[1] |
Bai C, Wang G J, Feng X H, et al. 2024. OsMAPK6 phosphorylation and CLG1 ubiquitylation of GW6a non-additively enhance rice grain size through stabilization of the substrate. Nat Commun, 15(1): 4300.
|
[2] |
Bella J, Hindle K L, McEwan P A, et al. 2008. The leucine-rich repeat structure. Cell Mol Life Sci, 65(15): 2307-2333.
|
[3] |
Cai Y C, Li S F, Jiao G A, et al. 2018. OsPK2 encodes a plastidic pyruvate kinase involved in rice endosperm starch synthesis, compound granule formation and grain filling. Plant Biotechnol J, 16(11): 1878-1891.
|
[4] |
Deng B W, Zhang Y N, Zhang F, et al. 2024. Genome-wide association study of cooked rice textural attributes and starch physicochemical properties in indica rice. Rice Sci, 31(3): 300-316.
|
[5] |
Feng L, Gao Z R, Xiao G Q, et al. 2014. Leucine-rich repeat receptor-like kinase FON1 regulates drought stress and seed germination by activating the expression of ABA-responsive genes in rice. Plant Mol Biol Report, 32(6): 1158-1168.
|
[6] |
Fu Y H, Hua Y H, Luo T T, et al. 2023. Generating waxy rice starch with target type of amylopectin fine structure and gelatinization temperature by waxy gene editing. Carbohydr Polym, 306: 120595.
|
[7] |
Graham-Acquaah S, Mauromoustakos A, Cuevas R P, et al. 2020. Differences in physicochemical properties of commercial rice from urban markets in west Africa. J Food Sci Technol, 57(4): 1505-1516.
|
[8] |
Holzwart E, Huerta A I, Glöckner N, et al. 2018. BRI1 controls vascular cell fate in the Arabidopsis root through RLP44 and phytosulfokine signaling. Proc Natl Acad Sci USA, 115(46): 11838-11843.
|
[9] |
Ji D L, Xiao W H, Sun Z W, et al. 2023. Translocation and distribution of carbon-nitrogen in relation to rice yield and grain quality as affected by high temperature at early panicle initiation stage. Rice Sci, 30(6): 598-612.
|
[10] |
Kang J F, Li J M, Gao S, et al. 2017. Overexpression of the leucine-rich receptor-like kinase gene LRK2 increases drought tolerance and tiller number in rice. Plant Biotechnol J, 15(9): 1175-1185.
|
[11] |
Kawakatsu T, Takaiwa F. 2010. Differences in transcriptional regulatory mechanisms functioning for free lysine content and seed storage protein accumulation in rice grain. Plant Cell Physiol, 51(12): 1964-1974.
|
[12] |
Lin F M, Li S, Wang K, et al. 2020. A leucine-rich repeat receptor-like kinase, OsSTLK, modulates salt tolerance in rice. Plant Sci, 296: 110465.
|
[13] |
Lin L S, Li Z, Ning M Y, et al. 2024. A mutant allele of the Wx gene encoding granule-bound starch synthase I results in extremely low amylose content in rice. Plant Physiol, 196(4): 2296-2299.
|
[14] |
Liu Y R, Zhang W, Wang Y H, et al. 2022. Nudix hydrolase 14 influences plant development and grain chalkiness in rice. Front Plant Sci, 13: 1054917.
|
[15] |
Matsushima R, Maekawa M, Kusano M, et al. 2016. Amyloplast membrane protein SUBSTANDARD STARCH GRAIN6 controls starch grain size in rice endosperm. Plant Physiol, 170(3): 1445-1459.
|
[16] |
Mikami I, Aikawa M, Hirano H Y, et al. 1999. Altered tissue-specific expression at the Wx gene of the opaque mutants in rice. Euphytica, 105(2): 91-97.
|
[17] |
Mikami I, Uwatoko N, Ikeda Y, et al. 2008. Allelic diversification at the wx locus in landraces of Asian rice. Theor Appl Genet, 116(7): 979-989.
|
[18] |
Nagar P, Sharma N, Jain M, et al. 2022. OsPSKR15, a phytosulfokine receptor from rice enhances abscisic acid response and drought stress tolerance. Physiol Plant, 174(1): e13569.
|
[19] |
Nie S, Chen L, Zheng M H, et al. 2024. GWAS and transcriptomic analysis identify OsRING315 as a new candidate gene controlling amylose content and gel consistency in rice. Rice, 17(1): 38.
|
[20] |
Qian D D, Chen G Q, Tian L H, et al. 2018. OsDER1 is an ER-associated protein degradation factor that responds to ER stress. Plant Physiol, 178(1): 402-412.
|
[21] |
Sato H, Suzuki Y, Sakai M, et al. 2002. Molecular characterization of Wx-mq, a novel mutant gene for low-amylose content in endosperm of rice (Oryza sativa L.). Breed Sci, 52(2): 131-135.
|
[22] |
Shi Y H, Zhang Y Y, Sun Y Y, et al. 2023. Natural variations of OsAUX5, a target gene of OsWRKY78, control the neutral essential amino acid content in rice grains. Mol Plant, 16(2): 322-336.
|
[23] |
Suzuki A, Suzuki T, Tanabe F, et al. 1997. Cloning and expression of five myb-related genes from rice seed. Gene, 198(1/2): 393-398.
|
[24] |
Tian S Q, Liang S, Qiao K, et al. 2019. Co-expression of multiple heavy metal transporters changes the translocation, accumulation, and potential oxidative stress of Cd and Zn in rice (Oryza sativa). J Hazard Mater, 380: 120853.
|
[25] |
Tilman D, Balzer C, Hill J, et al. 2011. Global food demand and the sustainable intensification of agriculture. Proc Natl Acad Sci USA, 108(50): 20260-20264.
|
[26] |
Tu B, Zhang T, Liu P, et al. 2024.The LCG1-OsBP5/OsEBP89-Wx module regulates the grain chalkiness and taste quality in rice Plant Biotechnol J: 1-15.
|
[27] |
Wang J, Jiang Q H, Pleskot R, et al. 2023. TPLATE complex- dependent endocytosis attenuates CLAVATA1 signaling for shoot apical meristem maintenance. EMBO Rep, 24(9): e54709.
|
[28] |
Xu Y, Lin Q P, Li X F, et al. 2021. Fine-tuning the amylose content of rice by precise base editing of the Wx gene. Plant Biotechnol J, 19(1): 11-13.
|
[29] |
Yamakawa H, Hirose T, Kuroda M, et al. 2007. Comprehensive expression profiling of rice grain filling-related genes under high temperature using DNA microarray. Plant Physiol, 144(1): 258-277.
|
[30] |
Yang H, Wang Y L, Tian Y L, et al. 2023. Rice FLOURY ENDOSPERM22, encoding a pentatricopeptide repeat protein, is involved in both mitochondrial RNA splicing and editing and is crucial for endosperm development. J Integr Plant Biol, 65(3): 755-771.
|
[31] |
Yang J, Wang J, Fan F J, et al. 2013.Development of AS-PCR marker based on a key mutation confirmed by resequencing of Wxmp in Milky Princess and its application in japonica soft rice (Oryza sativa L.) breeding. Plant Breed, 132(6): 595-603.
|
[32] |
Yao S, Zhang Y D, Liu Y Q, et al. 2020. Effects of soluble starch synthase genes on eating and cooking quality in semi waxy japonica rice with Wxmp. Food Prod Process Nutr, 2(1): 22.
|
[33] |
Zhang C Q, Chen S J, Ren X Y, et al. 2017. Molecular structure and physicochemical properties of starches from rice with different amylose contents resulting from modification of OsGBSSI activity. J Agric Food Chem, 65(10): 2222-2232.
|
[34] |
Zhang C Q, Zhu J H, Chen S J, et al. 2019. Wxlv, the ancestral allele of rice waxy gene. Mol Plant, 12(8): 1157-1166.
|
[35] |
Zhang C Q, Yang Y, Chen S J, et al. 2021. A rare waxy allele coordinately improves rice eating and cooking quality and grain transparency. J Integr Plant Biol, 63(5): 889-901.
|
[36] |
Zhang P, Li J Q, Li X L, et al. 2011. Population structure and genetic diversity in a rice core collection (Oryza sativa L.) investigated with SSR markers. PLoS One, 6(12): e27565.
|
[37] |
Zhang P, Liu X D, Tong H H, et al. 2014. Association mapping for important agronomic traits in core collection of rice (Oryza sativa L.) with SSR markers. PLoS One, 9(10): e111508.
|
[38] |
Zhang P, Zhong K Z, Zhong Z Z, et al. 2019a. Genome-wide association study of important agronomic traits within a core collection of rice (Oryza sativa L.). BMC Plant Biol, 19(1): 259.
|
[39] |
Zhang P, Zhong K Z, Zhong Z Z, et al. 2019b. Mining candidate gene for rice aluminum tolerance through genome wide association study and transcriptomic analysis. BMC Plant Biol, 19(1): 490.
|
[40] |
Zhou H, Xia D, Zhao D, et al. 2021. The origin of Wxla provides new insights into the improvement of grain quality in rice. J Integr Plant Biol, 63(5): 878-888.
|