Rice Science
  • 首页
  • 期刊介绍
  • 编委会
  • 学术伦理
  • 投稿指南
  • 期刊订阅
  • 联系我们
  • English

Rice Science ›› 2025, Vol. 32 ›› Issue (5): 603-606.DOI: 10.1016/j.rsci.2025.04.010

• • 上一篇    下一篇

  • 收稿日期:2025-01-17 接受日期:2025-04-03 出版日期:2025-09-28 发布日期:2025-10-11

RichHTML

PDF

补充材料

1

可视化

0
  • 1. Supplemental Data.pdf(842KB)

摘要/Abstract

引用本文

. [J]. Rice Science, 2025, 32(5): 603-606.

使用本文

推荐

导出引用管理器 EndNote|Ris|BibTeX

链接本文: http://www.ricesci.org/CN/10.1016/j.rsci.2025.04.010

               http://www.ricesci.org/CN/Y2025/V32/I5/603

图/表 1

Fig. 1. Genetic analysis and multi-generation heterosis assessment in neo-tetraploid rice. A, Plant type (scale bars, 20 cm), panicles (scale bars, 2 cm), pollen grains stained with 1% I2-KI solution (scale bars, 100 μm), and mature embryo sacs (scale bars, 40 μm) of H3d, H8d, H3, and H8. B, Pollen fertility and embryo sac fertility of H3d, H8d, H3, and H8. C, Distribution of polymorphic loci on 12 rice chromosomes (Chr). D, Location of molecular markers (M2, M5, M11, M12, M14, M16, M22, and M28) on chromosome 11. E, Genotyping of H3, H3d, H8, and H8d using molecular markers. ‘M’ indicates DNA marker; M2, M5, M11, M12, M14, M16, M22, and M28 denote polymorphic molecular markers. F‒H, Distributions of molecular marker genotypes (F), recombinant individuals relative to marker M16 (G), and ΔSNP-index on chromosome 11 (H) in diploid (2×) and tetraploid (4×) F2 populations. I, Heterozygote frequencies in 2× and 4× populations from F1 to F8 generations. J and K, Multi-generation heterosis assessment of grain yield per plant in tetraploid hybrids and their parental lines (n ≥ 3). ‘H38’ and ‘H49’ indicate the offspring of H3 × H8 and T449 × H1, respectively. ‘n’ indicates the total number of samples observed in B and G. Different letters above bars in B and K indicate significant differences (uppercase letters: α = 0.01; lowercase letters: α = 0.05; one-way analysis of variance with least significant difference test).

Fig. 1. Genetic analysis and multi-generation heterosis assessment in neo-tetraploid rice. A, Plant type (scale bars, 20 cm), panicles (scale bars, 2 cm), pollen grains stained with 1% I2-KI solution (scale bars, 100 μm), and mature embryo sacs (scale bars, 40 μm) of H3d, H8d, H3, and H8. B, Pollen fertility and embryo sac fertility of H3d, H8d, H3, and H8. C, Distribution of polymorphic loci on 12 rice chromosomes (Chr). D, Location of molecular markers (M2, M5, M11, M12, M14, M16, M22, and M28) on chromosome 11. E, Genotyping of H3, H3d, H8, and H8d using molecular markers. ‘M’ indicates DNA marker; M2, M5, M11, M12, M14, M16, M22, and M28 denote polymorphic molecular markers. F‒H, Distributions of molecular marker genotypes (F), recombinant individuals relative to marker M16 (G), and ΔSNP-index on chromosome 11 (H) in diploid (2×) and tetraploid (4×) F2 populations. I, Heterozygote frequencies in 2× and 4× populations from F1 to F8 generations. J and K, Multi-generation heterosis assessment of grain yield per plant in tetraploid hybrids and their parental lines (n ≥ 3). ‘H38’ and ‘H49’ indicate the offspring of H3 × H8 and T449 × H1, respectively. ‘n’ indicates the total number of samples observed in B and G. Different letters above bars in B and K indicate significant differences (uppercase letters: α = 0.01; lowercase letters: α = 0.05; one-way analysis of variance with least significant difference test).

参考文献 12

[1] Chen L, Yuan Y, Wu J W, et al. 2019. Carbohydrate metabolism and fertility related genes high expression levels promote heterosis in autotetraploid rice harboring double neutral genes. Rice, 12(1): 34.
[2] Chen Y, Shahid M Q, Wu J W, et al. 2022. Thermo-sensitive genic male sterile lines of neo-tetraploid rice developed through gene editing technology revealed high levels of hybrid vigor. Plants, 11(11): 1390.
[3] Corneillie S, de Storme N, van Acker R, et al. 2019. Polyploidy affects plant growth and alters cell wall composition. Plant Physiol, 179(1): 74-87.
[4] He Y C, Ge J, Wei Q, et al. 2011. Using a polyploid meiosis stability (PMeS) line as a parent improves embryo development and the seed set rate of a tetraploid rice hybrid. Can J Plant Sci, 91(2): 325-335.
[5] Lu Z J, Huang W C, Ge Q, et al. 2024. Seed development-related genes contribute to high yield heterosis in integrated utilization of elite autotetraploid and neo-tetraploid rice. Front Plant Sci, 15: 1421207.
[6] Wang L F, Cao S, Wang P T, et al. 2021. DNA hypomethylation in tetraploid rice potentiates stress-responsive gene expression for salt tolerance. Proc Natl Acad Sci USA, 118(13): e2023981118.
[7] Wang M M, Yang J, Wan J P, et al. 2020. A hybrid sterile locus leads to the linkage drag of interspecific hybrid progenies. Plant Divers, 42(5): 370-375.
[8] Wang Y Z, Fuentes R R, van Rengs W M J, et al. 2024. Harnessing clonal gametes in hybrid crops to engineer polyploid genomes. Nat Genet, 56(6): 1075-1079.
[9] Westermann J, Srikant T, Gonzalo A, et al. 2024. Defective pollen tube tip growth induces neo-polyploid infertility. Science, 383: eadh0755.
[10] Wu J W, Shahid M Q, Chen L, et al. 2015. Polyploidy enhances F1 pollen sterility loci interactions that increase meiosis abnormalities and pollen sterility in autotetraploid rice. Plant Physiol, 169(4): 2700-2717.
[11] Yu H, Shahid M Q, Li Q H, et al. 2020. Production assessment and genome comparison revealed high yield potential and novel specific alleles associated with fertility and yield in neo-tetraploid rice. Rice, 13(1): 32.
[12] Yu H, Lin T, Meng X B, et al. 2021. A route to de novo domestication of wild allotetraploid rice. Cell, 184(5): 1156-1170.e14.

相关文章 0

No related articles found!

编辑推荐

Metrics

阅读次数
全文


摘要

  • 摘要
  • 图/表
  • 参考文献
  • 相关文章
  • 编辑推荐
  • Metrics
回顶部
浙ICP备05004719号-15   公安备案号:33010302003355
版权所有 © 《Rice Science》编辑部
地址:浙江省杭州市体育场路359号 邮编:310006 电话:0571-63371017 E-mail:crrn@fy.hz.zn.cn; cjrs278@gmail.com
本系统由北京玛格泰克科技发展有限公司设计开发
总访问量: 今日访问: 在线人数: