[1] |
Coca L I R, González M T G, Unday Z G, et al. 2023. Effects of sodium salinity on rice (Oryza sativa L.) cultivation: A review. Sustainability, 15(3): 1804.
|
[2] |
FAO. 2021. The State of the World’s Land and Water Resources for Food and Agriculture: Systems at Breaking Point:Synthesis Report 2021. Rome, Italy: FAO.
|
[3] |
Hazman M, Fawzy S, Hamdy A, et al. 2023. Enhancing rice resilience to drought by applying biochar-compost mixture in low-fertile sandy soil. Beni-Suef Univ J Basic Appl Sci, 12(1): 74.
|
[4] |
Hoang T M L, Tran T N, Nguyen T K T, et al. 2016. Improvement of salinity stress tolerance in rice: Challenges and opportunities. Agronomy, 6(4): 54.
|
[5] |
Jiang C J, Liang Z W, Xie X Z. 2023. Priming for saline-alkaline tolerance in rice: Current knowledge and future challenges. Rice Sci, 30(5): 417-425.
|
[6] |
Li Q Y, Zhu P W, Yu X Q, et al. 2024. Physiological and molecular mechanisms of rice tolerance to salt and drought stress: Advances and future directions. Int J Mol Sci, 25(17): 9404.
|
[7] |
Liu J G, Shen L, Guo L B, et al. 2023. OsSTS, a novel allele of Mitogen-activated protein Kinase Kinase 4 (OsMKK4), controls grain size and salt tolerance in rice. Rice, 16(1): 47.
|
[8] |
Pan Y, Li Q, Wang Z, et al. 2021. Natural variation of OsMKK3 contributes to the ecological differentiation of indica and japonica rice. Plant Cell, 33(1): 1-20.
|
[9] |
Ren Z H, Gao J P, Li L G, et al. 2005. A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nat Genet, 37(10): 1141-1146.
|
[10] |
Thomson M J, de Ocampo M, Egdane J, et al. 2010. Characterizing the Saltol quantitative trait locus for salinity tolerance in rice. Rice, 3(2): 148-160.
|
[11] |
Wang P T, Liu W C, Han C, et al. 2024. Reactive oxygen species: Multidimensional regulators of plant adaptation to abiotic stress and development. J Integr Plant Biol, 66(3): 330-367.
|
[12] |
Wang X, Zhou Y, Li Z, et al. 2024. Genome-wide haplotype analysis reveals ecotype differentiation and domestication signals in rice MAPK cascade genes. Theor Appl Genet, 137: 65.
|
[13] |
Yang H, Bai T L, Zhu C Y, et al. 2023. Analysis of Na+ and K+ homeostasis and SKC1 haplotype of rice germplasm accessions under salt stress. J Plant Genet Resour, 24(4): 1085-1096. (in Chinese with English abstract)
|
[14] |
Yang Y G, Xu Y N, Bai Y R, et al. 2024. Mixed-oligosaccharides promote seedling growth of direct-seeded rice under salt and alkaline stress. Rice Sci, 31(6): 712-724.
|
[15] |
Zhang Q P, Teng R, Yuan Z Y, et al. 2023. Integrative transcriptomic analysis deciphering the role of rice bHLH transcription factor Os04g0301500 in mediating responses to biotic and abiotic stresses. Front Plant Sci, 14: 1266242.
|
[16] |
Zhu J K. 2016. Abiotic stress signaling and responses in plants. Cell, 167(2): 313-324.
|