Rice Science ›› 2024, Vol. 31 ›› Issue (2): 226-236.DOI: 10.1016/j.rsci.2023.10.004
• Research Papers • Previous Articles
Zhao Ting, Wang Li(), Yang Jixian(
), Ma Fang
Received:
2023-07-07
Accepted:
2023-10-24
Online:
2024-03-28
Published:
2024-04-11
Contact:
Wang Li (Zhao Ting, Wang Li, Yang Jixian, Ma Fang. Causal Analysis Between Rice Growth and Cadmium Accumulation and Transfer under Arbuscular Mycorrhizal Inoculation[J]. Rice Science, 2024, 31(2): 226-236.
Add to citation manager EndNote|Ris|BibTeX
Fig. 1. Frequency distributions of rice plant height and root length and their normal distribution curves in different treatment groups. A and B, Plant height (A) and root length (B) in control group. C and D, Plant height (C) and root length (D) in arbuscular mycorrhizal fungus treatment group.
Parameter | Treatment | Average ± SD (cm) | Skewness | Kurtosis |
---|---|---|---|---|
Plant height | CK | 69.49 ± 8.37 | -0.300 | -0.287 |
GM | 74.31 ± 10.92** | 0.026 | -0.053 | |
Root length | CK | 20.38 ± 4.38 | 0.601 | 0.659 |
GM | 23.79 ± 5.77** | 1.004 | 1.128 |
Table 1. Normal distribution parameters of rice plant height and root length in different treatment groups.
Parameter | Treatment | Average ± SD (cm) | Skewness | Kurtosis |
---|---|---|---|---|
Plant height | CK | 69.49 ± 8.37 | -0.300 | -0.287 |
GM | 74.31 ± 10.92** | 0.026 | -0.053 | |
Root length | CK | 20.38 ± 4.38 | 0.601 | 0.659 |
GM | 23.79 ± 5.77** | 1.004 | 1.128 |
Fig. 2. Relative biomass of rice roots, shoots, and seeds with different cadmium (Cd) concentrations in soils. CK, Control group; GM, Arbuscular mycorrhizal fungus (AFM) treatment group; ns, Not significant. Data are Mean ± SD (n = 3). Two asterisks indicate extremely significant differences between the CK and GM within one Cd level (P < 0.01, t-test). Different uppercase and lowercase letters represent significant differences in different Cd concentrations with or without AMF using a one-way analysis of variance with LSD (P < 0.05), respectively.
Fig. 3. Biomass distribution of rice roots, shoots, and seeds in soils with different cadmium (Cd) concentrations. CK, Control group; GM, Arbuscular mycorrhizal fungus treatment group.Data are Mean ± SD (n = 3).
Fig. 4. Effects of arbuscular mycorrhizal fungi (AMF) on photosynthetic parameters of rice under different soil cadmium (Cd) concentrations. Pn, Net photosynthetic rate; Tr, Transpiration rate; Gs, Stomatal conductance; CK, Control group; GM, AFM treatment group; ns, Not significant. Data are Mean ± SD (n = 3). * and ** denote significant differences between the CK and GM at a given Cd level at P < 0.05 and P < 0.01 (t-test), respectively. Distinct uppercase and lowercase letters above the bars represent significant variations in different Cd concentrations with or without AMF using a one-way analysis of variance with LSD (P < 0.05).
Fig. 5. Activities of antioxidant enzymes superoxide dismutase (SOD, A), peroxidase (POD, B), and catalase (CAT, C) affected by soil cadmium (Cd) concentrations and arbuscular mycorrhizal fungi (AMF). CK, Control group; GM, AFM treatment group; ns, Not significant.Data are Mean ± SD (n = 3). * and ** denote significant differences between the CK and GM at a given Cd level at P < 0.05 and P < 0.01 (t-test), respectively. Distinct uppercase and lowercase letters above the bars represent significant variations in different Cd concentrations with or without AMF using a one-way analysis of variance with LSD (P < 0.05).
Fig. 6. Effects of arbuscular mycorrhizal fungi on cadmium (Cd) concentration and total accumulation Cd in rice organs (roots, shoots and seeds). CK, Control group; GM, Arbuscular mycorrhizal fungus treatment group. Data are Mean ± SD (n = 3).
Fig. 7. Path analysis diagrams of soil cadmium (Cd) concentration and each variable. A, Control group. B, Arbuscular mycorrhizal fungus treatment group.
[1] | Akiyama K, Matsuzaki K I, Hayashi H. 2005. Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature, 435: 824-827. |
[2] | Cao Y R, Zhang S R, Zhong Q M, Wang G Y, Xu X X, Li T, Wang L L, Jia Y X, Li Y. 2018. Feasibility of nanoscale zero-valent iron to enhance the removal efficiencies of heavy metals from polluted soils by organic acids. Ecotoxicol Environ Saf, 162: 464-473. |
[3] | Castaldi P, Melis P, Silvetti M, Deiana P, Garau G. 2009. Influence of pea and wheat growth on Pb, Cd, and Zn mobility and soil biological status in a polluted amended soil. Geoderma, 151(3/4): 241-248. |
[4] | Chang Q, Diao F W, Wang Q F, Pan L, Dang Z H, Guo W. 2018. Effects of arbuscular mycorrhizal symbiosis on growth, nutrient and metal uptake by maize seedlings (Zea mays L.) grown in soils spiked with lanthanum and cadmium. Environ Pollut, 241: 607-615. |
[5] | Chen B D, Zhu Y G, Duan J, Xiao X Y, Smith S E. 2007. Effects of the arbuscular mycorrhizal fungus Glomus mosseae on growth and metal uptake by four plant species in copper mine tailings. Environ Pollut, 147: 374-380. |
[6] | Chen X W, Wu L, Luo N, Mo C H, Wong M H, Li H. 2019. Arbuscular mycorrhizal fungi and the associated bacterial community influence the uptake of cadmium in rice. Geoderma, 337: 749-757. |
[7] | Crémazy A, Brix K V, Wood C M. 2018. Chronic toxicity of binary mixtures of six metals (Ag, Cd, Cu, Ni, Pb, and Zn) to the great pond snail Lymnaea stagnalis. Environ Sci Technol, 52(10): 5979-5988. |
[8] | D’Alessandro A, Taamalli M, Gevi F, Timperio A M, Zolla L, Ghnaya T. 2013. Cadmium stress responses in Brassica juncea: Hints from proteomics and metabolomics. J Proteome Res, 12(11): 4979-4997. |
[9] | Dou X K, Dai H P, Skuza L, Wei S H. 2020. Strong accumulation capacity of hyperaccumulator Solanum nigrum L. for low or insoluble Cd compounds in soil and its implication for phytoremediation. Chemosphere, 260: 127564. |
[10] | Doubková P, Suda J, Sudová R. 2012. The symbiosis with arbuscular mycorrhizal fungi contributes to plant tolerance to serpentine edaphic stress. Soil Biol Biochem, 44(1): 56-64. |
[11] | Fu X P, Dou C M, Chen Y X, Chen X C, Shi J Y, Yu M G, Xu J. 2011. Subcellular distribution and chemical forms of cadmium in Phytolacca americana L. J Hazard Mater, 186(1): 103-107. |
[12] | Garg N, Chandel S. 2012. Role of arbuscular mycorrhizal (AM) fungi on growth, cadmium uptake, osmolyte, and phytochelatin synthesis in Cajanus cajan (L.) millsp. under NaCl and Cd stresses. J Plant Growth Regul, 31(3): 292-308. |
[13] | Giovannetti M, Mosse B. 1980. An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytol, 84(3): 489-500. |
[14] | Göhre V, Paszkowski U. 2006. Contribution of the arbuscular mycorrhizal symbiosis to heavy metal phytoremediation. Planta, 223(6): 1115-1122. |
[15] | Gul I, Manzoor M, Hashmi I, Bhatti M F, Kallerhoff J, Arshad M. 2019. Plant uptake and leaching potential upon application of amendments in soils spiked with heavy metals (Cd and Pb). J Environ Manag, 249: 109408. |
[16] | Gunathilakae N, Yapa N, Hettiarachchi R. 2018. Effect of arbuscular mycorrhizal fungi on the cadmium phytoremediation potential of Eichhornia crassipes (Mart.) Solms. Groundw Sustain Dev, 7: 477-482. |
[17] | Han X, Wong Y S, Wong M H, Tam N F Y. 2007. Biosorption and bioreduction of Cr(VI) by a microalgal isolate, Chlorella miniata. J Hazard Mater, 146(1/2): 65-72. |
[18] | Huang X C, Wang L, Ma F. 2017. Arbuscular mycorrhizal fungus modulates the phytotoxicity of Cd via combined responses of enzymes, thiolic compounds, and essential elements in the roots of Phragmites australis. Chemosphere, 187: 221-229. |
[19] | Jayawardene I, Saper R, Lupoli N, Sehgal A, Wright R O, Amarasiriwardena C. 2010. Determination of in vitro bioaccessibility of Pb, As, Cd and Hg in selected traditional Indian medicines. J Anal At Spectrom, 25(8): 1275-1282. |
[20] | Jiang Q Y, Tan S Y, Zhuo F, Yang D J, Ye Z H, Jing Y X. 2016. Effect of Funneliformis mosseae on the growth, cadmium accumulation and antioxidant activities of Solanum nigrum. Appl Soil Ecol, 98: 112-120. |
[21] | Lai H Y. 2015. Subcellular distribution and chemical forms of cadmium in Impatiens walleriana in relation to its phytoextraction potential. Chemosphere, 138: 370-376. |
[22] | Li H, Luo N, Zhang L J, Zhao H M, Li Y W, Cai Q Y, Wong M H, Mo C H. 2016. Do arbuscular mycorrhizal fungi affect cadmium uptake kinetics, subcellular distribution and chemical forms in rice? Sci Total Environ, 571: 1183-1190. |
[23] | Li Z Z, Katsumi T, Imaizumi S, Tang X W, Inui T. 2010. Cd(II) adsorption on various adsorbents obtained from charred biomaterials. J Hazard Mater, 183: 410-420. |
[24] | Liu S L, Ali S, Yang R J, Tao J J, Ren B. 2019. A newly discovered Cd-hyperaccumulator Lantana camara L. J Hazard Mater, 371: 233-242. |
[25] | Luo N, Li X, Chen A Y, Zhang L J, Zhao H M, Xiang L, Cai Q Y, Mo C H, Wong M H, Li H. 2017. Does arbuscular mycorrhizal fungus affect cadmium uptake and chemical forms in rice at different growth stages? Sci Total Environ, 599/600: 1564-1572. |
[26] | Malandrino M, Abollino O, Buoso S, Giacomino A, La Gioia C, Mentasti E. 2011. Accumulation of heavy metals from contaminated soil to plants and evaluation of soil remediation by vermiculite. Chemosphere, 82(2): 169-178. |
[27] | Pistelli L, Ulivieri V, Giovanelli S, Avio L, Giovannetti M, Pistelli L. 2017. Arbuscular mycorrhizal fungi alter the content and composition of secondary metabolites in Bituminaria bituminosa L. Plant Biol J, 19(6): 926-933. |
[28] | Prankel S H, Nixon R M, Phillips C J C. 2005. Implications for the human food chain of models of cadmium accumulation in sheep. Environ Res, 97(3): 348-358. |
[29] | Rehman A, Farooq M. 2016. Zinc seed coating improves the growth, grain yield and grain biofortification of bread wheat. Acta Physiol Plant, 38: 238. |
[30] | Roesti D, Gaur R, Johri B N, Imfeld G, Sharma S, Kawaljeet K, Aragno M. 2006. Plant growth stage, fertiliser management and bio-inoculation of arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria affect the rhizobacterial community structure in rain-fed wheat fields. Soil Biol Biochem, 38(5): 1111-1120. |
[31] | Saeedi M, Li L Y, Grace J R. 2019. Simultaneous removal of polycyclic aromatic hydrocarbons and heavy metals from natural soil by combined non-ionic surfactants and EDTA as extracting reagents: Laboratory column tests. J Environ Manage, 248: 109258. |
[32] | Sebastian A, Prasad M N V. 2014. Cadmium minimization in rice: A review. Agron Sustain Dev, 34(1): 155-173. |
[33] | Shahabivand S, Maivan H Z, Goltapeh E M, Sharifi M, Aliloo A A. 2012. The effects of root endophyte and arbuscular mycorrhizal fungi on growth and cadmium accumulation in wheat under cadmium toxicity. Plant Physiol Biochem, 60: 53-58. |
[34] | Shahid M, Pinelli E, Dumat C. 2012. Review of Pb availability and toxicity to plants in relation with metal speciation; role of synthetic and natural organic ligands. J Hazard Mater, 219/220: 1-12. |
[35] | Sheng X F, Xia J J, Jiang C Y, He L Y, Qian M. 2008. Characterization of heavy metal-resistant endophytic bacteria from rape (Brassica napus) roots and their potential in promoting the growth and lead accumulation of rape. Environ Pollut, 156(3): 1164-1170. |
[36] | Sidhu G P S, Singh H P, Batish D R, Kohli R K. 2016. Effect of lead on oxidative status, antioxidative response and metal accumulation in Coronopus didymus. Plant Physiol Biochem, 105: 290-296. |
[37] | Sun S M, Feng Y H, Huang G D, Zhao X, Song F Q. 2022. Rhizophagus irregularis enhances tolerance to cadmium stress by altering host plant hemp (Cannabis sativa L.) photosynthetic properties. Environ Pollut, 314: 120309. |
[38] | Trindade P V O, Sobral L G, Rizzo A C L, Leite S G F, Soriano A U. 2005. Bioremediation of a weathered and a recently oil-contaminated soils from Brazil: A comparison study. Chemosphere, 58(4): 515-522. |
[39] | Wang J L, Li T, Liu G Y, Smith G M, Zhao Z W. 2016. Unraveling the role of dark septate endophyte (DSE) colonizing maize (Zea mays) under cadmium stress: Physiological, cytological and genic aspects. Sci Rep, 6: 22028. |
[40] | Wang L, Yang J X, Ma F, Yang Y F, Chang C C, Cui C W. 2009. Effect of aridification on the replacement of zonic species, Stipa baicalensis Roshev., by azonic species, Leymus chinensis Tzvel., in the steppe of China. Bull Environ Contam Toxicol, 83(4): 548-552. |
[41] | Wang M, Chen S B, Zheng H, Li S S, Chen L, Wang D. 2020. The responses of cadmium phytotoxicity in rice and the microbial community in contaminated paddy soils for the application of different long-term N fertilizers. Chemosphere, 238: 124700. |
[42] | Wang R, Wang T T, Dong T T, Zhong Q X, Chen Z X, Feng W, Wang T. 2020. Structural interplay and macroscopic aggregation of rice albumins after binding with heavy metal ions. Food Hydrocoll, 98: 105248. |
[43] | Wang Y P, Huang J, Gao Y Z. 2012. Arbuscular mycorrhizal colonization alters subcellular distribution and chemical forms of cadmium in Medicago sativa L. and resists cadmium toxicity. PLoS One, 7(11): e48669. |
[44] | Weng B S, Xie X Y, Weiss D J, Liu J C, Lu H L, Yan C L. 2012. Kandelia obovata (S., L.) Yong tolerance mechanisms to cadmium: Subcellular distribution, chemical forms and thiol pools. Mar Pollut Bull, 64(11): 2453-2460. |
[45] | Wu W M, Cheng S H. 2014. Root genetic research, an opportunity and challenge to rice improvement. Field Crops Res, 165: 111-124. |
[46] | Xu X X, Zhang S R, Xian J R, Yang Z B, Cheng Z, Li T, Jia Y X, Pu Y L, Li Y. 2018. Subcellular distribution, chemical forms and thiol synthesis involved in cadmium tolerance and detoxification in Siegesbeckia orientalis L. Int J Phytorem, 20(10): 973-980. |
[47] | Yamaji N, Xia J X, Mitani-Ueno N, Yokosho K, Ma J F. 2013. Preferential delivery of zinc to developing tissues in rice is mediated by P-type heavy metal ATPase OsHMA2. Plant Physiol, 162(2): 927-939. |
[48] | Yang Q Q, Li Z Y, Lu X N, Duan Q N, Huang L, Bi J. 2018. A review of soil heavy metal pollution from industrial and agricultural regions in China: Pollution and risk assessment. Sci Total Environ, 642: 690-700. |
[49] | Zeng F R, Zhou W H, Qiu B Y, Ali S, Wu F B, Zhang G P. 2011. Subcellular distribution and chemical forms of chromium in rice plants suffering from different levels of chromium toxicity. J Plant Nutr Soil Sci, 174(2): 249-256. |
[50] | Zhang F G, Liu M H, Li Y, Che Y Y, Xiao Y. 2019. Effects of arbuscular mycorrhizal fungi, biochar and cadmium on the yield and element uptake of Medicago sativa. Sci Total Environ, 655: 1150-1158. |
[51] | Zhang T, Liu J M, Huang X F, Xia B, Su C Y, Luo G F, Xu Y W, Wu Y X, Mao Z W, Qiu R L. 2013. Chelant extraction of heavy metals from contaminated soils using new selective EDTA derivatives. J Hazard Mater, 262: 464-471. |
[52] | Zhang X H, Zhu Y G, Chen B D, Lin A J, Smith S E, Smith F A. 2005. Arbuscular mycorrhizal fungi contribute to resistance of upland rice to combined metal contamination of soil. J Plant Nutr, 28(12): 2065-2077. |
[53] | Zhao Y F, Shang D R, Ning J S, Zhai Y X, Sheng X F, Ding H Y. 2019. Subcellular distribution and chemical forms of lead in the red algae, Porphyra yezoensis. Chemosphere, 227: 172-178. |
[54] | Zhao Z J, Chen L, Xiao Y. 2021. T he combined use of arbuscular mycorrhizal fungi, biochar and nitrogen fertilizer is most beneficial to cultivate Cichorium intybus L. in Cd-contaminated soil. Ecotoxicol Environ Saf, 217: 112154. |
[1] | Hossein SABOURI, Babak RABIEI, Maryam FAZLALIPOUR. Use of Selection Indices Based on Multivariate Analysis for Improving Grain Yield in Rice [J]. RICE SCIENCE, 2008, 15(4): 303-310 . |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||