosato K, Miyao A, Kawasaki T, Shimamoto K, Hirochika H. 2007. Rice Pti1a negatively regulates RAR1-dependent defense responses. Plant Cell, 19(9): 2940-2951.
[62] Tamiru M, Takagi H, Abe A, Yokota T, Kanzaki H, Okamoto H, Saitoh H, Takahashi H, Fujisaki K, Oikawa K, Uemura A, Natsume S, Jikumaru Y, Matsuura H, Umemura K, Terry M J, Terauchi R. 2016. A chloroplast-localized protein lesion and lamina bending affects defence and growth responses in rice. New Phytol, 210(4): 1282-1297.
[63] Tang J Y, Zhu X D, Wang Y Q, Liu L C, Xu B, Li F, Fang J, Chu C C. 2011. Semi-dominant mutations in the CC-NB-LRR-type R gene, NLS1, lead to constitutive activation of defense responses in rice. Plant J, 66(6): 996-1007.
[64] Tang J Y, Wang Y Q, Yin W C, Dong G J, Sun K, Teng Z F, Wu X J, Wang S M, Qian Y W, Pan X B, Qian Q, Chu C C. 2019. Mutation of a nucleotide-binding leucine-rich repeat immune receptor-type protein disrupts immunity to bacterial blight. Plant Physiol, 181(3): 1295-1313.
[65] Tian D G, Yang F, Niu Y Q, Lin Y, Chen Z J, Li G, Luo Q, Wang F, Wang M. 2020. Loss function of SL (sekiguchi lesion) in the rice cultivar Minghui 86 leads to enhanced resistance to (hemi) biotrophic pathogens. BMC Plant Biol, 20(1): 507.
[66] Tong X H, Qi J F, Zhu X D, Mao B Z, Zeng L J, Wang B H, Li Q, Zhou G X, Xu X J, Lou Y G, He Z H. 2012. The rice hydroperoxide lyase OsHPL3 functions in defense responses by modulating the oxylipin pathway. Plant J, 71(5): 763-775.
[67] Undan J R, Tamiru M, Abe A, Yoshida K, Kosugi S, Takagi H, Yoshida K, Kanzaki H, Saitoh H, Fekih R, Sharma S, Undan J, Yano M, Terauchi R. 2012. Mutation in OsLMS, a gene encoding a protein with two double-stranded RNA binding motifs, causes lesion mimic phenotype and early senescence in rice (Oryza sativa L.). Genes Genet Syst, 87(3): 169-179.
[68] Vega-Sánchez M E, Verhertbruggen Y, Christensen U, Chen X W, Sharma V, Varanasi P, Jobling S A, Talbot M, White R G, Joo M, Singh S, Auer M, Scheller H V, Ronald P C. 2012. Loss of Cellulose Synthase-like F6 function affects mixed-linkage glucan deposition, cell wall mechanical properties, and defense responses in vegetative tissues of rice. Plant Physiol, 159(1): 56-69.
[69] Wang J, Ye B Q, Yin J J, Yuan C, Zhou X G, Li W T, He M, Wang J C, Chen W L, Qin P, Ma B T, Wang Y P, Li S G, Chen X W. 2015. Characterization and fine mapping of a light-dependent leaf lesion mimic mutant 1 in rice. Plant Physiol Biochem, 97: 44-51.
[70] Wang J, Zhou L, Shi H, Chern M, Yu H, Yi H, He M, Yin J J, Zhu X B, Li Y, Li W T, Liu J L, Wang J C, Chen X Q, Qing H, Wang Y P, Liu G F, Wang W M, Li P, Wu X J, Zhu L H, Zhou J M, Ronald P C, Li S G, Li J Y, Chen X W. 2018. A single transcription factor promotes both yield and immunity in rice. Science, 361:1026-1028.
[71] Wang J C, Liu X, Zhang A, Ren Y L, Wu F Q, Wang G, Xu Y, Lei C L, Zhu S S, Pan T, Wang Y F, Zhang H, Wang F, Tan Y Q, Wang Y P, Jin X, Luo S, Zhou C L, Zhang X, Liu J L, Wang S, Meng L Z, Wang Y H, Chen X, Lin Q B, Zhang X, Guo X P, Cheng Z J, Wang J L, Tian Y L, Liu S J, Jiang L, Wu C Y, Wang E T, Zhou J M, Wang Y F, Wang H Y, Wan J M. 2019. A cyclic nucleotide-gated channel mediates cytoplasmic calcium elevation and disease resistance in rice. Cell Res, 29(10): 820-831.
[72] Wang J J, Zhang L X, Wang L Y, Zhang L H, Zhu C N, He Z H, Jin Q S, Fan H H, Yu X. 2010. Response to illumination induction and effect of temperature on lesion formation of lrd (lesion resembling disease) in rice. Sci Agric Sin, 43(10): 2039-2044. (in Chinese with English abstract)
[73] Wang L J, Pei Z Y, Tian Y C, He C Z. 2005. OsLSD1, a rice zinc finger protein, regulates programmed cell death and callus differentiation. Mol Plant-Microbe Interact, 18(5): 375-384.
[74] Wang S, Lei C L, Wang J L, Ma J, Tang S, Wang C L, Zhao K J, Tian P, Zhang H, Qi C Y, Cheng Z J, Zhang X, Guo X P, Liu L L, Wu C Y, Wan J M. 2017. SPL33, encoding an eEF1A-like protein, negatively regulates cell death and defense responses in rice. J Exp Bot, 68(5): 899-913.
[75] Wang X J, Gan P F, Tang C L, Kang Z S. 2020. Plant disease resistance and disease green prevention and control: Major Scientific issues and future research directions. Bull Natl Nat Sci Found China, 34(4): 381-392. (in Chinese with English abstract)
[76] Wang Y Q, Teng Z F, Li H, Wang W, Xu F, Sun K, Chu J F, Qian Y W, Loake G J, Chu C C, Tang J Y. 2023. An activated form of NB-ARC protein RLS1 functions with cysteine-rich receptor- like protein RMC to trigger cell death in rice. Plant Commun, 4(2): 100459.
[77] White R F. 1979. Acetylsalicylic acid (aspirin) induces resistance to tobacco mosaic virus in tobacco. Virology, 99(2): 410-412.
[78] Xia S S, Liu H, Cui Y J, Yu H P, Rao Y C, Yan Y P, Zeng D L, Hu J, Zhang G H, Gao Z Y, Zhu L, Shen L, Zhang Q, Li Q, Dong G J, Guo L B, Qian Q, Ren D Y. 2022. UDP-N-acetylglucosamine pyrophosphorylase enhances rice survival at high temperature. New Phytol, 233(1): 344-359.
[79] Xu G J, Zhong X H, Shi Y L, Liu Z, Jiang N, Liu J, Ding B, Li Z Q, Kang H X, Ning Y S, Liu W D, Guo Z J, Wang G L, Wang X L. 2020. A fungal effector targets a heat shock-dynamin protein complex to modulate mitochondrial dynamics and reduce plant immunity. Sci Adv, 6: eabb7719.
[80] Yamaguchi T, Kuroda M, Yamakawa H, Ashizawa T, Hirayae K, Kurimoto L, Shinya T, Shibuya N. 2009. Suppression of a phospholipase D gene, OsPLDβ1, activates defense responses and increases disease resistance in rice. Plant Physiol, 150(1): 308-319.
[81] Yamamura C, Mizutani E, Okada K, Nakagawa H, Fukushima S, Tanaka A, Maeda S, Kamakura T, Yamane H, Takatsuji H, Mori M. 2015. Diterpenoid phytoalexin factor, a bHLH transcription factor, plays a central role in the biosynthesis of diterpenoid phytoalexins in rice. Plant J, 84(6): 1100-1113.
[82] Yan J J, Fang Y X, Xue D W. 2022. Advances in the genetic basis and molecular mechanism of lesion mimic formation in rice. Plants, 11(16): 2169.
[83] Yao Y, Zhou J H, Cheng C, Niu F, Zhang A P, Sun B, Tu R J, Wan J N, Li Y, Huang Y W, Xie K Z, Dai Y T, Zhang H, Hong J H, Pan X H, Zhu J J, Zhou H, Liu Z H, Cao L M, Chu H W. 2021. A conserved clathrin-coated vesicle component, OsSCYL2, regulates plant innate immunity in rice. Plant Cell Environ, 45(2): 542-555.
[84] Yin Z C, Chen J, Zeng L R, Goh M, Leung H, Khush G S, Wang G L. 2000. Characterizing rice lesion mimic mutants and identifying a mutant with broad-spectrum resistance to rice blast and bacterial blight. Mol Plant-Microbe Interact, 13(8): 869-876.
[85] You Q Y, Zhai K R, Yang D L, Yang W B, Wu J N, Liu J Z, Pan W B, Wang J J, Zhu X D, Jian Y K, Liu J Y, Zhang Y Y, Deng Y W, Li Q, Lou Y G, Xie Q, He Z H. 2016. An E3 ubiquitin ligase- BAG protein module controls plant innate immunity and broad- spectrum disease resistance. Cell Host Microbe, 20(6): 758-769.
[86] Yuan Y X, Zhong S H, Li Q, Zhu Z R, Lou Y G, Wang L Y, Wang J J, Wang M Y, Li Q L, Yang D L, He Z H. 2007. Functional analysis of rice NPR1-like genes reveals that OsNPR1/NH1 is the rice orthologue conferring disease resistance with enhanced herbivore susceptibility. Plant Biotechnol J, 5(2): 313-324.
[87] Zavafer A, González-Solís A, Palacios-Bahena S, Saucedo-García M, Tapia de Aquino C, Vázquez-Santana S, King-Díaz B, Gavilanes-Ruiz M. 2020. Organized disassembly of photosynthesis during programmed cell death mediated by long chain bases. Sci Rep, 10: 10360.
[88] Zhang H H, Wang F M, Song W Q, Yang Z H, Li L L, Ma Q, Tan X X, Wei Z Y, Li Y J, Li J M, Yan F, Chen J P, Sun Z T. 2023. Different viral effectors suppress hormone-mediated antiviral immunity of rice coordinated by OsNPR1. Nat Commun, 14(1): 3011.
[89] Zhang P, Ma X D, Liu L N, Mao C J, Hu Y K, Yan B X, Guo J, Liu X Y, Shi J X, Lee G S, Pan X W, Deng Y W, Zhang Z G, Kang Z S, Qiao Y L. 2023. MEDIATOR SUBUNIT 16 negatively regulates rice immunity by modulating PATHOGENESIS RELATED 3 activity. Plant Physiol, 192(2): 1132-1150.
[90] Zhang X B, Feng B H, Wang H M, Xu X, Shi Y F, He Y, Chen Z, Sathe A P, Shi L, Wu J L. 2018. A substitution mutation in OsPELOTA confers bacterial blight resistance by activating the salicylic acid pathway. J Integr Plant Biol, 60(2): 160-172.
[91] Zhang Y, Liu Q E, Zhang Y X, Chen Y Y, Yu N, Cao Y R, Zhan X D, Cheng S H, Cao L Y. 2019. LMM24 encodes receptor-like cytoplasmic kinase 109, which regulates cell death and defense responses in rice. Int J Mol Sci, 20(13): 3243.
[92] Zhao J Y, Liu P C, Li C R, Wang Y Y, Guo L Q, Jiang G H, Zhai W X. 2017. LMM5.1 and LMM5.4, two eukaryotic translation elongation factor 1A-like gene family members, negatively affect cell death and disease resistance in rice. J Genet Genomics, 44(2): 107-118.
[93] Zhao X S, Qiu T C, Feng H J, Yin C F, Zheng X M, Yang J, Peng Y L, Zhao W S. 2021. A novel glycine-rich domain protein, GRDP1, functions as a critical feedback regulator for controlling cell death and disease resistance in rice. J Exp Bot, 72(2): 608-622.
[94] Zhao Y, Zhu X B, Chen X W, Zhou J M. 2022. From plant immunity to crop disease resistance. J Genet Genomics, 49(8): 693-703.
[95] Zhu X B, Yin J J, Liang S H, Liang R H, Zhou X G, Chen Z X, Zhao W, Wang J, Li W T, He M, Yuan C, Miyamoto K, Ma B T, Wang J C, Qin P, Chen W L, Wang Y P, Wang W M, Wu X J, Yamane H, Zhu L H, Li S G, Chen X W. 2016. The multivesicular bodies (MVBs)-localized AAA ATPase LRD6-6 inhibits immunity and cell death likely through regulating MVBs-mediated vesicular trafficking in rice. PLoS Genet, 12(9): e1006311.
[96] Zhu X B, Ze M, Mawsheng C, Chen X W, Wang J. 2020. Deciphering rice lesion mimic mutants to understand molecular network governing plant immunity and growth. Rice Sci, 27(4): 278-288.

相关文章 0

No related articles found!

编辑推荐

Metrics

阅读次数
全文


摘要

  • 摘要
  • 图/表
  • 参考文献
  • 相关文章
  • 编辑推荐
  • Metrics
回顶部
浙ICP备05004719号-15   公安备案号:33010302003355
版权所有 © 《Rice Science》编辑部
地址:浙江省杭州市体育场路359号 邮编:310006 电话:0571-63371017 E-mail:crrn@fy.hz.zn.cn; cjrs278@gmail.com
本系统由北京玛格泰克科技发展有限公司设计开发
总访问量: 今日访问: 在线人数: