Rice Science
  • 首页
  • 期刊介绍
  • 编委会
  • 学术伦理
  • 投稿指南
  • 期刊订阅
  • 联系我们
  • English

Rice Science ›› 2016, Vol. 23 ›› Issue (4): 196-202.DOI: 10.1016/j.rsci.2016.06.002

• • 上一篇    下一篇

  • 收稿日期:2015-07-17 接受日期:2015-10-19 出版日期:2016-07-28 发布日期:2016-04-11

RichHTML

PDF

可视化

0

摘要/Abstract

引用本文

. [J]. Rice Science, 2016, 23(4): 196-202.

使用本文

0
    /   推荐

导出引用管理器 EndNote|Ris|BibTeX

链接本文: http://www.ricesci.org/CN/10.1016/j.rsci.2016.06.002

               http://www.ricesci.org/CN/Y2016/V23/I4/196

图/表 6

Table 1 General description of field sampling sites.
Location No. Location Country GPS position Topography Land use Fertilizer use
Latitude (N) Longitude (E) Lowland a Upland
1 Malanville Benin 11°52′ 3°23′ FP Rice (60) - Yes
2 Wanrarou Benin 10°10′ 2°44′ IV Rice (5) Fallow No
3 Materi Benin 10°42′ 1°02′ IV Rice (9) Maize No
4 Tiele Benin 10°43′ 1°12′ IV Rice (15) - No
5 Kandi Benin 11°07′ 2°55′ IV Rice (20) Beans Yes
6 Tampegre Benin 10°24′ 1°21′ IV Rice (50) - No
7 Sori Benin 10°42′ 2°47′ IV Rice (7) Fallow No
8 Beket-Bourame Benin 10°18′ 1°44′ IV Rice (20) - No
9 Ndali Benin 9°50′ 2°42′ IV Rice (17) Maize No
10 Kommon Benin 11°16′ 2°24′ IV Rice (40) Maize No
11 Korobororou Benin 9°22′ 2°40′ IV Fallow Maize Unknown
12 Kodowari Benin 9°12′ 1°33′ IV Rice (5) Maize No
13 Okutaosse Benin 8°34′ 1°41′ IV Rice (27) Maize No
14 Orokoto Benin 7°59′ 2°13′ IV Rice (3) - No
15 Odochele Benin 7°49′ 2°08′ IV Rice (10) Maize Yes
16 Gome-Ifada Benin 7°53′ 2°13′ IV Rice (50) Maize Yes
17 Loule Benin 7°50′ 2°13′ IV Rice (50) Fallow Unknown
18 Koussin Benin 7°14′ 2°17′ CT Rice (40) Maize Unknown
19 Zongoundou Benin 7°00′ 1°58′ CT Rice (13) Maize No
20 Ayize Benin 7°09′ 2°29′ CT Rice (10) Maize Unknown
21 Tannou Benin 7°00′ 1°43′ IV Rice (10) Maize/beans No
22 Dekandji Benin 6°47′ 1°45′ IV Rice (30) Maize/beans Yes
23 Zadogagbe Benin 7°05′ 2°08′ IV Rice (11) - Yes
24 Zoungo Benin 7°06′ 2°31′ IV Fallow - Unknown
25 Deve Benin 6°45′ 1°38′ FP Rice (35) - Yes
26 Badeggi Nigeria 9°06′ 5°51′ FP Rice (100) Soybean Yes
27 Bida Nigeria 9°05′ 6°01′ IV Rice (100) Fallow No
28 Doko Nigeria 8°56′ 6°05′ IV Rice (100) Groundnut No
29 Ibadan Nigeria 7°30′ 3°54′ IV Fallow Maize Yes

Table 1 General description of field sampling sites.

Location No. Location Country GPS position Topography Land use Fertilizer use
Latitude (N) Longitude (E) Lowland a Upland
1 Malanville Benin 11°52′ 3°23′ FP Rice (60) - Yes
2 Wanrarou Benin 10°10′ 2°44′ IV Rice (5) Fallow No
3 Materi Benin 10°42′ 1°02′ IV Rice (9) Maize No
4 Tiele Benin 10°43′ 1°12′ IV Rice (15) - No
5 Kandi Benin 11°07′ 2°55′ IV Rice (20) Beans Yes
6 Tampegre Benin 10°24′ 1°21′ IV Rice (50) - No
7 Sori Benin 10°42′ 2°47′ IV Rice (7) Fallow No
8 Beket-Bourame Benin 10°18′ 1°44′ IV Rice (20) - No
9 Ndali Benin 9°50′ 2°42′ IV Rice (17) Maize No
10 Kommon Benin 11°16′ 2°24′ IV Rice (40) Maize No
11 Korobororou Benin 9°22′ 2°40′ IV Fallow Maize Unknown
12 Kodowari Benin 9°12′ 1°33′ IV Rice (5) Maize No
13 Okutaosse Benin 8°34′ 1°41′ IV Rice (27) Maize No
14 Orokoto Benin 7°59′ 2°13′ IV Rice (3) - No
15 Odochele Benin 7°49′ 2°08′ IV Rice (10) Maize Yes
16 Gome-Ifada Benin 7°53′ 2°13′ IV Rice (50) Maize Yes
17 Loule Benin 7°50′ 2°13′ IV Rice (50) Fallow Unknown
18 Koussin Benin 7°14′ 2°17′ CT Rice (40) Maize Unknown
19 Zongoundou Benin 7°00′ 1°58′ CT Rice (13) Maize No
20 Ayize Benin 7°09′ 2°29′ CT Rice (10) Maize Unknown
21 Tannou Benin 7°00′ 1°43′ IV Rice (10) Maize/beans No
22 Dekandji Benin 6°47′ 1°45′ IV Rice (30) Maize/beans Yes
23 Zadogagbe Benin 7°05′ 2°08′ IV Rice (11) - Yes
24 Zoungo Benin 7°06′ 2°31′ IV Fallow - Unknown
25 Deve Benin 6°45′ 1°38′ FP Rice (35) - Yes
26 Badeggi Nigeria 9°06′ 5°51′ FP Rice (100) Soybean Yes
27 Bida Nigeria 9°05′ 6°01′ IV Rice (100) Fallow No
28 Doko Nigeria 8°56′ 6°05′ IV Rice (100) Groundnut No
29 Ibadan Nigeria 7°30′ 3°54′ IV Fallow Maize Yes
Fig. 1. Soil pH and contents of organic C, total N and available P in soil samples.

Fig. 1. Soil pH and contents of organic C, total N and available P in soil samples.

Fig. 2. Contents of acetate-buffer soluble Si and anaerobic- incubation soluble Si in soil samples.

Fig. 2. Contents of acetate-buffer soluble Si and anaerobic- incubation soluble Si in soil samples.

Table 2 Correlation analysis of acetate-buffer soluble Si content with selected properties of soil samples.
Soil property Acetate-buffer soluble Si
Lowland (n = 29) Upland (n = 21)
pH 0.74*** 0.67***
Available P 0.22 0.60**
Total N 0.18 0.91***
Organic C 0.2 0.91***
Exchangeable K 0.51** 0.84***
Exchangeable Ca 0.77*** 0.92***
Exchangeable Mg 0.42* 0.79***
Exchangeable Na 0.23 0.52*
Exchange acidity -0.19 -0.38
ECEC 0.64*** 0.92***

Table 2 Correlation analysis of acetate-buffer soluble Si content with selected properties of soil samples.

Soil property Acetate-buffer soluble Si
Lowland (n = 29) Upland (n = 21)
pH 0.74*** 0.67***
Available P 0.22 0.60**
Total N 0.18 0.91***
Organic C 0.2 0.91***
Exchangeable K 0.51** 0.84***
Exchangeable Ca 0.77*** 0.92***
Exchangeable Mg 0.42* 0.79***
Exchangeable Na 0.23 0.52*
Exchange acidity -0.19 -0.38
ECEC 0.64*** 0.92***
Fig. 3. Relationships of Si concentration in rice straw at the harvest stage with acetate-buffer soluble Si (A) and anaerobic-incubation soluble Si (B), respectively.

Fig. 3. Relationships of Si concentration in rice straw at the harvest stage with acetate-buffer soluble Si (A) and anaerobic-incubation soluble Si (B), respectively.

Table 3 Correlation matrix of Si concentration with concentrations of other nutrients in rice straw and with grain yield and yield components of rice (n = 16).
Elementalal composition Si
and agronomic trait Lowland Upland
C 0.96*** 0.90***
N 0.89*** 0.86***
P 0.65** 0.68**
K 0.71** 0.90***
Ca 0.74** -0.77**
Mg 0.91*** 0.58*
No. of panicles per pot 0.90*** 0.76**
No. of spikelets per panicle 0.3 0.24
Seed-setting rate -0.02 -0.13
1000-grain weight -0.26 -0.44
Grain yield 0.97*** 0.74**

Table 3 Correlation matrix of Si concentration with concentrations of other nutrients in rice straw and with grain yield and yield components of rice (n = 16).

Elementalal composition Si
and agronomic trait Lowland Upland
C 0.96*** 0.90***
N 0.89*** 0.86***
P 0.65** 0.68**
K 0.71** 0.90***
Ca 0.74** -0.77**
Mg 0.91*** 0.58*
No. of panicles per pot 0.90*** 0.76**
No. of spikelets per panicle 0.3 0.24
Seed-setting rate -0.02 -0.13
1000-grain weight -0.26 -0.44
Grain yield 0.97*** 0.74**

参考文献 32

1 Abe S S, Buri M M, Issaka R N, Kiepe P, Wakatsuki T.2010. Soil fertility potential for rice production in West African lowlands.Jpn Agric Res Quart, 44: 343-355.
2 Abe S S, Wakatsuki T.2010. Possible influence of termites (Macrotermes bellicosus) on forms and composition of free sesquioxides in tropical soils.Pedobiologia, 53: 301-306.
3 Abe S S, Wakatsuki T.2011. Sawah ecotechnology: A trigger for a rice green revolution in sub-Saharan Africa: Basic concept and policy implications.Outlook Agric, 40: 221-227.
4 Agarie S, Agata W, Kubota F, Kaufman P B.1992. Physiological roles of silicon in photosynthesis and dry matter production in rice plants: I. Effects of silicon and shading treatments.Jpn J Crop Sci, 61: 200-206. (in Japanese with English abstract)
5 Alvarez J, Datnoff L E.2001. The economic potential of silicon for integrated management and sustainable rice production.Crop Prot, 20: 43-48.
6 Alvarez J, Snyder G H, Anderson D L, Jones D B.1988. Economics of calcium silicate slag application in an rice- sugarcane rotation in the Everglades.Agric Syst, 28: 179-188.
7 Eswaran H, Almaraz R, van den Berg E, Reich P.1997. An assessment of the soil resources of Africa in relation to productivity.Geoderma, 77: 1-18.
8 Hirose S, Wakatsuki T.2002. Restoration of Inland Valley Ecosystems in West Africa. Tokyo, Japan: Association of Agriculture and Forestry Statistics.
9 Imaizumi K, Yoshida S.1958. Edaphological studies on silicon supplying power of paddy field.Bull Natl Inst Agric Sci, B8: 261-304. (in Japanese with English abstract)
10 IUSS Working Group WRB.2006. World Resource Base for Soil Classification 2006. World Soil Resources Reports No. 103, Rome: FAO.
11 Japan Soil Association.2001. Analytical Methods of Soil, Water and Plant for the Monitoring Survey of Soil Functions. Tokyo, Japan: Japan Soil Association. (in Japanese)
12 Japan Soil Association.2014. Soil Management for Crop Production: Basic Knowledge of Soil Management for the Improvement of Crop Yield and Quality. Tokyo, Japan: Japan Soil Association. (in Japanese)
13 Juo A S R, Sanchez P A.1986. Soil nutritional aspects with a view to characterize upland rice environments. In: Progress in Upland Rice Research. Los Baños, the Philippines: International Rice Research Institute: 85-91.
14 Kang B T, Spain J M.1986. Management of low activity clays with special reference to alfisols, ultisols, and oxisols in the tropics. In: Proceedings of a Symposium on Low Activity Clay (LAC) Soils. Soil Management Support Service Technical Monograph No. 14. Washington: USA: Agency for International Development: 107-131.
15 Ma J F, Takahashi E.1989. Release of silicon from rice straw under flooded conditions.Soil Sci Plant Nutr, 35: 663-667.
16 Ma J F, Takahashi E.2002. Soil, Fertilizer, and Plant Silicon Research in Japan. Amsterdam, the Netherland: Elsevier.
17 Ma J F, Yamaji N.2006. Silicon uptake and accumulation in higher plants.Trends Plant Sci, 11: 392-397.
18 Ma J F.2004. Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses.Soil Sci Plant Nutr, 50: 11-18.
19 Matoh T, Murata S, Takahashi E.1991. Effect of silicate application on photosynthesis of rice plants.Jpn J Soil Sci Plant Nutr, 62: 248-251. (in Japanese with English abstract)
20 Nakada H.1980. Mathematical statistics analysis of the influence of long term application of three nutrient elements and compost on lowland productivity.Shiga Agric Exp Stat Spec Bull, 13: 1-108. (in Japanese with English abstract)
21 Nonaka K, Takahashi K.1988. A method of measuring available silicates in paddy soils.Jpn Agric Res Quart, 22: 91-95.
22 Savant N K, Snyder G H, Datnoff L E.1997a. Silicon management and sustainable rice production.Adv Agron, 58: 151-199.
23 Savant N K, Datnoff L E, Snyder G H.1997b. Depletion of plant-available silicon in soils: A possible cause of declining rice yields.Commun Soil Sci Plant Anal, 28: 1245-1252.
24 Sistani K R, Savant N K, Reddy K C.1997. Effect of rice hull ash silicon on rice seedling growth.J Plant Nutr, 20: 195-201.
25 Sommer M, Kaczorek D, Kuzyakov Y, Breuer J.2006. Silicon pools and fluxes in soils and landscapes: A review.J Plant Nutr Soil Sci, 169: 310-329.
26 Sumida H, Ohyama N.1991. The effects of application of organic matters and calcium silicate on silica uptake by rice plant.Jpn J Soil Sci Plant Nutr, 62: 386-392.
27 Takahashi E.1974. Effect of soil moisture on the uptake of silica by rice plant seedlings.J Sci Soil Manure Jpn, 45: 591-596. (in Japanese with English abstract)
28 Takahashi K, Nonaka K.1986. Method of measurement of available silicate in paddy field.Jpn J Soil Sci Plant Nutr, 57: 515-517. (in Japanese)
29 Tsujimoto Y, Muranaka S, Saito K, Asai H.2014. Limited Si-nutrient status of rice plants in relation to plant-available Si of soils, nitrogen fertilizer application, and rice-growing environments across Sub-Saharan Africa.Field Crops Res, 155: 1-9.
30 Winslow M D, Okada K, Correa-Victoria F.1997. Silicon deficiency and the adaptation of tropical rice ecotypes.Plant Soil, 188: 239-248.
31 Winslow M D.1992. Silicon, disease resistance and yield of rice genotypes under upland cultural conditions. Crop Sci, 32: 1208-1213.
32 Yamauchi M, Winslow M D.1989. Effect of silica and magnesium on yield of upland rice in the humid tropics.Plant Soil, 113: 265-269.

相关文章 0

No related articles found!

编辑推荐

Metrics

阅读次数
全文


摘要

  • 摘要
  • 图/表
  • 参考文献
  • 相关文章
  • 编辑推荐
  • Metrics
回顶部
浙ICP备05004719号-15   公安备案号:33010302003355
版权所有 © 《Rice Science》编辑部
地址:浙江省杭州市体育场路359号 邮编:310006 电话:0571-63371017 E-mail:crrn@fy.hz.zn.cn; cjrs278@gmail.com
本系统由北京玛格泰克科技发展有限公司设计开发
总访问量: 今日访问: 在线人数: