Rice Science
  • 首页
  • 期刊介绍
  • 编委会
  • 学术伦理
  • 投稿指南
  • 期刊订阅
  • 联系我们
  • English

Rice Science ›› 2024, Vol. 31 ›› Issue (3): 245-250.DOI: 10.1016/j.rsci.2024.03.001

• • 上一篇    下一篇

  • 收稿日期:2023-08-17 接受日期:2023-11-29 出版日期:2024-05-28 发布日期:2024-06-04

RichHTML

PDF

补充材料

1

可视化

0
  • 1. Supplement Data.pdf(1072KB)

摘要/Abstract

引用本文

. [J]. Rice Science, 2024, 31(3): 245-250.

使用本文

推荐

导出引用管理器 EndNote|Ris|BibTeX

链接本文: http://www.ricesci.org/CN/10.1016/j.rsci.2024.03.001

               http://www.ricesci.org/CN/Y2024/V31/I3/245

图/表 1

Fig. 1. Rice growth and nutrient absorption of rice plants under different nitrogen-fertilizer treatments in saline-alkali paddy field. A-D, Biomass at 27 d (A), 60 d (B), 95 d (C), and 147 d (D) of rice growth; E-H, Total nitrogen (TN) at 27 d (E), 60 d (F), 95 d (G), and 147 d (H) of rice growth; I-L, Total phosphorus (TP) at 27 d (I), 60 d (J), 95 d (K), and 147 d (L) of rice growth; M-P, Total carbon (TC) at 27 d (M), 60 d (N), 95 d (O), and 147 d (P) of rice growth. CK, No N fertilizer; NF1, Urea (46% N); NF2, Carbon-based slow-release fertilizer (N:P2O5:K2O = 24:8:10); NF3, Organic-inorganic compound fertilizer (N:P2O5:K2O = 12:0:3); NF4, Microbial fertilizer (N:P2O5:K2O = 26:10:12); NF5, Inorganic compound fertilizer (N:P2O5:K2O = 25:10:13). Values represent Mean ± SD (n = 6). Columns containing different lowercase letters in black (the entire rice plant) and white (the plant tissue) indicate significant difference (P < 0.05) among treatments.

Fig. 1. Rice growth and nutrient absorption of rice plants under different nitrogen-fertilizer treatments in saline-alkali paddy field. A-D, Biomass at 27 d (A), 60 d (B), 95 d (C), and 147 d (D) of rice growth; E-H, Total nitrogen (TN) at 27 d (E), 60 d (F), 95 d (G), and 147 d (H) of rice growth; I-L, Total phosphorus (TP) at 27 d (I), 60 d (J), 95 d (K), and 147 d (L) of rice growth; M-P, Total carbon (TC) at 27 d (M), 60 d (N), 95 d (O), and 147 d (P) of rice growth. CK, No N fertilizer; NF1, Urea (46% N); NF2, Carbon-based slow-release fertilizer (N:P2O5:K2O = 24:8:10); NF3, Organic-inorganic compound fertilizer (N:P2O5:K2O = 12:0:3); NF4, Microbial fertilizer (N:P2O5:K2O = 26:10:12); NF5, Inorganic compound fertilizer (N:P2O5:K2O = 25:10:13). Values represent Mean ± SD (n = 6). Columns containing different lowercase letters in black (the entire rice plant) and white (the plant tissue) indicate significant difference (P < 0.05) among treatments.

参考文献 29

[1] Chi C M, Zhao C W, Sun X J, Wang Z C. 2012. Reclamation of saline-sodic soil properties and improvement of rice (Oriza sativa L.) growth and yield using desulfurized gypsum in the west of Songnen Plain, Northeast China. Geoderma, 187/188: 24-30.
[2] Huang M, Yang C L, Ji Q M, Jiang L G, Tan J L, Li Y Q. 2013. Tillering responses of rice to plant density and nitrogen rate in a subtropical environment of Southern China. Field Crops Res, 149: 187-192.
[3] Jiang X H, Luo D Q, Li M, Ji G M, Jiang M J, Li L J, Li G H, Zhou W J, Zhang J F. 2021. Influences of planting density on yield and nitrogen use efficiency in new indica hybrid rice varieties by bowl-seedling-mechanical-transplanting. J Agric Sci Technol, 23(8): 173-184. (in Chinese with English abstract)
[4] Kong D L, Jin Y G, Yu K, Swaney D P, Liu S W, Zou J W. 2021. Low N2O emissions from wheat in a wheat-rice double cropping system due to manure substitution are associated with changes in the abundance of functional microbes. Agric Ecosyst Environ, 311: 107318.
[5] Lehmann J, da Silva J P, Steiner C, Nehls T, Zech W, Glaser B. 2003. Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon Basin: fertilizer, manure and charcoal amendments. Plant Soil, 249(2): 343-357.
[6] Li G H, Hu Q Q, Shi Y G, Cui K H, Nie L X, Huang J L, Peng S B. 2018. Low nitrogen application enhances starch-metabolizing enzyme activity and improves accumulation and translocation of non-structural carbohydrates in rice stems. Front Plant Sci, 9: 1128.
[7] Lin J J, Li G H, Xue L H, Zhang W J, Xu H G, Wang S H, Yang L Z, Ding Y F. 2014. Subdivision of nitrogen use efficiency of rice based on 15N tracer. Acta Agron Sin, 40(8): 1424-1434. (in Chinese with English abstract)
[8] Liu J, Ouyang X Q, Shen J L, Li Y, Sun W R, Jiang W Q, Wu J S. 2020. Nitrogen and phosphorus runoff losses were influenced by chemical fertilization but not by pesticide application in a double rice-cropping system in the subtropical hilly region of China. Sci Total Environ, 715: 136852.
[9] Ma J Y, Chen T T, Lin J, Fu W M, Feng B H, Li G Y, Li H B, Li J C, Wu Z H, Tao L X, Fu G F. 2022. Functions of nitrogen, phosphorus and potassium in energy status and their influences on rice growth and development. Rice Sci, 29(2): 166-178.
[10] Medici A, Szponarski W, Dangeville P, Safi A, Dissanayake I M, Saenchai C, Emanuel A, Rubio V, Lacombe B, Ruffel S, Tanurdzic M, Rouached H, Krouk G. 2019. Identification of molecular integrators shows that nitrogen actively controls the phosphate starvation response in plants. Plant Cell, 31(5): 1171-1184.
[11] Min J, Sun H J, Wang Y, Pan Y F, Kronzucker H J, Zhao D Q, Shi W M. 2021. Mechanical side-deep fertilization mitigates ammonia volatilization and nitrogen runoff and increases profitability in rice production independent of fertilizer type and split ratio. J Clean Prod, 316: 128370.
[12] Qiao Z G, Chen L, Li L Q, Liu F L, Hu R J, Zheng J W, Yu X Y, Wang J F, Pan G X. 2014. Effects of biochar fertilizer on growth and nitrogen utilizing rate of rice. Chin Agric Sci Bull, 30(5): 175-180. (in Chinese with English abstract)
[13] Qin Y, Druzhinina I S, Pan X Y, Yuan Z L. 2016. Microbially mediated plant salt tolerance and microbiome-based solutions for saline agriculture. Biotechnol Adv, 34(7): 1245-1259.
[14] Ren T J, Li J Y, Tang Y Q, Zou Y L. 2009. 15N tracer study ratooning rice applied nitrogen absorption, assignment and effect. J Southwest China Norm Univ: Nat Sci, 34(3): 132-136. (in Chinese with English abstract)
[15] Shi X R, Hu K L, Batchelor W D, Liang H, Wu Y L, Wang Q H, Fu J, Cui X Q, Zhou F. 2020. Exploring optimal nitrogen management strategies to mitigate nitrogen losses from paddy soil in the middle reaches of the Yangtze River. Agric Water Manag, 228: 105877.
[16] Wang D Y, Xu C M, Ye C, Chen S, Chu G, Zhang X F. 2018. Low recovery efficiency of basal fertilizer-N in plants does not indicate high basal fertilizer-N loss from split-applied N in transplanted rice. Field Crops Res, 229: 8-16.
[17] Wang K Y, Onodera S I, Saito M, Okuda N, Okubo T. 2021. Estimation of phosphorus transport influenced by climate change in a rice paddy catchment using SWAT. Int J Environ Res, 15(4): 759-772.
[18] Wang X Y, Wang M M, Chen L, Shutes B, Yan B X, Zhang F M, Lyu J, Zhu H. 2023a. Nitrogen migration and transformation in a saline-alkali paddy ecosystem with application of different nitrogen fertilizers. Environ Sci Pollut Res Int, 30(18): 51665- 51678.
[19] Wang X Y, Zhu H, Shutes B, Yan B X, Lyu J, Zhang F M. 2023b. Nutrient runoff loss from saline-alkali paddy fields in Songnen Plain of Northeast China via different runoff pathways: Effects of nitrogen fertilizer types. Environ Sci Pollut Res, 30(43): 97977-97989.
[20] Wei H H, Meng T Y, Li C, Zhang H C, Dai Q G, Ma R R, Wang X Y, Yang J W. 2016. Accumulation, distribution, and utilization characteristics of phosphorus in Yongyou 12 yielding over 13.5 t ha-1. Acta Agron Sin, 42(6): 886-897. (in Chinese with English abstract)
[21] Winkel A, Colmer T D, Ismail A M, Pedersen O. 2013. Internal aeration of paddy field rice (Oryza sativa) during complete submergence: Importance of light and floodwater O2. New Phytol, 197(4): 1193-1203.
[22] Xiao Q L, Zhu J, Peng H, Jian Y, Ji X H. 2021. Effects of controlled release fertilizer combined with rice straw on ammonia volatilization from doublecropping rice fields. J Agron Environ Sci, 40(12): 2788-2800. (in Chinese with English abstract)
[23] Yang S L, Huang X C, Li Y, Liu Y L, Zhang Y R, Zhang Y, Zhang W A, Jiang T M. 2022. Effects of long-term organic and inorganic fertilizer application on growth, dry matter accumulation and yield of rice. Acta Agric Zhejiang, 34(9): 1815-1825. (in Chinese with English abstract)
[24] Yoneyama T, Tanno F, Tatsumi J, Mae T. 2016. Whole-plant dynamic system of nitrogen use for vegetative growth and grain filling in rice plants (Oryza sativa L.) as revealed through the production of 350 grains from a germinated seed over 150 days: A review and synthesis. Front Plant Sci, 7: 1151.
[25] Yu H, Wang Z M, Mao D H, Jia M M, Chang S Z, Li X Y. 2023. Spatiotemporal variations of soil salinization in China’s West Songnen Plain. Land Degrad Dev, 34(8): 2366-2378.
[26] Yue Y, Shao T Y, Long X H, He T F, Gao X M, Zhou Z S, Liu Z P, Rengel Z. 2020. Microbiome structure and function in rhizosphere of Jerusalem artichoke grown in saline land. Sci Total Environ, 724: 138259.
[27] Zaman M, Nguyen M L, Blennerhassett J D, Quin B F. 2008. Reducing NH3, N2O and NO3--N losses from a pasture soil with urease or nitrification inhibitors and elemental S-amended nitrogenous fertilizers. Biol Fertil Soils, 44(5): 693-705.
[28] Zhao C Z, Zhang H, Song C P, Zhu J K, Shabala S. 2020. Mechanisms of plant responses and adaptation to soil salinity. Innovation, 1(1): 100017.
[29] Zhao Z, Cao L K, Sha Z M, Deng J, Chu C B, Zhou D P, Wu S H, Lv W G. 2020. Impacts of fertilization optimization on N loss from paddy fields: Observations and DNDC modeling case study in Shanghai, China. Soil Tillage Res, 199: 104587.

相关文章 0

No related articles found!

编辑推荐

Metrics

阅读次数
全文


摘要

  • 摘要
  • 图/表
  • 参考文献
  • 相关文章
  • 编辑推荐
  • Metrics
回顶部
浙ICP备05004719号-15   公安备案号:33010302003355
版权所有 © 《Rice Science》编辑部
地址:浙江省杭州市体育场路359号 邮编:310006 电话:0571-63371017 E-mail:crrn@fy.hz.zn.cn; cjrs278@gmail.com
本系统由北京玛格泰克科技发展有限公司设计开发
总访问量: 今日访问: 在线人数: