[1] |
Fan Y Y, Chen H M, Wang B F, et al. 2024. Dwarf and less tillers on chromosome 3 promotes tillering in rice by sustaining floral organ number 1 expression. Plant Physiol, 196(2): 1064-1079.
|
[2] |
Fang Z M, Ji Y Y, Hu J, et al. 2020. Strigolactones and brassinosteroids antagonistically regulate the stability of the D53-OsBZR1 complex to determine FC1 expression in rice tillering. Mol Plant, 13(4): 586-597.
|
[3] |
Hong Y B, Zhang H J, Huang L, et al. 2016. Overexpression of a stress-responsive NAC transcription factor gene ONAC022 improves drought and salt tolerance in rice. Front Plant Sci, 7: 4.
|
[4] |
Jeong J S, Kim Y S, Baek K H, et al. 2010. Root-specific expression of OsNAC10 improves drought tolerance and grain yield in rice under field drought conditions. Plant Physiol, 153(1): 185-197.
|
[5] |
Li K N, Zhang S N, Tang S, et al. 2022. The rice transcription factor Nhd1 regulates root growth and nitrogen uptake by activating nitrogen transporters. Plant Physiol, 189(3): 1608-1624.
|
[6] |
Li X Y, Qian Q, Fu Z M, et al. 2003. Control of tillering in rice. Nature, 422: 618-621.
|
[7] |
Li Z Y, Wei X J, Tong X H, et al. 2022. The OsNAC23-Tre6P-SnRK1a feed-forward loop regulates sugar homeostasis and grain yield in rice. Mol Plant, 15(4): 706-722.
|
[8] |
Liao Z G, Yu H, Duan J B, et al. 2019. SLR1 inhibits MOC1 degradation to coordinate tiller number and plant height in rice. Nat Commun, 10(1): 2738.
|
[9] |
Liu W, Kohlen W, Lillo A, et al. 2011. Strigolactone biosynthesis in Medicago truncatula and rice requires the symbiotic GRAS-type transcription factors NSP1 and NSP2. Plant Cell, 23(10): 3853-3865.
|
[10] |
Liu Y F, Wu Q, Qin Z L, et al. 2022. Transcription factor OsNAC055 regulates GA-mediated lignin biosynthesis in rice straw. Plant Sci, 325: 111455.
|
[11] |
Liu Y Q, Wang H R, Jiang Z M, et al. 2021. Genomic basis of geographical adaptation to soil nitrogen in rice. Nature, 590: 600-605.
|
[12] |
Mao C J, He J M, Liu L N, et al. 2020. OsNAC2 integrates auxin and cytokinin pathways to modulate rice root development. Plant Biotechnol J, 18(2): 429-442.
|
[13] |
Minakuchi K, Kameoka H, Yasuno N, et al. 2010. FINE CULM1 (FC1) works downstream of strigolactones to inhibit the outgrowth of axillary buds in rice. Plant Cell Physiol, 51(7): 1127-1135.
|
[14] |
Takai T. 2024. Potential of rice tillering for sustainable food production. J Exp Bot, 75(3): 708-720.
|
[15] |
Takeda T, Suwa Y, Suzuki M, et al. 2003. The OsTB1 gene negatively regulates lateral branching in rice. Plant J, 33(3): 513-520.
|
[16] |
Tang W J, Ye J, Yao X M, et al. 2019. Genome-wide associated study identifies NAC42-activated nitrate transporter conferring high nitrogen use efficiency in rice. Nat Commun, 10(1): 5279.
|
[17] |
Wang F, Han T W, Song Q X, et al. 2020. The rice circadian clock regulates tiller growth and panicle development through strigolactone signaling and sugar sensing. Plant Cell, 32(10): 3124-3138.
|
[18] |
Wu W, Dong X O, Chen G M, et al. 2024. The elite haplotype OsGATA8-H coordinates nitrogen uptake and productive tiller formation in rice. Nat Genet, 56(7): 1516-1526.
|
[19] |
Xing Y Z, Zhang Q F. 2010. Genetic and molecular bases of rice yield. Annu Rev Plant Biol, 61: 421-442.
|
[20] |
Zhang S N, Zhang Y Y, Li K N, et al. 2021. Nitrogen mediates flowering time and nitrogen use efficiency via floral regulators in rice. Curr Biol, 31(4): 671-683.e5.
|