[1] |
Adriano D C, Wenzel W W, Vangronsveld J, Bolan N S. 2004. Role of assisted natural remediation in environmental cleanup. Geoderma, 122: 121-142.
|
[2] |
Åkesson A, Barregard L, Bergdahl I A, Nordberg G F, Nordberg M, Skerfving S. 2014. Non-renal effects and the risk assessment of environmental cadmium exposure. Environ Health Perspect, 122(5): 431-438.
|
[3] |
Codex Alimentarius Commission. 2002. Codex general standard for contaminants and toxins in foods. In: Report of the 34th Session of the Codex Committee on Food Additives and Contaminants. Rotterdam, the Netherlands. Rome, Italy: FAO/WHO: 11-15.
|
[4] |
Hong C O, Owens V N, Kim Y G, Lee S M, Park H C, Kim K K, Son H J, Suh J M, Kim P J. 2014. Soil pH effect on phosphate induced cadmium precipitation in arable soil. Bull Environ Contam Toxicol, 93: 101-105.
|
[5] |
Kumar A, Altabella T, Taylor M A, Tiburcio A F. 1997. Recent advances in polyamine research. Trends Plant Sci, 2: 124-130.
|
[6] |
Kumar P, Siddique A, Thakur V, Singh M. 2019a. Effect of putrescine and glomus on total reducing sugar in cadmium treated sorghum crop. J Pharm Phytochem, 8: 313-316.
|
[7] |
Kumar P, Siddique A, Thongbam S, Chopra P, Kumar S. 2019b. Cadmium induced changes in total starch, total amylose and amylopectin content in putrescine and mycorrhiza treated sorghum crop. Nat Environ Pollut Technol, 18: 525-530.
|
[8] |
Piao L, Wang Y, Liu X M, Sun G Y, Zhang S Y, Yan J Y, Chen Y, Meng Y, Li M, Gu W R. 2022. Exogenous hemin alleviated cadmium stress in maize (Zea mays L.) by enhancing leaf photosynthesis, AsA-GSH cycle and polyamine metabolism. Front Plant Sci, 13: 993675.
|
[9] |
Prasann K, Mandala H, Kumar P S, Johnson Y, Nada J, Mohit N, Sunil K. 2018. Effect on chlorophyll a/b ratio in cadmium contaminated maize leaves treated with putrescine and mycorrhiza. Ann Biol, 34: 281-283.
|
[10] |
Sardar R, Ahmed S, Yasin N A. 2022. Role of exogenously applied putrescine in amelioration of cadmium stress in Coriandrum sativum by modulating antioxidant system. Int J Phytoremediat, 24: 955-962.
|
[11] |
Sarwar N, Saifullah, Malhi S S, Zia M H, Naeem A, Bibi S, Farid G. 2010. Role of mineral nutrition in minimizing cadmium accumulation by plants. J Sci Food Agric, 90: 925-937.
|
[12] |
Tajti J, Janda T, Majláth I, Szalai G, Pál M. 2018. Comparative study on the effects of putrescine and spermidine pre-treatment on cadmium stress in wheat. Ecotoxicol Environ Saf, 148: 546-554.
|
[13] |
Yan Y, Jin C W, Sun C L, Wang J H, Ye Y Q, Zhou W W, Lu L L, Lin X Y. 2016. Inhibition of ethylene production by putrescine alleviates aluminium induced root inhibition in wheat plants. Sci Rep, 6: 18888.
|
[14] |
Yang Q Z, Wang F, Rao J P. 2016. Effect of putrescine treatment on chilling injury, fatty acid composition and antioxidant system in kiwifruit. PLoS One, 11(9): e0162159.
|
[15] |
Zeid I M, Shedeed Z A. 2006. Response of alfalfa to putrescine treatment under drought stress. Biol Plant, 50: 635-640.
|
[16] |
Zhao H C, Yu L, Yu M J, Afzal M, Dai Z M, Brookes P, Xu J M. 2020. Nitrogen combined with biochar changed the feedback mechanism between soil nitrification and Cd availability in an acidic soil. J Hazard Mater, 15: 121631.
|
[17] |
Zhou M X, Han R M, Ghnaya T, Lutts S. 2018. Salinity influences the interactive effects of cadmium and zinc on ethylene and polyamine synthesis in the halophyte plant species Kosteletzkya pentacarpos. Chemosphere, 209: 892-900.
|
[18] |
Zhu C Q, Hu W J, Cao X C, Zhu L F, Kong Y L, Jin Q Y, Shen G X, Wang W P, Zhang H, Zhang J H. 2021. Physiological and proteomic analyses reveal effects of putrescine-alleviated aluminum toxicity in rice roots. Rice Sci, 28(6): 579-593.
|