[1] |
Beesley L, Moreno-Jiménez E, Gomez-Eyles J L, Harris E, Robinson B, Sizmur T. 2011. A review of biochars’ potential role in the remediation, revegetation and restoration of contaminated soils. Environ Pollut, 159(12): 3269-3282.
DOI
PMID
|
[2] |
Chen H Y, Teng Y G, Lu S J, Wang Y Y, Wang J S. 2015. Contamination features and health risk of soil heavy metals in China. Sci Total Environ, 512/513: 143-153.
|
[3] |
Chen Y H, Xie T H, Liang Q F, Liu M J, Zhao M L, Wang M K, Wang G. 2016. Effectiveness of lime and peat applications on cadmium availability in a paddy soil under various moisture regimes. Environ Sci Pollut Res Int, 23(8): 7757-7766.
|
[4] |
Curie C, Alonso J M, Le Jean M, Ecker J R, Briat J F. 2000. Involvement of NRAMP1 from Arabidopsis thaliana in iron transport. Biochem J, 347: 749-755.
|
[5] |
El-Naggar A, Chen Z H, Jiang W T, Cai Y J, Chang S X. 2022. Biochar effectively remediates Cd contamination in acidic or coarse- and medium-textured soils: A global meta-analysis. Chem Eng J, 442: 136225.
|
[6] |
Gu J F, Zhou H, Tang H L, Yang W T, Zeng M, Liu Z M, Peng P Q, Liao B H. 2019. Cadmium and arsenic accumulation during the rice growth period under in situ remediation. Ecotoxicol Environ Saf, 171: 451-459.
|
[7] |
Hussain B, Ashraf M N, Shafeeq-ur-Rahman, Abbas A, Li J M, Farooq M. 2021. Cadmium stress in paddy fields: Effects of soil conditions and remediation strategies. Sci Total Environ, 754: 142188.
|
[8] |
Huybrechts M, Hendrix S, Bertels J, Beemster G T S, Vandamme D, Cuypers A. 2020. Spatial analysis of the rice leaf growth zone under controlled and cadmium-exposed conditions. Environ Exp Bot, 177: 104120.
|
[9] |
Ishimaru Y, Bashir K, Nakanishi H, Nishizawa N K. 2012. OsNRAMP5, a major player for constitutive iron and manganese uptake in rice. Plant Signal Behav, 7(7): 763-766.
DOI
PMID
|
[10] |
Jing F, Zhou D M, Chen X M, Qu R J, Tan J X. 2023. Biochar application in a cadmium-contaminated paddy soil also reduces soil microelement zinc availability and its uptake by rice. J Soils Sediments, 23(3): 1381-1388.
|
[11] |
Kamran M, Malik Z, Parveen A, Zong Y T, Abbasi G H, Rafiq M T, Shaaban M, Mustafa A, Bashir S, Rafay M, Mehmood S, Ali M. 2019. Biochar alleviates Cd phytotoxicity by minimizing bioavailability and oxidative stress in pak choi (Brassica chinensis L.) cultivated in Cd-polluted soil. J Environ Manage, 250: 109500.
|
[12] |
Li H, Liu Y, Zhou Y Y, Zhang J C, Mao Q M, Yang Y, Huang H L, Liu Z H, Peng Q H, Luo L. 2018. Effects of red mud based passivator on the transformation of Cd fraction in acidic Cd- polluted paddy soil and Cd absorption in rice. Sci Total Environ, 640/641: 736-745.
|
[13] |
Li H Y, Ye X X, Geng Z G, Zhou H J, Guo X S, Zhang Y X, Zhao H J, Wang G Z. 2016. The influence of biochar type on long- term stabilization for Cd and Cu in contaminated paddy soils. J Hazard Mater, 304: 40-48.
|
[14] |
Li X Y, Peng P Q, Long J, Dong X, Jiang K, Hou H B. 2020. Plant-induced insoluble Cd mobilization and Cd redistribution among different rice cultivars. J Clean Prod, 256: 120494.
|
[15] |
Li Y P, Li X, Kang X R, Zhang J, Sun M J, Yu J P, Wang H, Pan H, Yang Q G, Lou Y H, Zhuge Y P. 2023. Effects of a novel Cd passivation approach on soil Cd availability, plant uptake, and microbial activity in weakly alkaline soils. Ecotoxicol Environ Saf, 253: 114631.
|
[16] |
Mitra S, Pramanik K, Sarkar A, Ghosh P K, Soren T, Maiti T K. 2018. Bioaccumulation of cadmium by Enterobacter sp. and enhancement of rice seedling growth under cadmium stress. Ecotoxicol Environ Saf, 156: 183-196.
|
[17] |
Pan Y Y, Bonten L T C, Koopmans G F, Song J, Luo Y M, Temminghoff E J M, Comans R N J. 2016. Solubility of trace metals in two contaminated paddy soils exposed to alternating flooding and drainage. Geoderma, 261: 59-69.
|
[18] |
Ponnam V, Mandapati R N, Bankupalli S. 2020. Irreversible sorption of carbofuran by moderately acidic soil amended with biochar. Biointerface Res Appl Chem, 10(2): 5224-5228.
|
[19] |
Sasaki A, Yamaji N, Yokosho K, Ma J F. 2012. Nramp5 is a major transporter responsible for manganese and cadmium uptake in rice. Plant Cell, 24(5): 2155-2167.
|
[20] |
Sasaki A, Yamaji N, Ma J F. 2014. Overexpression of OsHMA3 enhances Cd tolerance and expression of Zn transporter genes in rice. J Exp Bot, 65(20): 6013-6021.
|
[21] |
Sebastian A, Prasad M N V. 2014. Cadmium minimization in rice: A review. Agron Sustain Dev, 34(1): 155-173.
|
[22] |
Song W E, Chen S B, Liu J F, Chen L, Song N N, Li N, Liu B. 2015. Variation of Cd concentration in various rice cultivars and derivation of cadmium toxicity thresholds for paddy soil by species-sensitivity distribution. J Integr Agric, 14(9): 1845-1854.
|
[23] |
Takahashi R, Ishimaru Y, Shimo H, Ogo Y, Senoura T, Nishizawa N K, Nakanishi H. 2012. The OsHMA2 transporter is involved in root-to-shoot translocation of Zn and Cd in rice. Plant Cell Environ, 35(11): 1948-1957.
|
[24] |
Uchimiya M, Wartelle L H, Klasson K T, Fortier C A, Lima I M. 2011. Influence of pyrolysis temperature on biochar property and function as a heavy metal sorbent in soil. J Agric Food Chem, 59(6): 2501-2510.
|
[25] |
Woldetsadik D, Drechsel P, Marschner B, Itanna F, Gebrekidan H. 2017. Effect of biochar derived from faecal matter on yield and nutrient content of lettuce (Lactuca sativa) in two contrasting soils. Environ Syst Res, 6: 2.
|
[26] |
Wu S W, Zhang Y, Tan Q L, Sun X C, Wei W H, Hu C X. 2020. Biochar is superior to lime in improving acidic soil properties and fruit quality of Satsuma mandarin. Sci Total Environ, 714: 136722.
|
[27] |
Xue S G, Shi L Z, Wu C, Wu H, Qin Y Y, Pan W S, Hartley W, Cui M Q. 2017. Cadmium, lead, and arsenic contamination in paddy soils of a mining area and their exposure effects on human HEPG2 and keratinocyte cell-lines. Environ Res, 156: 23-30.
DOI
PMID
|
[28] |
Yang W, Shang J Y, Li B G, Flury M. 2020. Surface and colloid properties of biochar and implications for transport in porous media. Crit Rev Environ Sci Technol, 50(23): 2484-2522.
|
[29] |
Yuan L P. 2015. Development of super hybrid rice for food security in China. Engineering, 1(1): 13-14.
|
[30] |
Zhang M, Shan S D, Chen Y G, Wang F, Yang D Y, Ren J K, Lu H Y, Ping L F, Chai Y J. 2019. Biochar reduces cadmium accumulation in rice grains in a tungsten mining area-field experiment: Effects of biochar type and dosage, rice variety, and pollution level. Environ Geochem Health, 41(1): 43-52.
|
[31] |
Zhao H C, Yu L, Yu M J, Afzal M, Dai Z M, Brookes P, Xu J M. 2020. Nitrogen combined with biochar changed the feedback mechanism between soil nitrification and Cd availability in an acidic soil. J Hazard Mater, 390: 121631.
|
[32] |
Zong Y T, Xiao Q, Lu S G. 2021. Biochar derived from cadmium- contaminated rice straw at various pyrolysis temperatures: Cadmium immobilization mechanisms and environmental implication. Bioresour Technol, 321: 124459.
|