Rice Science ›› 2022, Vol. 29 ›› Issue (1): 1-15.DOI: 10.1016/j.rsci.2021.12.001
• Review • Next Articles
Mohd Fadthul Ikmal Misnal1(), Norizah Redzuan1(
), Muhamad Nor Firdaus Zainal1, Norhayati Ahmad1, Raja Kamarulzaman Raja Ibrahim2, Linda Agun1
Received:
2021-01-06
Accepted:
2021-05-17
Online:
2022-01-28
Published:
2022-01-01
Contact:
Mohd Fadthul Ikmal Misnal, Norizah Redzuan
Mohd Fadthul Ikmal Misnal, Norizah Redzuan, Muhamad Nor Firdaus Zainal, Norhayati Ahmad, Raja Kamarulzaman Raja Ibrahim, Linda Agun. Cold Plasma: A Potential Alternative for Rice Grain Postharvest Treatment Management in Malaysia[J]. Rice Science, 2022, 29(1): 1-15.
Add to citation manager EndNote|Ris|BibTeX
Treated rice seed | Cold plasma system parameter | Significant finding | Reference |
---|---|---|---|
Oryza sativa, cv. Aichinokaori | Setup: atmospheric-pressure plasma; Voltage: 9 kV; Frequency: 60 Hz; Type of gas: Ar; Gas flowrate: 2 L/min; Treatment time: 5 min (at distance of 15 mm from meristem) | Panicle length: control, 21 cm; after treatment, 23 cm Stem length: control, 82.4 cm; after treatment, 86 cm Seedling height: control, 103.5 cm; after treatment, 110 cm Panicle weight of main stem: control, 2.9 g; after treatment, 4.4 g Panicle weight: control, 65 g; after treatment, 75 g Harvest index: control, 50%; after treatment, 53% | Hashizume et al, |
Dried Hashemy paddy rice, an indica cultivar | Setup: low-pressure plasma reactor; Discharge power: 50 W, 100 W; Pressure: 82 mtorr; Type of gas: vacuum; Treatment time: 5 min | Water uptake after 24 h soaking: control, 22.46%; 50 W, 26.43%; 100 W, 29.45%. Water uptake after 48 h soaking: control, 26.73%; 50 W, 29.85%; 100 W, 36.10%; Germination rate after 24 h soaking: control, 30%; 50 W, 65%; 100 W, 96%. Germination rate after 48 h soaking: control, 30%; 50 W, 70%; 100 W, 98% | Zargarchi and Saremnezhad, |
Germinated brown rice | Setup: dielectric barrier discharge; Discharge power: 100, 135, 170 and 200 W; Type of gas: Ar; Gas flowrate: 18 to 24 mL/min; Treatment time: 25, 50, 75, 100, 150, 200 and 300 s | Rice seedling height for 75 s plasma exposure and 24 mL/min: control, 12 mm; 100 W, 14.9 mm; 135 W, 18 mm; 170 W, 15.5 mm; 200 W, 14 mm Germination percentage for 75 s plasma exposure and 24 mL/min: control, 45%; 100 W, 62%; 135 W, 84%; 170 W, 62%; 200 W, 35% | Yodpitak et al, |
Table 1. Field data of cold plasma exposure on rice seed treatment.
Treated rice seed | Cold plasma system parameter | Significant finding | Reference |
---|---|---|---|
Oryza sativa, cv. Aichinokaori | Setup: atmospheric-pressure plasma; Voltage: 9 kV; Frequency: 60 Hz; Type of gas: Ar; Gas flowrate: 2 L/min; Treatment time: 5 min (at distance of 15 mm from meristem) | Panicle length: control, 21 cm; after treatment, 23 cm Stem length: control, 82.4 cm; after treatment, 86 cm Seedling height: control, 103.5 cm; after treatment, 110 cm Panicle weight of main stem: control, 2.9 g; after treatment, 4.4 g Panicle weight: control, 65 g; after treatment, 75 g Harvest index: control, 50%; after treatment, 53% | Hashizume et al, |
Dried Hashemy paddy rice, an indica cultivar | Setup: low-pressure plasma reactor; Discharge power: 50 W, 100 W; Pressure: 82 mtorr; Type of gas: vacuum; Treatment time: 5 min | Water uptake after 24 h soaking: control, 22.46%; 50 W, 26.43%; 100 W, 29.45%. Water uptake after 48 h soaking: control, 26.73%; 50 W, 29.85%; 100 W, 36.10%; Germination rate after 24 h soaking: control, 30%; 50 W, 65%; 100 W, 96%. Germination rate after 48 h soaking: control, 30%; 50 W, 70%; 100 W, 98% | Zargarchi and Saremnezhad, |
Germinated brown rice | Setup: dielectric barrier discharge; Discharge power: 100, 135, 170 and 200 W; Type of gas: Ar; Gas flowrate: 18 to 24 mL/min; Treatment time: 25, 50, 75, 100, 150, 200 and 300 s | Rice seedling height for 75 s plasma exposure and 24 mL/min: control, 12 mm; 100 W, 14.9 mm; 135 W, 18 mm; 170 W, 15.5 mm; 200 W, 14 mm Germination percentage for 75 s plasma exposure and 24 mL/min: control, 45%; 100 W, 62%; 135 W, 84%; 170 W, 62%; 200 W, 35% | Yodpitak et al, |
[1] | Abd El-Aziz M F, Mahmoud E A, Elaragi G M. 2014. Non thermal plasma for control of the Indian meal moth, Plodia interpunctella (Lepidoptera: Pyralidae). J Stored Prod Res (Lepidoptera: Pyralidae), 59: 215-221. |
[2] |
Adeghate E, Ponery A S. 2002. GABA in the endocrine pancreas: Cellular localization and function in normal and diabetic rats. Tissue Cell, 34(1): 1-6.
PMID |
[3] | Agus C, Putra P B, Kusumaningrum A P, Hasanah N A I, Cahyanti P A B. 2021. Climate change and sustainable development goals program in Indonesia. In: Handbook Climat Change Management. Switzerland: Springer Nature: 1-22. |
[4] | Ahn J B, Kim Y H, Shim K M, Suh M S, Cha D H, Lee D K, Hong S Y, Min S K, Park S C, Kang H S. 2021. Climatic yield potential of japonica-type rice in the Korean Peninsula under RCP scenarios using the ensemble of multi-GCM and multi- RCM chains. Int J Climatol, 41: E1287-E1302. |
[5] | Akasapu K, Ojah N, Gupta A K, Choudhury A J, Mishra P. 2020. An innovative approach for iron fortification of rice using cold plasma. Food Res Int, 136: 109599. |
[6] | Amnuaylojaroen T, Chanvichit P, Janta R, Surapipith V. 2021. Projection of rice and maize productions in Northern Thailand under climate change scenario RCP8.5. Agriculture, 11(1): 23. |
[7] | Amnuaysin N, Korakotchakorn H, Chittapun S, Poolyarat N. 2018. Seed germination and seedling growth of rice in response to atmospheric air dielectric-barrier discharge plasma. Songkl J Sci Technol, 40(4): 819-823. |
[8] | Atungulu G G, Kolb R E, Karcher J, Shad Z M. 2019. Postharvest technology:Rice storage and cooling conservation. In: Bao J S. Rice:Chemistry and Technology. Woodhead Publishing and AACC International Press: 517-555. |
[9] | Boettner H, Waskoenig J, O’Connell D, Kim T L, Tchertchian P A, Winter J, Schulz-von der V. 2010. Excitation dynamics of micro-structured atmospheric pressure plasma arrays. J Phys D: Appl Phys, 43(12): 124010. |
[10] |
Bourke P, Ziuzina D, Boehm D, Cullen P J, Keener K. 2018. The potential of cold plasma for safe and sustainable food production. Trends Biotechnol, 36(6): 615-626.
PMID |
[11] | Brandenburg R. 2017. Dielectric barrier discharges: Progress on plasma sources and on the understanding of regimes and single filaments. Plasma Sources Sci Technol, 26(5): 053001. |
[12] | Chen H H. 2014. Investigation of properties of long-grain brown rice treated by low-pressure plasma. Food Bioprocess Technol, 7(9): 2484-2491. |
[13] | Chen H H, Chen Y K, Chang H C. 2012. Evaluation of physicochemical properties of plasma treated brown rice. Food Chem, 135(1): 74-79. |
[14] | Chen H H, Hung C L, Lin S Y, Liou G J. 2015. Effect of low-pressure plasma exposure on the storage characteristics of brown rice. Food Bioprocess Technol, 8(2): 471-477. |
[15] |
Chen H H, Chang H C, Chen Y K, Hung C L, Lin S Y, Chen Y S. 2016. An improved process for high nutrition of germinated brown rice production: Low-pressure plasma. Food Chem, 191: 120-127.
PMID |
[16] | Chen Z T, Wang R L, Li X J, Zhu J, Xu Y N, Liu J J. 2019. Sorption equilibrium moisture and isosteric heat of cold plasma treated milled rice. Innov Food Sci Emerg, 55: 35-47. |
[17] | Cullen P J, Lalor J, Scally L, Boehm D, Milosavljević V, Bourke P, Keener K. 2018. Translation of plasma technology from the lab to the food industry. Plasma Process Polym, 15(2): 1700085. |
[18] | Department of Statistics Malaysia. 2020. Current Population Estimates. Malaysia [Press release]. shorturl.at/dwBNO. July 15, 2020. |
[19] | Department of Statistics Malaysia. 2020. Selected Agricultural Indicators. Malaysia [Press release]. shorturl.at/zGHPS. November 27, 2020. |
[20] | Devi Y, Thirumdas R, Sarangapani C, Deshmukh R R, Annapure U S. 2017. Influence of cold plasma on fungal growth and aflatoxins production on groundnuts. Food Control, 77: 187-191. |
[21] | Feizollahi E, Misra N N, Roopesh M S. 2021. Factors influencing the antimicrobial efficacy of Dielectric Barrier Discharge (DBD) Atmospheric Cold Plasma (ACP) in food processing applications. Crit Rev Food Sci, 61(4): 666-689. |
[22] | Furmanski J, Kim J Y, Kim S O. 2011. Triple-coupled intense atmospheric pressure plasma jet from honeycomb structural plasma device. IEEE Trans Plasma Sci, 39(11): 2338-2339. |
[23] | Guo J, Huang K, Wang J P. 2015. Bactericidal effect of various non-thermal plasma agents and the influence of experimental conditions in microbial inactivation: A review. Food Control, 50: 482-490. |
[24] | Ha J H, Kim H J, Ha S D. 2012. Effect of combined radiation and NaOCl/ultrasonication on reduction of Bacillus cereus spores in rice. Radiat Phys Chem, 81(8): 1177-1180. |
[25] | Habibi E, Niknejad Y, Fallah H, Dastan S, Tari D B. 2019. Life cycle assessment of rice production systems in different paddy field size levels in north of Iran. Environ Monit Assess, 191(4): 202. |
[26] | Harun S N, Hanafiah M M, Aziz N I H A. 2021. An LCA-based environmental performance of rice production for developing a sustainable agri-food system in Malaysia. Environ Manag, 67: 146-161. |
[27] | Hashizume H, Kitano H, Mizuno H, Abe A, Yuasa G, Tohno S, Tanaka H, Ishikawa K, Matsumoto S, Sakakibara H, Nikawa S, Maeshima M, Mizuno M, Hori M. 2020. Improvement of yield and grain quality by periodic cold plasma treatment with rice plants in a paddy field. Plasma Process Polym, 18: e2000181. |
[28] | Hayashi N, Yagyu Y, Yonesu A, Shiratani M. 2014. Sterilization characteristics of the surfaces of agricultural products using active oxygen species generated by atmospheric plasma and UV light. Jpn J Appl Phys, 53: 05FR03. |
[29] | Hong S C, Hur S O, Choi S K, Choi D H, Jang E S. 2018. Elevated temperature treatment induced rice growth and changes of carbon content in paddy water and soil. Kor J Environ Agric, 37(1): 15-20. |
[30] | Hopfe V, Sheel D W. 2007. Atmospheric-pressure PECVD coating and plasma chemical etching for continuous processing. IEEE Trans Plasma Sci, 35(2): 204-214. |
[31] | Jeong S T, Kim G W, Hwang H Y, Kim P J, Kim S Y. 2018. Beneficial effect of compost utilization on reducing greenhouse gas emissions in a rice cultivation system through the overall management chain. Sci Total Environ, 613/614: 115-122. |
[32] | Jittanit W, Srzednicki G, Driscoll R. 2010. Seed drying in fluidized and spouted bed dryers. Dry Technol, 28(10): 1213-1219. |
[33] | Kaur M, Hüberli D, Bayliss K L. 2020. Cold plasma: Exploring a new option for management of postharvest fungal pathogens, mycotoxins and insect pests in Australian stored cereal grain. Crop Pasture Sci, 71(8): 715-724. |
[34] | Khamsen N, Onwimol D, Teerakawanich N, Dechanupaprittha S, Kanokbannakorn W, Hongesombut K, Srisonphan S. 2016. Rice (Oryza sativa L.) seed sterilization and germination enhancement via atmospheric hybrid nonthermal discharge plasma. ACS Appl Mater Inter, 8(30): 19268-19275. |
[35] | Kim H J, Lee B W, Baek K H, Jo C, Kim J K, Lee J Y, Lee Y Y, Kim M Y, Kim M H, Lee B. 2020. Quality characteristics of rice noodles treated with cold plasma. Kor J Food Sci Technol, 52(5): 560-563. |
[36] | Kwon D H, Kim H S, Park M R. 2019. Plasma-based organism evaluation equipment using atmospheric-pressure plasma jets: Efficacy for controlling insect pests. J Asia-Pac Entomol, 22(3): 868-873. |
[37] | Lacey J, Hill S T, Edwards M A. 1980. Micro-organisms in stored grains: Their enumeration and significance. Trop Stored Prod Inf, 39: 19-33. |
[38] | Laroussi M, Leipold F. 2004. Evaluation of the roles of reactive species, heat, and UV radiation in the inactivation of bacterial cells by air plasmas at atmospheric pressure. Int J Mass Spectrom, 233: 81-86. |
[39] | Lee J H, Woo K S, Jo C, Jeong H S, Lee S K, Lee B W, Lee Y Y, Lee B, Kim H J. 2019. Quality evaluation of rice treated by high hydrostatic pressure and atmospheric pressure plasma. J Food Quality, 2019: 4253701. |
[40] | Lee K H, Choi H S, Choi Y H, Park S Y. 2014. Changes in isoflavone content and quality characteristics of Cheonggukjang prepared with Bacillus subtilis HJ18-3 and KACC 15935. Kor J Food Preserv, 21(1): 121-128. |
[41] | Lee K H, Kim H J, Woo K S, Jo C, Kim J K, Kim S H, Park H Y, Oh S K, Kim W H. 2016. Evaluation of cold plasma treatments for improved microbial and physicochemical qualities of brown rice. LWT-Food Sci Technol, 73: 442-447. |
[42] | Lee K H, Woo K S, Yong H I, Jo C, Lee S K, Lee B W, Oh S K, Lee Y Y, Lee B, Kim H J. 2018. Assessment of microbial safety and quality changes of brown and white cooked rice treated with atmospheric pressure plasma. Food Sci Biotechnol, 27(3): 661-667. |
[43] | Leelayuthsoontorn P, Thipayarat A. 2006. Textural and morphological changes of jasmine rice under various elevated cooking conditions. Food Chem, 96(4): 606-613. |
[44] | Li Z Y, Wang R F, Kudra T. 2011. Uniformity issue in microwave drying. Dry Technol, 29(6): 652-660. |
[45] | Liao X Y, Liu D H, Xiang Q S, Ahn J, Chen S G, Ye X Q, Ding T. 2017. Inactivation mechanisms of non-thermal plasma on microbes: A review. Food Control, 75: 83-91. |
[46] | Liu J J, Wang R L, Chen Z T, Li X J. 2021. Effect of cold plasma treatment on cooking, thermomechanical and surface structural properties of Chinese milled rice. Food Bioprocess Technol, 14: 866-886. |
[47] | Los A, Ziuzina D, Boehm D, Bourke P. 2020. Effects of cold plasma on wheat grain microbiome and antimicrobial efficacy against challenge pathogens and their resistance. Int J Food Microbiol, 335: 108889. |
[48] | MESTECC (Ministry of Energy, Science, Technology, Environment and Climate Change). 2018. Malaysia’s Third National Communication and Second Biennial Update Report to UNFCCC. https://unfccc.int/sites/default/files/resource/Malaysia%20NC3%20B UR2_final%20high%20res.pdf . |
[49] | MetMalaysia. 2019. Annual Report 2019. https://www.met.gov.my/content/pdf/penerbitan/laporantahunan/laporantahunan2019.pdf |
[50] | Mishenko A A, Malinin O A, Rashkovan V M, Basteev A V, Bazyma L A, Mazalov Y P, Kutovoy V A. 2000. Complex high-frequency technology for protection of grain against pests. Microw Power Electromagn Energy, 35(3): 179-184. |
[51] | Misnal M F I, Redzuan N, Zainal M N F, Ibrahim R K R, Ahmad N, Agun L. 2021. Emerging cold plasma treatment on rice grains: A mini review. Chemosphere, 274: 129972. |
[52] | Misra N N, Yadav B, Roopesh M S, Jo C. 2019a. Cold plasma for effective fungal and mycotoxin control in foods: Mechanisms, inactivation effects, and applications. Compr Rev Food Sci Food Safety, 18(1): 106-120. |
[53] | Misra N N, Yepez X, Xu L, Keener K. 2019b. In-package cold plasma technologies. J Food Eng, 244: 21-31. |
[54] | Mohammadi S, Imani S, Dorranian D, Tirgari S, Shojaee M. 2015. The effect of non-thermal plasma to control of stored product pests and changes in some characters of wheat materials. Bio Env Sci, 7(5): 150-156. |
[55] | Mondal M H T, Shiplu K S P, Sen K P, Roy J, Sarker M S H. 2019. Performance evaluation of small scale energy efficient mixed flow dryer for drying of high moisture paddy. Dry Technol, 37(12): 1541-1550. |
[56] | Morgan N N. 2009. Atmospheric pressure dielectric barrier discharge chemical and biological applications. Int J Phys Sci, 4(13): 885-892. |
[57] | Muhammad A I, Xiang Q S, Liao X Y, Liu D H, Ding T. 2018. Understanding the impact of nonthermal plasma on food constituents and microstructure: A review. Food Bioprocess Technol, 11(3): 463-486. |
[58] | Niemira B A. 2012. Cold plasma decontamination of foods. Annu Rev Food Sci Technol, 3: 125-142. |
[59] | Nimmol C, Sathapornprasath K, Devahastin S. 2012. Drying of high-moisture paddy using a combined impinging stream and pneumatic drying system. Dry Technol, 30(16): 1854-1862. |
[60] | Nordin Ibrahim M, Sarker M S H, Ab Aziz N, Mohd Salleh P M. 2014. Drying performance and overall energy requisite of industrial inclined bed paddy drying in Malaysia. J Eng Sci Technol, 9(3): 398-409. |
[61] | Ochi A, Konishi H, Ando S, Sato K, Yokoyama K, Tsushima S, Yoshida S, Morikawa T, Kaneko T, Takahashi H. 2017. Management of bakanae and bacterial seedling blight diseases in nurseries by irradiating rice seeds with atmospheric plasma. Plant Pathol, 66(1): 67-76. |
[62] | Omar S C, Shaharudin A, Tumin S A. 2019. The Status of the Paddy and Rice Industry in Malaysia. Kuala Lumpur: Khazanah Research Institute. |
[63] | Ong M H, Blanshard J M V. 1995. Texture determinants of cooked, parboiled rice: II. Physicochemical properties and leaching behaviour of rice. J Cereal Sci, 21(3): 261-269. |
[64] | Ott L C, Appleton H J, Shi H, Keener K, Mellata M. 2021. High voltage atmospheric cold plasma treatment inactivates Aspergillus flavus spores and deoxynivalenol toxin. Food Microbiol, 95: 103669. |
[65] | Pankaj S K, Bueno-Ferrer C, Misra N N, O'Neill L, Tiwari B K, Bourke P, Cullen P J. 2015. Dielectric barrier discharge atmospheric air plasma treatment of high amylose corn starch films. LWT-Food Sci Technol, 63(2): 1076-1082. |
[66] | Park H, Puligundla P, Mok C. 2020. Cold plasma decontamination of brown rice grains: Impact on biochemical and sensory qualities of their corresponding seedlings and aqueous tea infusions. LWT-Food Sci Technol, 131: 109508. |
[67] | Park J H, Kumar N, Park D H, Yusupov M, Neyts E C, Verlackt C C W, Bogaerts A, Kang M H, Uhm H S, Choi E H, Attri P. 2015. A comparative study for the inactivation of multidrug resistance bacteria using dielectric barrier discharge and nano-second pulsed plasma. Sci Rep, 5(1): 13849. |
[68] | Penado K N M, Mahinay C L S, Culaba I B. 2018. Effect of atmospheric plasma treatment on seed germination of rice (Oryza sativa L.). Jpn J Appl Phys, 57: 01AG08. |
[69] | Peng S B, Huang J L, Sheehy J E, Laza R C, Visperas R M, Zhong X H, Centeno G S, Khush G S, Cassman K G. 2004. Rice yields decline with higher night temperature from global warming. Proc Natl Acad Sci USA, 101(27): 9971-9975. |
[70] |
Pestka J J. 2010. Deoxynivalenol: Mechanisms of action, human exposure, and toxicological relevance. Arch Toxicol, 84(9): 663-679.
PMID |
[71] | Placinta C M, D'Mello J P F, Macdonald A M C. 1999. A review of worldwide contamination of cereal grains and animal feed with Fusarium mycotoxins. Anim Feed Sci Technol, 78: 21-37. |
[72] | Poonsawat K, Kiattinun R, Worakul P, Thonglor P, Amnuaycheewa P, Dangtip S. 2018. FTIR analysis of thermal and plasma treatments on riceberry brown rice. J Phys Conf Ser, 1144: 012175. |
[73] | Potluri S, Sangeetha K, Santhosh R, Nivas G, Mahendran R. 2018. Effect of low-pressure plasma on bamboo rice and its flour. J Food Process Pres, 42(12): e13846. |
[74] | Ramanan K R, Sarumathi R, Mahendran R. 2018. Influence of cold plasma on mortality rate of different life stages of Tribolium castaneum on refined wheat flour. J Stored Prod Res, 77: 126-134. |
[75] |
Román-Ochoa Y, Delgado G T C, Tejada T R, Yucra H R, Durand A E, Hamaker B R. 2021. Heavy metal contamination and health risk assessment in grains and grain-based processed food in Arequipa region of Peru. Chemosphere, 274: 129792.
PMID |
[76] | Rukunudin I H. 2009. Enhancing food safety and security during storage of paddy in Malaysia through the use of aeration technology. Proceedings of the 4th Session of the Technical Committee of APCAEM. Chiang Rai, Thailand. |
[77] | Sahari Y, Abdul Wahid R, Mhd Adnan A S, Sairi M, Hosni H, Engku Abdullah E H, Alwi S, Mohd Amin Tawakkal M H, Zainol Abidin M Z, Aris Z. 2018. Study on the drying performance and milling quality of dried paddy using inclined bed dryers in two different paddy mills located in MADA and IADA KETARA. Int Food Res J, 25(6): 2572-2578. |
[78] | Sarangapani C, Devi Y, Thirumdas R, Annapure U S, Deshmukh R R. 2015. Effect of low-pressure plasma on physico-chemical properties of parboiled rice. LWT-Food Sci Technol, 63(1): 452-460. |
[79] | Sarangapani C, Thirumdas R, Devi Y, Trimukhe A, Deshmukh R R, Annapure U S. 2016. Effect of low-pressure plasma on physico-chemical and functional properties of parboiled rice flour. LWT-Food Sci Technol, 69: 482-489. |
[80] | Scally L, Lalor J, Gulan M, Cullen P J, Milosavljević V. 2018. Spectroscopic study of excited molecular nitrogen generation due to interactions of metastable noble gas atoms. Plasma Process Polym, 15(9): 1800018. |
[81] | Shi H, Ileleji K, Stroshine R L, Keener K, Jensen J L. 2017. Reduction of aflatoxin in corn by high voltage atmospheric cold plasma. Food Bioprocess Technol, 10(6): 1042-1052. |
[82] | Smith D L. 2017. Development of a One Pass Microwave Heating Technology for Rice Drying and Decontamination [Master thesis]. Fayetteville, USA. University of Arkansas. |
[83] | Sookwong P, Yodpitak S, Doungkaew J, Jurithayo J, Boonyawan D, Mahatheeranont S. 2014. Application of oxygen-argon plasma as a potential approach of improving the nutrition value of pre-germinated brown rice. J Food Nutr Res, 2(12): 946-951. |
[84] | Suhem K, Matan N, Nisoa M, Matan N,. 2013. Inhibition of Aspergillus flavus on agar media and brown rice cereal bars using cold atmospheric plasma treatment. Int J Food Microbiol, 161(2): 107-111. |
[85] | Suriyasak C, Hatanaka K, Tanaka H, Okumura T, Yamashita D, Attri P, Koga K, Shiratani M, Hamaoka N, Ishibashi Y. 2021. Alterations of DNA methylation caused by cold plasma treatment restore delayed germination of heat-stressed rice (Oryza sativa L.) seeds. ACS Agric Sci Technol, 1: 5-10. |
[86] | Surowsky B, Schlüter O, Knorr D. 2015. Interactions of non- thermal atmospheric pressure plasma with solid and liquid food systems: A review. Food Eng Rev, 7(2): 82-108. |
[87] | Ten Bosch L, Pfohl K, Avramidis G, Wieneke S, Viöl W, Karlovsky P. 2017. Plasma-based degradation of mycotoxins produced by Fusarium, Aspergillus and Alternaria species. Toxins, 9(3): 97. |
[88] | Thirumdas R, Deshmukh R R, Annapure U S. 2015. Effect of low temperature plasma processing on physicochemical properties and cooking quality of basmati rice. Innov Food Sci Emerg, 31: 83-90. |
[89] | Thirumdas R, Saragapani C, Ajinkya M T, Deshmukh R R, Annapure U S. 2016. Influence of low pressure cold plasma on cooking and textural properties of brown rice. Innov Food Sci Emerg, 37: 53-60. |
[90] | Thirumdas R, Trimukhe A, Deshmukh R R, Annapure U S. 2017. Functional and rheological properties of cold plasma treated rice starch. Carbohydr Polym, 157: 1723-1731. |
[91] | Thomas-Popo E, Mendonça A, Misra N N, Little A, Wan Z F, Moutiq R, Coleman S, Keener K. 2019. Inactivation of Shiga-toxin-producing Escherichia coli, Salmonella enterica and natural microflora on tempered wheat grains by atmospheric cold plasma. Food Control, 104: 231-239. |
[92] | Torres M A, Jones J D G, Dangl J L. 2006. Reactive oxygen species signaling in response to pathogens. Plant Physiol, 141(2): 373-378. |
[93] | Trinh T A, Feeny S, Posso A. 2021. The impact of natural disasters and climate change on agriculture:Findings from Vietnam. In: Taha C. Economic Effects of Natural Disasters. Elsevier: 261-280. |
[94] | Vaideki K. 2016. Plasma technology for antimicrobial textiles. In: Gang S. Antimicrobial Textiles. Woodhead Publishing: 73-86. |
[95] | Varilla C, Marcone M, Annor G A. 2020. Potential of cold plasma technology in ensuring the safety of foods and agricultural produce: A review. Foods, 9(10): 1435. |
[96] | Wagner H E, Brandenburg R, Kozlov K V, Sonnenfeld A, Michel P, Behnke J F. 2003. The barrier discharge: Basic properties and applications to surface treatment. Vacuum, 71(3): 417-436. |
[97] | Wakil W, Ashfaq M, Ghazanfar M U, Riasat T. 2010. Susceptibility of stored-product insects to enhanced diatomaceous earth. J Stored Prod Res, 46(4): 248-249. |
[98] | Wang Q F, Li S, Han X, Ni Y Y, Zhao D D, Hao J X. 2019. Quality evaluation and drying kinetics of shitake mushrooms dried by hot air, infrared and intermittent microwave-assisted drying methods. LWT, 107: 236-242. |
[99] | Webster R K, Gunnell P S. 1992. Compendium of Rice Diseases. St. Paul, USA: The American Phytopathological Society. |
[100] | Woo K S, Yong H I, Jo C, Lee S K, Lee B W, Lee B W, Lee Y Y, Oh S K, Kim H J. 2017. Changes in microbial and chemical properties of rough rice treated with cold plasma by storage temperatures and periods. Korean J Food Preserv, 24(7): 908-914. |
[101] | Wu F, Wang Y H, Liu Y, Liu Y W, Zhang Y L. 2021. Simulated responses of global rice trade to variations in yield under climate change: Evidence from main rice-producing countries. J Cleaner Prod, 281: 124690. |
[102] | Xu S, Zhou Z Y, Li K L, Jamir S M, Luo X W. 2017. Recognition of the duration and prediction of insect prevalence of stored rough rice infested by the red flour beetle (Tribolium castaneum Herbst) using an electronic nose. Sensors, 17(4): 688. |
[103] | Yang X L, Chang X J, Tei R T, Nagatsu M. 2016. Effect of excited nitrogen atoms on inactivation of spore-forming microorganisms in low pressure N2/O2 surface-wave plasma. J Phys D: Appl Phys, 49(23): 235205. |
[104] | Yodkhum S, Gheewala S H, Sampattagul S. 2017. Life cycle GHG evaluation of organic rice production in northern Thailand. J Environ Manage, 196: 217-223. |
[105] | Yodpitak S, Mahatheeranont S, Boonyawan D, Sookwong P, Roytrakul S, Norkaew O. 2019. Cold plasma treatment to improve germination and enhance the bioactive phytochemical content of germinated brown rice. Food Chem, 289: 328-339. |
[106] | Zargarchi S, Saremnezhad S. 2019. Gamma-aminobutyric acid, phenolics and antioxidant capacity of germinated indica paddy rice as affected by low-pressure plasma treatment. LWT-Food Sci Technol, 102: 291-294. |
[107] | Zhao X, Pu C, Ma S T, Liu S L, Xue J F, Wang X, Wang Y Q, Li S S, Lal R, Chen F, Zhang H L. 2019. Management-induced greenhouse gases emission mitigation in global rice production. Sci Total Environ, 649: 1299-1306. |
[108] | Ziuzina D, Misra N N, Cullen P J, Keener K M, Mosnier J P, Vilaró I, Gaston E, Bourke P. 2016. Demonstrating the potential of industrial scale in-package atmospheric cold plasma for decontamination of cherry tomatoes. Plasma Med, 6: 397-412. |
[1] | Subajiny VELUPPILLAI, Ketheeswary NITHYANANTHARAJAH, Seevaratnam VASANTHARUBA, Sandrasegarampillai BALAKUMAR, Vasanthy ARASARATNAM . Biochemical Changes Associated with Germinating Rice Grains and Germination Improvement [J]. RICE SCIENCE, 2009, 16(3): 240-242 . |
[2] | LI Tian, LIU Qi-hua, Ryu OHSUGI , Tohru YAMAGISHI , Haruto SASAKI . Effect of High Temperature on Sucrose Content and Sucrose Cleaving Enzyme Activity in Rice Grain During the Filling Stage [J]. RICE SCIENCE, 2006, 13(3): 205-210 . |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||