Rice Science ›› 2017, Vol. 24 ›› Issue (4): 187-197.DOI: 10.1016/j.rsci.2017.03.001
• Orginal Article • Previous Articles Next Articles
Ai-hua Xu1, Ke-hui Cui1,2(), Wen-cheng Wang1, Zhen-mei Wang1, Jian-liang Huang1,2, Li-xiao Nie1,2, Yong Li1, Shao-bing Peng1
Received:
2016-12-29
Accepted:
2017-03-06
Online:
2017-07-10
Published:
2017-04-28
Ai-hua Xu, Ke-hui Cui, Wen-cheng Wang, Zhen-mei Wang, Jian-liang Huang, Li-xiao Nie, Yong Li, Shao-bing Peng. Differential Responses of Water Uptake Pathways and Expression of Two Aquaporin Genes to Water-Deficit in Rice Seedlings of Two Genotypes[J]. Rice Science, 2017, 24(4): 187-197.
Add to citation manager EndNote|Ris|BibTeX
Fig. 1. Dry weights of two genotypes under well-watered and water-deficit treatments.Data are Mean ± SE (n = 4). Significant differences were observed between the two treatments and between the two genotypes at the 0.05 level, except between Zhenshan 97 and IRAT109 under well-watered condition for root dry weight.
Genotype | Treatment | LWP (MPa) | RWC (%) | Total water uptake [g/(h∙plant)] | WURt | WURa | WURAQP |
---|---|---|---|---|---|---|---|
[g/(g∙h)] | [g/(g∙h)] | [g/(g∙h)] | |||||
Zhenshan 97 | WW | -0.84 ± 0.02 aA | 96.3 ± 0.7 aA | 21.5 ± 0.9 aB | 15.2 ± 0.6 aA | 11.0 ± 0.4 aA | 4.3 ± 0.3 aB |
WD | -0.99 ± 0.02 bA | 91.3 ± 0.9 bA | 7.2 ± 0.1 bB | 7.7 ± 0.3 bA | 4.5 ± 0.3 bB | 3.2 ± 0.1 bA | |
IRAT109 | WW | -0.99 ± 0.04 aB | 91.4 ± 1.7 aB | 24.4 ± 0.7 aA | 15.5 ± 0.7 aA | 9.0 ± 0.6 aB | 6.5 ± 0.5 aA |
WD | -1.41 ± 0.03 bB | 89.7 ± 1.1 bA | 9.4 ± 0.6 bA | 8.4 ± 0.8 bA | 6.5 ± 0.5 bA | 1.9 ± 0.4 bB | |
Two-way ANOVA | Genotype (G) | 100.3** | 8.1* | 15.4** | 0.6 | 0 | 1.9 |
Treatment (T) | 102.1** | 8.8* | 517.1** | 141.7** | 110.7** | 63.7** | |
G × T | 24.9** | 1.9 | 0.3 | 0.2 | 22.4** | 24.8** |
Table 1 Water-related traits in two genotypes under well-watered (WW) and water-deficit (WD) conditions.
Genotype | Treatment | LWP (MPa) | RWC (%) | Total water uptake [g/(h∙plant)] | WURt | WURa | WURAQP |
---|---|---|---|---|---|---|---|
[g/(g∙h)] | [g/(g∙h)] | [g/(g∙h)] | |||||
Zhenshan 97 | WW | -0.84 ± 0.02 aA | 96.3 ± 0.7 aA | 21.5 ± 0.9 aB | 15.2 ± 0.6 aA | 11.0 ± 0.4 aA | 4.3 ± 0.3 aB |
WD | -0.99 ± 0.02 bA | 91.3 ± 0.9 bA | 7.2 ± 0.1 bB | 7.7 ± 0.3 bA | 4.5 ± 0.3 bB | 3.2 ± 0.1 bA | |
IRAT109 | WW | -0.99 ± 0.04 aB | 91.4 ± 1.7 aB | 24.4 ± 0.7 aA | 15.5 ± 0.7 aA | 9.0 ± 0.6 aB | 6.5 ± 0.5 aA |
WD | -1.41 ± 0.03 bB | 89.7 ± 1.1 bA | 9.4 ± 0.6 bA | 8.4 ± 0.8 bA | 6.5 ± 0.5 bA | 1.9 ± 0.4 bB | |
Two-way ANOVA | Genotype (G) | 100.3** | 8.1* | 15.4** | 0.6 | 0 | 1.9 |
Treatment (T) | 102.1** | 8.8* | 517.1** | 141.7** | 110.7** | 63.7** | |
G × T | 24.9** | 1.9 | 0.3 | 0.2 | 22.4** | 24.8** |
Fig. 2. Xylem sap flow rate and root porosity in two genotypes under well-watered and water-deficit treatments.Data are Mean ± SE (n = 4). Significant differences were observed between the two genotypes under water deficit condition and between the two treatments at the 0.05 level for the two traits, whereas no significant difference was observed between the two genotypes under well-watered condition for the two traits.
Genotype | Treatment | OsPIP2;4 | OsPIP2;5 |
---|---|---|---|
Zhenshan 97 | WW | 61.0 ± 4.3 bA | 100.0 ± 9.5 aA * |
WD | 126.9 ± 4.9 aA | 104.2 ± 5.2 aA | |
IRAT109 | WW | 22.4 ± 1.8 bB | 60.4 ± 2.4 aB ** |
WD | 37.9 ± 1.4 aB | 52.3 ± 2.3 aB ** | |
Two-way ANOVA | Genotype (G) | 427.9** | 103.9** |
Treatment (T) | 418.8** | 4 | |
G × T | 117.7** | 49.6** |
Table 2 Relative expression of root aquaporins (%) at mRNA level under well-watered (WW) and water-deficit (WD) conditions.
Genotype | Treatment | OsPIP2;4 | OsPIP2;5 |
---|---|---|---|
Zhenshan 97 | WW | 61.0 ± 4.3 bA | 100.0 ± 9.5 aA * |
WD | 126.9 ± 4.9 aA | 104.2 ± 5.2 aA | |
IRAT109 | WW | 22.4 ± 1.8 bB | 60.4 ± 2.4 aB ** |
WD | 37.9 ± 1.4 aB | 52.3 ± 2.3 aB ** | |
Two-way ANOVA | Genotype (G) | 427.9** | 103.9** |
Treatment (T) | 418.8** | 4 | |
G × T | 117.7** | 49.6** |
Fig. 4. Thickening and lignification of parenchyma cell walls of roots (bar = 10 μm). A and B, Zhenshan 97 and IRAT109 under well-watered treatment, respectively; C and D, Zhenshan 97 and IRAT109 under water-deficit treatment, respectively.
1 | Ahamed A, Murai-Hatano M, Ishikawa-Sakurai J, Hayashi H, Kawamura Y, Uemura M.2012. Cold stress-induced acclimation in rice is mediated by root-specific aquaporins.Plant Cell Physiol, 53(8): 1445-1456. |
2 | Armstrong J, Armstrong W.2005. Rice: Sulfide-induced barriers to root radial oxygen loss, Fe2+ and water uptake, and lateral root emergence.Ann Bot, 96(4): 625-638. |
3 | Boursiac Y, Chen S, Luu D T, Sorieul M, van den Dries N, Maurel C.2005. Early effects of salinity on water transport in Arabidopsis roots: Molecular and cellular features of aquaporin expression.Plant Physiol, 139(2): 790-805. |
4 | Bramley H, Turner N C, Turner D W, Tyerman S D.2009. Roles of morphology, anatomy, and aquaporins in determining contrasting hydraulic behavior of roots.Plant Physiol, 150(1): 348-364. |
5 | Carvajal M, Cooke D T, Clarkson D T.1996. Responses of wheat plants to nutrient deprivation may involve the regulation of water-channel function.Planta, 199(3): 372-381. |
6 | Colmer T D.2003. Aerenchyma and an inducible barrier to radial oxygen loss facilitate root aeration in upland, paddy and deep-water rice (Oryza sativa L.).Ann Bot, 91(2): 301-309. |
7 | Dingkuhn M, Cruz R T, O’Toole J C, Dörfling K.1989. Net photosynthesis, water use efficiency, leaf water potential and leaf rolling as affected by water deficit in tropical upland rice.Aust J Agric Res, 40(6): 1171-1181. |
8 | Engel A, Fujiyoshi Y, Agre P.2000. The importance of aquaporin water channel protein structures.EMBO J, 19: 800-806. |
9 | Evans D E.2004. Aerenchyma formation.New Phytol, 161(1): 35-49. |
10 | Guo L, Wang Z Y, Lin H, Cui W E, Chen J, Liu M H, Chen Z L, Qu L J, Gu H Y.2006. Expression and functional analysis of the rice plasma-membrane intrinsic protein gene family.Cell Res, 16: 277-286. |
11 | Henry A, Cal A J, Batoto T C, Torres R O, Serraj R.2012. Root attributes affecting water uptake of rice (Oryza sativa) under drought.J Exp Bot, 63: 4751-4763. |
12 | Hu B, Henry A, Brown K M, Lynch J P.2014. Root cortical aerenchyma inhibits radial nutrient transport in maize (Zea mays).Ann Bot, 113(1): 181-189. |
13 | Insalud N, Bell R W, Colmer T D, Rerkasem B.2006. Morphological and physiological responses of rice (Oryza sativa) to limited phosphorus supply in aerated and stagnant solution culture.Ann Bot, 98(5): 995-1004. |
14 | Jackson M B, Armstrong W.1999. Formation of aerenchyma and the processes of plant ventilation in relation to soil flooding and submergence.Plant Biol, 1(3): 274-287. |
15 | Javot H, Maurel C.2002. The role of aquaporins in root water uptake.Ann Bot, 90(3): 301-313. |
16 | Ji K X, Wang Y Y, Sun W N, Lou Q J, Mei H W, Shen S H, Chen H.2012. Drought-responsive mechanisms in rice genotypes with contrasting drought tolerance during reproductive stage.J Plant Physiol, 169(4): 336-344. |
17 | Jongdee B, Fukai S, Cooper M.2002. Leaf water potential and osmotic adjustment as physiological traits to improve drought tolerance in rice.Field Crops Res, 76: 153-163. |
18 | Kadam N N, Yin X, Bindraban P S, Struik P C, Jagadish K S V.2015. Does morphological and anatomical plasticity during the vegetative stage make wheat more tolerant of water deficit stress than rice?Plant Physiol, 167(4): 1389-1401. |
19 | Kano M, Inukai Y, Kitano H, Yamauchi A.2011. Root plasticity as the key root trait for adaptation to various intensities of drought stress in rice.Plant Soil, 342(1): 117-128. |
20 | Kato Y, Kamoshita A, Yamagishi J.2008. Preflowering abortion reduces spikelet number in upland rice (Oryza sativa L.) under water stress. Crop Sci, 48(6): 2389-2395. |
21 | Knipfer T, Fricke W.2011. Water uptake by seminal and adventitious roots in relation to whole-plant water flow in barley (Hordeum vulgare L.).J Exp Bot, 62(2): 717-733. |
22 | Kong Y, Wang Z, Xiong F, Gu Y J, Deng Y P.2008. Anatomical studies on the sclerenchyma on the edge of exodermis in rice roots under PEG-induced drought stress.J Yangzhou Univ, 29: 61-65. (in Chinese with English abstract) |
23 | Kotula L, Ranathunge K, Schreiber L, Steudle E.2009. Functional and chemical comparison of apoplastic barriers to radial oxygen loss in roots of rice (Oryza sativa L.) grown in aerated or deoxygenated solution.J Exp Bot, 60(7): 2155-2167. |
24 | Kronzucker H J, Kirk G J D, Siddiqi M Y, Glass A D M.1998. Effects of hypoxia on NH4+ fluxes in rice roots: Kinetics and compartmental analysis.Plant Physiol, 116: 581-587. |
25 | Kuwagata T, Ishikawa-Sakurai J, Hayashi H, Nagasuga K, Fukushi K, Ahamed A, Takasugi K, Katsuhara M, Murai-Hatano M.2012. Influence of low air humidity and low root temperature on water uptake, growth and aquaporin expression in rice plants.Plant Cell Physiol, 53(8): 1418-1431. |
26 | Li H X, Chen Z, Hu M X, Wang Z M, Hua H, Yin C X, Zeng H L.2011. Different effects of night versus day high temperature on rice quality and accumulation profiling of rice grain proteins during grain filling.Plant Cell Rep, 30(9): 1641-1659. |
27 | Maurel C, Kado R T, Guren J, Chrispeels M J.1995. Phosphorylation regulates the water channel activity of the seed-specific aquaporin alpha-TIP.EMBO J, 14(13): 3028-3035. |
28 | Maurel C.1997. Aquaporins and water permeability of plant membranes.Annu Rev Plant Physiol Mol Biol, 48: 399-429. |
29 | Maurel C, Tacnet F, Güclü J, Guern J, Ripoche P.1997. Purified vesicles of tobacco cell vacuolar and plasma membranes exhibit dramatically different water permeability and water channel activity.Proc Natl Acad Sci USA, 94: 7103-7108. |
30 | Morillon R, Chrispeels M J.2001. The role of ABA and the transpiration stream in the regulation of the osmotic water permeability of leaf cells.Proc Natl Acad Sci USA, 98: 14138-14143. |
31 | Mu Z X, Zhang S Q, Zhang L S, Liang A H, Liang Z S.2006. Hydraulic conductivity of whole root system is better than hydraulic conductivity of single root in correlation with the leaf water status of maize.Bot Stud, 47: 145-151. |
32 | Nguyen H T, Babu R C, Blum A.1997. Breeding for drought resistance in rice: Physiology and molecular genetics considerations.Crop Sci, 37(5): 1426-1434. |
33 | Pantuwan G, Fukai S, Cooper M, Rajatasereekul S, O’Toole J C.2002. Yield response of rice (Oryza sativa L.) genotypes to drought under rainfed lowlands: 3. Plant factors contributing to drought resistance.Field Crops Res, 73: 181-200. |
34 | Postaire O, Tournaire-Roux C, Grondin A, Boursiac Y, Morillon R, Schäffner A R, Maurel C.2010. A PIP1 aquaporin contributes to hydrostatic pressure-induced water transport in both the root and rosette of Arabidopsis.Plant Physiol, 152(3): 1418-1430. |
35 | Ranathunge K, Lin J X, Steudle E, Schreiber L.2011. Stagnant deoxygenated growth enhances root suberization and lignifications, but differentially affects water and NaCl permeabilities in rice (Oryza sativa L.) roots.Plant Cell Environ, 34(8): 1223-1240. |
36 | Rieger M, Litvin P.1999. Root system hydraulic conductivity in species with contrasting root anatomy.J Exp Bot, 50: 201-209. |
37 | Robbins N E, Dinneny J R.2015. The divining root: Moisture-driven responses of roots at the micro- and macro-scale.J Exp Bot, 66(8): 2145-2154. |
38 | Rubinigg M, Stulen I, Elzenga J T M, Colmer T D.2002. Spatial patterns of radial oxygen loss and nitrate net flux along adventitious roots of rice raised in aerated or stagnant solution.Funct Plant Biol, 29(12): 1475-1481. |
39 | Sakurai J, Ishikawa F, Yamaguchi T, Uemura M, Maeshima M.2005. Identification of 33 rice aquaporin genes and analysis of their expression and function.Plant Cell Physiol, 46(9): 1568-1577. |
40 | Santoni V, Verdoucq L, Sommerer N, Vinh J, Pflieger D, Maurel C.2006. Methylation of aquaporins in plant plasma membrane.Biochem J, 400(1): 189-197. |
41 | Steudle E, Henzler T.1995. Water channels in plants: Do basic concepts of water transport change?J Exp Bot, 46(9): 1067-1076. |
42 | Steudle E, Peterson C A.1998. How does water get through roots?J Exp Bot, 49: 775-778. |
43 | Steudle E.2001. The cohesion-tension mechanism and the acquisition of water by plant roots.Annu Rev Plant Biol, 52: 847-875. |
44 | Thomson C J, Armstrong W, Waters I, Greenway H.1990. Aerenchyma formation and associated oxygen movement in seminal and nodal roots of wheat.Plant Cell Environ, 13(4): 395-403. |
45 | Tournaire-Roux C, Sutka M, Javot H, Gout E, Gerbeau P, Luu D T, Bligny R, Maurel C.2003. Cytosolic pH regulates root water transport during anoxic stress through gating of aquaporins.Nature, 425: 393-397. |
46 | Tripathy J N, Zhang J X, Robin S, Nguyen T T, Nguyen H T.2000. QTLs for cell-membrane stability mapped in rice (Oryza sativa L.) under drought stress.Theor Appl Genet, 100(8): 1197-1202. |
47 | Vera-Estrella R, Barkla B J, Bohnert H J, Pantoja O.2004. Novel regulation of aquaporins during osmotic stress.Plant Physiol, 135(4): 2318-2329. |
48 | Videmšek U, Turk B, Vodnik D.2006. Root aerenchyma- formation and function.Acta Agric Slov, 87: 445-453. |
49 | Xu W, Cui K H, Xu A H, Nie L X, Huang J L, Peng S B.2015. Drought stress condition increases root to shoot ratio via alteration of carbohydrate partitioning and enzymatic activity in rice seedlings.Acta Physiol Plant, 37: 9. |
50 | Yang X X, Li Y, Ren B B, Ding L, Gao C M, Shen Q R, Guo S W.2012. Drought-induced root aerenchyma formation restricts water uptake in rice seedlings supplied with nitrate.Plant Cell Physiol, 53(3): 495-504. |
51 | Yoshida S, Foorno D A, Cock J H, Gomez K A.1976. Laboratory Manual for Physiological Studies of Rice. 3rd edn. Manila, the Philippines: International Rice Research Institute. |
52 | Yue B, Xue W Y, Xiong L Z, Yu X Q, Luo L J, Cui K H, Jin D M, Xing Y Z, Zhang Q F.2006. Genetic basis of drought resistance at reproductive stage in rice: Separation of drought tolerance from drought avoidance.Genetics, 172(2): 1213-1228. |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||