Rice Science ›› 2024, Vol. 31 ›› Issue (4): 375-400.DOI: 10.1016/j.rsci.2024.02.004
• Reviews • Previous Articles Next Articles
Ravindran Lalithambika Visakh1, Sreekumar Anand1, Sukumaran Nair Arya1, Behera Sasmita2, Uday Chand Jha3, Rameswar Prasad Sah2(), Radha Beena4(
)
Received:
2023-11-07
Accepted:
2024-01-02
Online:
2024-07-28
Published:
2024-08-08
Contact:
Radha Beena (beena.r@kau.in); Rameswar Prasad Sah (rameshpbg@gmail.com)
Ravindran Lalithambika Visakh, Sreekumar Anand, Sukumaran Nair Arya, Behera Sasmita, Uday Chand Jha, Rameswar Prasad Sah, Radha Beena. Rice Heat Tolerance Breeding: A Comprehensive Review and Forward Gaze[J]. Rice Science, 2024, 31(4): 375-400.
Add to citation manager EndNote|Ris|BibTeX
Gene | Function | Reference |
---|---|---|
GAD3 | Involves in tolerance to high temperatures | El-Kereamy et al, |
OsLEA5 | Lactates dehydrogenase stability under heat stress | He et al, |
OsHCI1 | Favours nuclear export of multiple substrate proteins and their heterologous | Lim et al, |
OsHYR | Increases chlorophyll content in leaves | Ambavaram et al, |
Apq1 | Improves grain quality produced under high-temperature stress | Murata et al, |
OsANN1 | Improves superoxide dismutase and catalase activity and regulates H2O2 levels and redox balance | Qiao et al, |
OsTT1 | Toxic and denatured protein degradation | Li et al, |
OsHTAS | H2O2 induced stomata closure under heat stress | Liu J P et al, |
TOGR1 | Chaperone protein of nucleolar small subunit complex and improves cell proliferation and growth under high temperatures | Wang D R et al, |
TCM5 | Maintenance of PSII function and chloroplast development under high temperatures | Zheng et al, |
EG1 | Maintains homeostasis of floral organs and imparts temperature tolerance through high temperature- mediated mitochondrial lipase pathway | Zhang B Y et al, |
OsPTD1 | Maintenance of plant height under thermal stress | Qiu et al, |
LAZY1 | Formation of rice tiller angle | Zhang et al, |
OsAET1 | Regulates tRNA modification and translational control under high temperatures | Chen et al, |
OsSPL7 | Maintenance of plant height under thermal stress | Hoang et al, |
OsCNGC16 | Regulates cytoplasmic calcium influx induced by temperature stress | Cui et al, |
OsFKBP20-1b | Maintenance of plant height under thermal stress | Deng et al, |
OsSTVB-I | Increases tiller number | Hayano-Saito and Hayashi, |
OsHSA1 | Maintenance of plant height under thermal stress | Park H J et al, |
Osbht | High temperature tolerance at the booting stage | Park J R et al, |
OsNSUN2 | Controls 5-methylcytosine mRNA modification and increases efficiency of mRNA translation at high temperatures | Tang et al, |
SLG1 | Regulates TT3.2 that protects cytosolic tRNA 2-thiolation protein 2 reproductive stage tolerance | Xu Y F et al, |
OsHTS1 | Prevents chlorophyll damage | Chen et al, |
CPHSP70-2 | Increases chalkiness in grains | Jiang et al, |
OsSFq3 | Contributes to spikelet fertility and grain quality at high temperatures | Park et al, |
HTH5 | Maintenance high seed-setting rate under high temperatures during the heading stage | Cao et al, |
OsTT2 | Controls rice thermotolerance through SCT1-dependent alteration of wax biosynthesis | Kan et al, |
OsHES1 | High-temperature stress and in the maintenance of chloroplast function | Xia et al, |
OsGRP3 | Alteration of phenylpropanoid biosynthesis pathway and increases the deposition of lignin and flavonoids | Xu et al, |
OsNCED1 | Thermotolerance in rice seedlings by increasing endogenous abscisic acid content | Zhang Y J et al, |
OsTT3.1 | Acts as a potential thermosensor that activates translocation of plasma membrane-localized E3 ligase to endosomes, on which TT3.1 ubiquitinates chloroplast precursor protein TT3.2 for vacuolar degradation | Zhang H et al, Zhang H et al, |
OsTT3.2 | Regulates TT3.2 proteins in chloroplasts and protects the thylakoids from heat stress | |
TTL1 | Regulation of thermotolerance and grain size in rice under high temperatures | Lin et al, |
OsGRF4 | Alteration of nutrition allocation and metabolism in reproductive tissues | Mo et al, |
SRL10 | Regulation of leaf morphology and improves stability of catalase isozyme Bto enhanced H2O2 scavenging | Wang et al, |
Table 1. List of genes involved in heat stress response mechanisms in rice.
Gene | Function | Reference |
---|---|---|
GAD3 | Involves in tolerance to high temperatures | El-Kereamy et al, |
OsLEA5 | Lactates dehydrogenase stability under heat stress | He et al, |
OsHCI1 | Favours nuclear export of multiple substrate proteins and their heterologous | Lim et al, |
OsHYR | Increases chlorophyll content in leaves | Ambavaram et al, |
Apq1 | Improves grain quality produced under high-temperature stress | Murata et al, |
OsANN1 | Improves superoxide dismutase and catalase activity and regulates H2O2 levels and redox balance | Qiao et al, |
OsTT1 | Toxic and denatured protein degradation | Li et al, |
OsHTAS | H2O2 induced stomata closure under heat stress | Liu J P et al, |
TOGR1 | Chaperone protein of nucleolar small subunit complex and improves cell proliferation and growth under high temperatures | Wang D R et al, |
TCM5 | Maintenance of PSII function and chloroplast development under high temperatures | Zheng et al, |
EG1 | Maintains homeostasis of floral organs and imparts temperature tolerance through high temperature- mediated mitochondrial lipase pathway | Zhang B Y et al, |
OsPTD1 | Maintenance of plant height under thermal stress | Qiu et al, |
LAZY1 | Formation of rice tiller angle | Zhang et al, |
OsAET1 | Regulates tRNA modification and translational control under high temperatures | Chen et al, |
OsSPL7 | Maintenance of plant height under thermal stress | Hoang et al, |
OsCNGC16 | Regulates cytoplasmic calcium influx induced by temperature stress | Cui et al, |
OsFKBP20-1b | Maintenance of plant height under thermal stress | Deng et al, |
OsSTVB-I | Increases tiller number | Hayano-Saito and Hayashi, |
OsHSA1 | Maintenance of plant height under thermal stress | Park H J et al, |
Osbht | High temperature tolerance at the booting stage | Park J R et al, |
OsNSUN2 | Controls 5-methylcytosine mRNA modification and increases efficiency of mRNA translation at high temperatures | Tang et al, |
SLG1 | Regulates TT3.2 that protects cytosolic tRNA 2-thiolation protein 2 reproductive stage tolerance | Xu Y F et al, |
OsHTS1 | Prevents chlorophyll damage | Chen et al, |
CPHSP70-2 | Increases chalkiness in grains | Jiang et al, |
OsSFq3 | Contributes to spikelet fertility and grain quality at high temperatures | Park et al, |
HTH5 | Maintenance high seed-setting rate under high temperatures during the heading stage | Cao et al, |
OsTT2 | Controls rice thermotolerance through SCT1-dependent alteration of wax biosynthesis | Kan et al, |
OsHES1 | High-temperature stress and in the maintenance of chloroplast function | Xia et al, |
OsGRP3 | Alteration of phenylpropanoid biosynthesis pathway and increases the deposition of lignin and flavonoids | Xu et al, |
OsNCED1 | Thermotolerance in rice seedlings by increasing endogenous abscisic acid content | Zhang Y J et al, |
OsTT3.1 | Acts as a potential thermosensor that activates translocation of plasma membrane-localized E3 ligase to endosomes, on which TT3.1 ubiquitinates chloroplast precursor protein TT3.2 for vacuolar degradation | Zhang H et al, Zhang H et al, |
OsTT3.2 | Regulates TT3.2 proteins in chloroplasts and protects the thylakoids from heat stress | |
TTL1 | Regulation of thermotolerance and grain size in rice under high temperatures | Lin et al, |
OsGRF4 | Alteration of nutrition allocation and metabolism in reproductive tissues | Mo et al, |
SRL10 | Regulation of leaf morphology and improves stability of catalase isozyme Bto enhanced H2O2 scavenging | Wang et al, |
Fig. 1. Mechanism and cellular pathways of heat signaling in heat tolerant rice crops. PLC, Phospholipase C; CNGC, Cyclic-nucleotide gated channel; RBOH, Respiratory burst oxidase homologue; SUT, Sucrose uptake transporter; OsNLT3, Oryza sativa nuclear-like transporter 3; GSA-1, Grain size and abiotic stress tolerance 1; TT1, Thermo-tolerance 1; CDKs, Cyclin dependent kinases; Ca, Calcium; ROS, Reactive oxygen species; NO, Nitric oxide; JUB1, JUNGBRUNNEN1 (a reactive oxygen species-responsive NAC transcription factor); CaM, Calmodulin; OsTRXz, Oryza sativa thioredoxin; OsFLN1/2, Oryza sativa farnesylation1/2; OsPGL, Oryza sativa pale green leaf encoding chlorophyllide and oxygenase 1; OsEG1, Oryza sativa extra glume 1; OsbZIP7/74, Oryza sativa basic leucine zipper 7/74; OsbIRE1, Oryza sativa inositol requiring enzyme 1; PP7, Protein phosphatase 7; CBK3, Calcium-binding protein kinase 3; HSFAs, Heat stress transcription factors with AHA domains; sHSP22, Small heat shock protein 22; PP2Cs-ABI1, Protein phosphatase2-abscisic acid-insensitive 1; BIN2, BRASSINOSTEROID‐INSENSITIVE 2; BRI1, BRASSINOSTEROID-INSENSITIVE 1; BES1, BRI1 EMS‐Suppressor 1; HSPs, Heat shock proteins; HSE, Heat shock element; HSFs, Heat shock transcription factors; DREB2A, Dehydration-responsive element-binding protein 2A; OsNL3, Oryza sativa NLR (nucleotide-binding site, leucine-rich repeat) protein 3; DST, Dehydration stress tolerance; SNAC3, Stress-responsive NAC transcription factor 3; ABA, Abscisic acid.
Fig. 2. Schematic representation of breeding for heat tolerance in rice. Combinations of conventional and modern breeding approaches along with accurate phenotypic screening techniques accelerate the genetic gain for drought tolerance in rice. RILs, Recombinant inbred lines; BILs, Backcross inbred lines; GWAS, Genome-wide association analysis.
Genomic resource | Reference |
---|---|
Indica rice Agbede, Carreon, OS4, P1215936, Sintiane Diofor, Nagina 22 (N22), Guodao 6, HT54, NERICA-L-44, KRN, Citanduy, Belle patna, BPB, Guangjie 9, T226, Huanghuazhan, Anbori, Hoveizeh, IR24, IR36, Milyang 23, Dular, Wuxiangjing 14, Habataki, AUS17, Sonalee, M9962, AUS16, IET22218, Karuthacheera, LN-9956-Vellakaravala (Pavumba), Pokkali white, Ciherang, Larome, Mulai, ADT36, BG90-2, IR2006-P12-12-2-2, Darbari Roodbar, CR-Dhan 307, CR-Dhan 202, Ptb-7 | Yoshida, et al, |
Japonica rice Akitakomachi, Nipponbare, Azucena, Toyonishiki, Hitomebore, Todorokiwase, Liaoyan 241 | Matsui et al, |
Japonica-indica cross derivative Giza178 | Tenorio et al, |
Wild rice Oryza meridionalis, O. officinalis, O. eichingeri, O. glaberrima, O. australiensis, O. Alta, O. rufipogon | Jagadish et al, |
Table 2. List of heat-tolerant genomic resources of rice.
Genomic resource | Reference |
---|---|
Indica rice Agbede, Carreon, OS4, P1215936, Sintiane Diofor, Nagina 22 (N22), Guodao 6, HT54, NERICA-L-44, KRN, Citanduy, Belle patna, BPB, Guangjie 9, T226, Huanghuazhan, Anbori, Hoveizeh, IR24, IR36, Milyang 23, Dular, Wuxiangjing 14, Habataki, AUS17, Sonalee, M9962, AUS16, IET22218, Karuthacheera, LN-9956-Vellakaravala (Pavumba), Pokkali white, Ciherang, Larome, Mulai, ADT36, BG90-2, IR2006-P12-12-2-2, Darbari Roodbar, CR-Dhan 307, CR-Dhan 202, Ptb-7 | Yoshida, et al, |
Japonica rice Akitakomachi, Nipponbare, Azucena, Toyonishiki, Hitomebore, Todorokiwase, Liaoyan 241 | Matsui et al, |
Japonica-indica cross derivative Giza178 | Tenorio et al, |
Wild rice Oryza meridionalis, O. officinalis, O. eichingeri, O. glaberrima, O. australiensis, O. Alta, O. rufipogon | Jagadish et al, |
Fig. 3. Rice breeding with heat resistance using economic resources. The incorporation of modern molecular technologies, including phenomics platforms, biotechnological tools, genomic resources, germplasm resources, and bioinformatics resources, is considered essential for heat-tolerant rice breeding, as it improves decision-making. Additionally, the combination of genomic and bioinformatics resources with data science applications further improves the precision of breeding decisions.
Genomic resource | Remark |
---|---|
Nagina 22 (N22) | Aus-type landrace; High spikelet fertility |
Shoni, Ao Gou8 | Higher 1000-grain weight and fertility |
Agbede, Carreon, OS4, P1215936, Sintiane Diofor | High spikelet fertility |
KRN, Citanduy, Belle patna, BPB | Heat tolerant at the ripening stage |
HT54 | Heat tolerant at both the seedling and grain-filling stages |
NERICA-L-44 | Heat tolerant at both the vegetative and reproductive stages |
CR-Dhan 307 | Higher pollen viability, spikelet fertility, and 1000-grain weight |
Ptb-7, CR-Dhan 202 | Heat tolerance at the vegetative stage |
Dular, Todorokiwase | Heat tolerant at the booting stage |
Darbari Roodbar, Larome, Mulai, Giza 178, IR2006-P-12-12-2-2, Milyang 23, Todorokiwase | Heat tolerant at the flowering stage |
Oryza meridionalis | Higher photosynthetic rate |
Oryza officinalis, O. eichingeri, O. glaberrima | Early-morning flowering |
Oryza australiensis | Late-afternoon flowering |
Oryza alta | Midnight flowering phenotype |
Hehuatang 4, a wild species accession (Oryza rufipogon) | Heat tolerance at the booting stage |
Table 3. Characters of some popular heat-tolerant rice genotypes.
Genomic resource | Remark |
---|---|
Nagina 22 (N22) | Aus-type landrace; High spikelet fertility |
Shoni, Ao Gou8 | Higher 1000-grain weight and fertility |
Agbede, Carreon, OS4, P1215936, Sintiane Diofor | High spikelet fertility |
KRN, Citanduy, Belle patna, BPB | Heat tolerant at the ripening stage |
HT54 | Heat tolerant at both the seedling and grain-filling stages |
NERICA-L-44 | Heat tolerant at both the vegetative and reproductive stages |
CR-Dhan 307 | Higher pollen viability, spikelet fertility, and 1000-grain weight |
Ptb-7, CR-Dhan 202 | Heat tolerance at the vegetative stage |
Dular, Todorokiwase | Heat tolerant at the booting stage |
Darbari Roodbar, Larome, Mulai, Giza 178, IR2006-P-12-12-2-2, Milyang 23, Todorokiwase | Heat tolerant at the flowering stage |
Oryza meridionalis | Higher photosynthetic rate |
Oryza officinalis, O. eichingeri, O. glaberrima | Early-morning flowering |
Oryza australiensis | Late-afternoon flowering |
Oryza alta | Midnight flowering phenotype |
Hehuatang 4, a wild species accession (Oryza rufipogon) | Heat tolerance at the booting stage |
QTL | Flanking marker/candidate genes | Trait | Mapping population | Donor | Reference |
---|---|---|---|---|---|
qhr1 | RG381-RZ19 | Spikelet fertility | DH | Azucena | Cao et al, |
qhr3-1 | RZ892-RG100 | ||||
qhr4-3 | RG214-RG143 | ||||
qhr8-1 | RG978-RG1 | ||||
qhr11-1 | RZ400-RG118 | ||||
qhr11-2 | RG118-Adh | ||||
qss-4 | RM5749-5586 | Spikelet sterility | BC1F1 | Guangjie 9 | Zhao et al, |
qss-5 | RM153-13 | ||||
qhts-2 | RM406-525 | ||||
qhts-3 | RM157b-282 | ||||
qhts-5 | RM405-274 | ||||
qHt3 | RM570-RM148 | Seed-setting rate | F6-8 RIL | T226 | Chen et al, |
qHt9a | RM108-RM242 | ||||
qHt12 | MRG0103-RM235 | ||||
qHt2 | RM183-RM106 | ||||
qHt3 | RM570-RM148 | Heat tolerance at tassel period | F6-8 RIL | Toyonishiki | Zhang et al, |
qHt8 | RM547-MRG2181 | ||||
qHt9b | RM242-RM566 | ||||
qHTSF 1.1 | id1023892 | Spikelet fertility | F2 | N22 | Ye et al, |
qHTSF 4.1 | id4005120 | ||||
qEMF3 | RM14407 | Early-morning flowering | NIL | EMF20 line (Oryza officinalis) | Hirabayashi et al, |
qHTSF1.2 | id1013342 | Spikelet fertility | F2 | Giza 178 | Ye et al, |
qHTSF2.1 | id2006486 | ||||
qHTSF3.1 | id3001137 | ||||
qHTSF6.1 | id6004481-id6008973 | ||||
qHTSF11.2 | id11002639-id11003924 | ||||
qSFht2 | RM1234-RM3850 | Spikelet fertility | CSSL | Habataki | Zhao et al, |
qSFht4.2 | RM3916-RM2431 | ||||
qPSLht4.1 | RM7585-Bb38P21a | Pollen shedding level | |||
qPSLht5 | RM1248-RM4915 | ||||
qDFT3 | RM3766-RM3513 | Daily flowering time | |||
qDFT8 | RM5891-RM4997 | ||||
qDFT10.1 | RM6737-RM6673 | ||||
Qdft11 | RM1355-RM2191 | ||||
qPSLht1 | RM1196-RM6581 | Pollen shedding level | |||
qPSLht7 | RM6394-RM1364 | ||||
qPSLht10.2 | RM7492-RM1859 | ||||
qRRS4 | RM471-RM177 | Reduction rate of seed setting | F8 RIL | Liaoyan 241 | Li et al, |
qSSR6-1 | RM528 | Seed-setting rate | CSSL | Nagina 22 (N22) | Nguyen et al, |
qSSR7-1 | RM248 | ||||
qSSR8-1 | RM284 | ||||
qSSR9-1 | RM242 | ||||
qSSR11-1 | RM224 | ||||
qTT4 | MH08g0014900, MH08g0018300, MH08g0018400, MH08g0018800, MH08g0018900 | Heat tolerance at the seedling stage | BIL | IRGC103886 (Oryza longistaminata) | Fan et al, |
Table 4. List of QTLs linked to heat tolerance in rice.
QTL | Flanking marker/candidate genes | Trait | Mapping population | Donor | Reference |
---|---|---|---|---|---|
qhr1 | RG381-RZ19 | Spikelet fertility | DH | Azucena | Cao et al, |
qhr3-1 | RZ892-RG100 | ||||
qhr4-3 | RG214-RG143 | ||||
qhr8-1 | RG978-RG1 | ||||
qhr11-1 | RZ400-RG118 | ||||
qhr11-2 | RG118-Adh | ||||
qss-4 | RM5749-5586 | Spikelet sterility | BC1F1 | Guangjie 9 | Zhao et al, |
qss-5 | RM153-13 | ||||
qhts-2 | RM406-525 | ||||
qhts-3 | RM157b-282 | ||||
qhts-5 | RM405-274 | ||||
qHt3 | RM570-RM148 | Seed-setting rate | F6-8 RIL | T226 | Chen et al, |
qHt9a | RM108-RM242 | ||||
qHt12 | MRG0103-RM235 | ||||
qHt2 | RM183-RM106 | ||||
qHt3 | RM570-RM148 | Heat tolerance at tassel period | F6-8 RIL | Toyonishiki | Zhang et al, |
qHt8 | RM547-MRG2181 | ||||
qHt9b | RM242-RM566 | ||||
qHTSF 1.1 | id1023892 | Spikelet fertility | F2 | N22 | Ye et al, |
qHTSF 4.1 | id4005120 | ||||
qEMF3 | RM14407 | Early-morning flowering | NIL | EMF20 line (Oryza officinalis) | Hirabayashi et al, |
qHTSF1.2 | id1013342 | Spikelet fertility | F2 | Giza 178 | Ye et al, |
qHTSF2.1 | id2006486 | ||||
qHTSF3.1 | id3001137 | ||||
qHTSF6.1 | id6004481-id6008973 | ||||
qHTSF11.2 | id11002639-id11003924 | ||||
qSFht2 | RM1234-RM3850 | Spikelet fertility | CSSL | Habataki | Zhao et al, |
qSFht4.2 | RM3916-RM2431 | ||||
qPSLht4.1 | RM7585-Bb38P21a | Pollen shedding level | |||
qPSLht5 | RM1248-RM4915 | ||||
qDFT3 | RM3766-RM3513 | Daily flowering time | |||
qDFT8 | RM5891-RM4997 | ||||
qDFT10.1 | RM6737-RM6673 | ||||
Qdft11 | RM1355-RM2191 | ||||
qPSLht1 | RM1196-RM6581 | Pollen shedding level | |||
qPSLht7 | RM6394-RM1364 | ||||
qPSLht10.2 | RM7492-RM1859 | ||||
qRRS4 | RM471-RM177 | Reduction rate of seed setting | F8 RIL | Liaoyan 241 | Li et al, |
qSSR6-1 | RM528 | Seed-setting rate | CSSL | Nagina 22 (N22) | Nguyen et al, |
qSSR7-1 | RM248 | ||||
qSSR8-1 | RM284 | ||||
qSSR9-1 | RM242 | ||||
qSSR11-1 | RM224 | ||||
qTT4 | MH08g0014900, MH08g0018300, MH08g0018400, MH08g0018800, MH08g0018900 | Heat tolerance at the seedling stage | BIL | IRGC103886 (Oryza longistaminata) | Fan et al, |
[1] | Abdul Fiyaz R, Ajay B C, Ramya K T, Aravind Kumar J, Sundaram R M, Subba Rao L V. 2020. Speed breeding:Methods and applications. In: Satbir S G, Shabir H W. Accelerated Plant Breeding, Volume 1. Cham, Switzerland: Springer: 31-49. |
[2] | Albertos P, Dündar G, Schenk P, Carrera S, Cavelius P, Sieberer T, Poppenberger B. 2022. Transcription factor BES1 interacts with HSFA1 to promote heat stress resistance of plants. EMBO J, 41(3): e108664. |
[3] | Ali A, Beena R, Chennamsetti L N M, Swapna A, Soni K B, Viji M M. 2022. Molecular characterization and varietal identification for multiple abiotic stress tolerance in rice (Oryza sativa L.). Oryza, 59(1): 59-76. |
[4] | Ali Z, Merrium S, Habib-Ur-Rahman M, Hakeem S, Saddique M A B, Sher M A. 2022. Wetting mechanism and morphological adaptation; leaf rolling enhancing atmospheric water acquisition in wheat crop: A review. Environ Sci Pollut Res Int, 29(21): 30967-30985. |
[5] | Alif A B S, Beena R, Stephen K. 2021. Combined effect of high temperature and salinity on growth and physiology of rice (Oryza sativa L.). Agric Res J, 58(5): 783-788. |
[6] | Ambavaram M M R, Basu S, Krishnan A, Ramegowda V, Batlang U, Rahman L, Baisakh N, Pereira A. 2014. Coordinated regulation of photosynthesis in rice increases yield and tolerance to environmental stress. Nat Commun, 5: 5302. |
[7] | Armstrong P R, McClung A M, Maghirang E B, Chen M H, Brabec D L, Yaptenco K F, Famoso A N, Addison C K. 2019. Detection of chalk in single kernels of long‐grain milled rice using imaging and visible/near‐infrared instruments. Cereal Chem, 96(6): 1103-1111. |
[8] | Arshad M S, Farooq M, Asch F, Krishna J S V, Vara Prasad P V, Siddique K H M. 2017. Thermal stress impacts reproductive development and grain yield in rice. Plant Physiol Biochem, 115: 57-72. |
[9] | Ashraf M, Athar H R, Harris P J C, Kwon T R. 2008. Some prospective strategies for improving crop salt tolerance. Adv Agron, 97: 45-110. |
[10] | Ayenan M A T, Danquah A, Hanson P, Ampomah-Dwamena C, Sodedji F A K, Asante I K, Danquah E Y. 2019. Accelerating breeding for heat tolerance in tomato (Solanum lycopersicum L.): An integrated approach. Agronomy, 9(11): 720. |
[11] | Ayyenar B, Kambale R, Duraialagaraja S, Manickam S, Mohanavel V, Shanmugavel P, Alagarsamy S, Ishimaru T, Krishna Jagadish S V, Vellingiri G, Muthurajan R. 2023. Developing early morning flowering version of rice variety CO51 to mitigate the heat-induced yield loss. Agriculture, 13(3): 553. |
[12] | Bahuguna R N, Jha J, Pal M, Shah D, Lawas L M, Khetarpal S, Jagadish K S V. 2015. Physiological and biochemical characterization of NERICA-L-44: A novel source of heat tolerance at the vegetative and reproductive stages in rice. Physiol Plant, 154(4): 543-559. |
[13] | Beena R, Vighneswaran V, Narayankutty M C. 2018a. Evaluation of rice genotypes for acquired thermo-tolerance using Temperature Induction Response (TIR) technique. Oryza, 55(2): 285-291. |
[14] | Beena R, Vighneswaran V, Sindhumole P, Narayankutty M C, Voleti S R. 2018b. Impact of high temperature stress during reproductive and grain filling stage in rice. Oryza, 55(1): 126-133. |
[15] | Beena R, Veena V, Jaslam M P K, Nithya N, Adarsh V S. 2021. Germplasm innovation for high-temperature tolerance from traditional rice accessions of Kerala using genetic variability, genetic advance, path coefficient analysis and principal component analysis. J Crop Sci Biotechnol, 24(5): 555-566. |
[16] | Bevan M W, Uauy C, Wulff B B H, Zhou J, Krasileva K, Clark M D. 2017. Genomic innovation for crop improvement. Nature, 543: 346-354. |
[17] | Bhat J A, Yu D Y, Bohra A, Ahmad Ganie S, Varshney R K. 2021. Features and applications of haplotypes in crop breeding. Commun Biol, 4: 1266. |
[18] | Biswal A K, Mangrauthia S K, Reddy M R, Yugandhar P. 2019. CRISPR mediated genome engineering to develop climate smart rice: Challenges and opportunities. Semin Cell Dev Biol, 96: 100-106. |
[19] | Bita C E, Gerats T. 2013. Plant tolerance to high temperature in a changing environment: Scientific fundamentals and production of heat stress-tolerant crops. Front Plant Sci, 4: 273. |
[20] | Bokszczanin K L, Fragkostefanakis S. 2013. Perspectives on deciphering mechanisms underlying plant heat stress response and thermotolerance. Front Plant Sci, 4: 315. |
[21] | Cai H Y, Wang H P, Zhou L, Li B, Zhang S, He Y G, Guo Y, You A Q, Jiao C H, Xu Y H. 2023. Time-series transcriptomic analysis of contrasting rice materials under heat stress reveals a faster response in the tolerant cultivar. Int J Mol Sci, 24(11): 9408. |
[22] | Cao L Y, Zhao J G, Zhan X D, Li D L, He L B, Cheng S H. 2003. Mapping QTLs for heat tolerance and correlation between heat tolerance and photosynthetic rate in rice. Chin J Rice Sci, 17(3): 223-227.(in Chinese with English abstract) |
[23] | Cao Y Y, Duan H, Yang L N, Wang Z Q, Zhou S C, Yang J C. 2009. Effect of heat-stress during meiosis on grain yield of rice cultivars differing in heat-tolerance and its physiological mechanism. Acta Agron Sin, 34(12): 2134-2142.(in Chinese with English abstract) |
[24] | Cao Z B, Li Y, Tang H W, Zeng B H, Tang X Y, Long Q Z, Wu X F, Cai Y H, Yuan L F, Wan J L. 2020. Fine mapping of the qHTB1-1 QTL, which confers heat tolerance at the booting stage, using an Oryza rufipogon Griff. introgression line. Theor Appl Genet, 133(4): 1161-1175. |
[25] | Cao Z B, Tang H W, Cai Y H, Zeng B H, Zhao J L, Tang X Y, Lu M, Wang H M, Zhu X J, Wu X F, Yuan L F, Wan J L. 2022. Natural variation of HTH5 from wild rice, Oryza rufipogon Griff., is involved in conferring high-temperature tolerance at the heading stage. Plant Biotechnol J, 20(8): 1591-1605. |
[26] | Ceccarelli S, Grando S, Maatougui M, Michael M, Slash M, Haghparast R, Taheri A, Al-Yassin A, Benbelkacem A, Labdi M, Mimoun H, Nachit M. 2010. Plant breeding and climate changes. J Agric Sci, 148(6): 627-637. |
[27] | Challa S, Neelapu N R R. 2018. Genome-wide association studies (GWAS) for abiotic stress tolerance in plants. In: Wani S H. Biochemical, Physiological and Molecular Avenues for Combating Abiotic Stress Tolerance in Plants. Amsterdam, the Netherland: Academic Press: 135-150. |
[28] | Cheabu S, Moung-Ngam P, Arikit S, Vanavichit A, Malumpong C. 2018. Effects of heat stress at vegetative and reproductive stages on spikelet fertility. Rice Sci, 25(4): 218-226. |
[29] | Cheabu S, Panichawong N, Rattanametta P, Wasuri B, Kasemsap P, Arikit S, Vanavichit A, Malumpong C. 2019. Screening for spikelet fertility and validation of heat tolerance in a large rice mutant population. Rice Sci, 26(4): 229-238. |
[30] | Chen C, Begcy K, Liu K, Folsom J J, Wang Z, Zhang C, Walia H. 2016. Heat stress yields a unique MADS box transcription factor in determining seed size and thermal sensitivity. Plant Physiol, 171(1): 606-622. |
[31] | Chen J L, Tang L, Shi P H, Yang B H, Sun T, Cao W X, Zhu Y. 2017. Effects of short-term high temperature on grain quality and starch granules of rice (Oryza sativa L.) at post-anthesis stage. Protoplasma, 254(2): 935-943. |
[32] | Chen K, Guo T, Li X M, Zhang Y M, Yang Y B, Ye W W, Dong N Q, Shi C L, Kan Y, Xiang Y H, Zhang H, Li Y C, Gao J P, Huang X H, Zhao Q, Han B, Shan J X, Lin H X. 2019. Translational regulation of plant response to high temperature by a dual-function tRNAHis guanylyltransferase in rice. Mol Plant, 12(8): 1123-1142. |
[33] | Chen L, Wang Q, Tang M Y, Zhang X L, Pan Y H, Yang X H, Gao G Q, Lv R H, Tao W, Jiang L G, Liang T F. 2021. QTL mapping and identification of candidate genes for heat tolerance at the flowering stage in rice. Front Genet, 11: 621871. |
[34] | Chen Q Q, Yu S B, Li C H, Mou T M. 2008. Identification of QTLs for heat tolerance at flowering stage in rice. Chin J Agric Sci, 41(2): 315-321.(in Chinese with English abstract) |
[35] | Chimmili S R, Kanneboina S, Hanjagi P S, Basavaraj P S, Sakhare A S, Senguttuvel P, Kumar S, Kota S. 2022. Integrating advanced molecular, genomic, and speed breeding methods for genetic improvement of stress tolerance in rice. In: Gowdra Mallikarjuna M, Nayaka S C, Kaul T. Next-Generation Plant Breeding Approaches for Stress Resilience in Cereal Crops. Singapore: Springer: 263-283. |
[36] | Collard B C, Mackill D J. 2008. Marker-assisted selection: An approach for precision plant breeding in the twenty-first century. Philos Trans R Soc Lond B Biol Sci, 363: 557-572. |
[37] | Cortés A J, López-Hernández F, Osorio-Rodriguez D. 2020. Predicting thermal adaptation by looking into populations’ genomic past. Front Genet, 11: 564515. |
[38] | Cui Y M, Lu S, Li Z, Cheng J W, Hu P, Zhu T Q, Wang X, Jin M, Wang X X, Li L Q, Huang S Y, Zou B H, Hua J. 2020. CYCLIC NUCLEOTIDE-GATED ION CHANNELs 14 and 16 promote tolerance to heat and chilling in rice. Plant Physiol, 183(4): 1794-1808. |
[39] | Das S, Krishnan P, Nayak M, Ramakrishnan B. 2014. High temperature stress effects on pollens of rice (Oryza sativa L.) genotypes. Environ Exp Bot, 101: 36-46. |
[40] | Deng W J, Li R Q, Xu Y W, Mao R Y, Chen S F, Chen L B, Chen L T, Liu Y G, Chen Y L. 2020. A lipid transfer protein variant with a mutant eight-cysteine motif causes photoperiod- and thermo-sensitive dwarfism in rice. J Exp Bot, 71(4): 1294-1305. |
[41] | Dong N Q, Sun Y W, Guo T, Shi C L, Zhang Y M, Kan Y, Xiang Y H, Zhang H, Yang Y B, Li Y C, Zhao H Y, Yu H X, Lu Z Q, Wang Y, Ye W W, Shan J X, Lin H X. 2020. UDP-glucosyltransferase regulates grain size and abiotic stress tolerance associated with metabolic flux redirection in rice. Nat Commun, 11(1): 2629. |
[42] | El-Kereamy A, Bi Y M, Ranathunge K, Beatty P H, Good A G, Rothstein S J. 2012. The rice R2R3-MYB transcription factor OsMYB55 is involved in the tolerance to high temperature and modulates amino acid metabolism. PLoS One, 7(12): e52030. |
[43] | Endo M, Tsuchiya T, Hamada K, Kawamura S, Yano K, Ohshima M, Higashitani A, Watanabe M, Kawagishi-Kobayashi M. 2009. High temperatures cause male sterility in rice plants with transcriptional alterations during pollen development. Plant Cell Physiol, 50(11): 1911-1922. |
[44] | Fahad S, Bajwa A A, Nazir U, Anjum S A, Farooq A, Zohaib A, Sadia S, Nasim W, Adkins S, Saud S, Ihsan M Z, Alharby H, Wu C, Wang D P, Huang J L. 2017. Crop production under drought and heat stress: Plant responses and management options. Front Plant Sci, 8: 1147. |
[45] | Fan F F, Cai M, Luo X, Liu M M, Yuan H R, Cheng M X, Ahmad A, Li N W, Li S Q. 2023. Novel QTLs from wild rice Oryza longistaminata confer strong tolerance to high temperature at seedling stage. Rice Sci, 30(6): 577-586. |
[46] | Fang Y J, Liao K F, Du H, Xu Y, Song H Z, Li X H, Xiong L Z. 2015. A stress-responsive NAC transcription factor SNAC3 confers heat and drought tolerance through modulation of reactive oxygen species in rice. J Exp Bot, 66(21): 6803-6817. |
[47] | Fu G F, Zhang C X, Yang Y J, Xiong J, Yang X Q, Zhang X F, Jin Q Y, Tao L X. 2015. Male parent plays more important role in heat tolerance in three-line hybrid rice. Rice Sci, 22(3): 116-122. |
[48] | Ghosh S, Watson A, Gonzalez-Navarro O E, Ramirez-Gonzalez R H, Yanes L, Mendoza-Suárez M, Simmonds J, Wells R, Rayner T, Green P, Hafeez A, Hayta S, Melton R E, Steed A, Sarkar A, Carter J, Perkins L, Lord J, Tester M, Osbourn A, Moscou M J, Nicholson P, Harwood W, Martin C, Domoney C, Uauy C, Hazard B, Wulff B B H, Hickey L T. 2018. Speed breeding in growth chambers and glasshouses for crop breeding and model plant research. Nat Protoc, 13(12): 2944-2963. |
[49] | Gilani A A, Siadat S A, Alami-Saeed K, Bakhshandeh A M, Moradi F, Seidnejad M. 2009. Effect of heat stress on grain yield stability, chlorophyll content and cell membrane stability of flag leaf in commercial rice cultivars in Khuzestan. Iran J Crop Sci, 11: 82-100. |
[50] | Gonzalez Cepero M C, Cristo E, Pérez N, Reyes Y, Horta D, Guillama R, Blanco G, Varela M, Spencer M, Sarsu F. 2021. Evaluation of mutant rice genotypes for tolerance to high temperature. Aust J Crop Sci, 15(9): 44-50. |
[51] | Gourdji S M, Sibley A M, Lobell D B. 2013. Global crop exposure to critical high temperatures in the reproductive period: Historical trends and future projections. Environ Res Lett, 8(2): 024041. |
[52] | Hakata M, Wada H, Masumoto-Kubo C, Tanaka R, Sato H, Morita S. 2017. Development of a new heat tolerance assay system for rice spikelet sterility. Plant Methods, 13(1): 1-8. |
[53] | Harshada V K, Arun H P, Chaudhari P, Chandel G. 2021. Impact of heat stress on expression pattern of nine rice heat shock factor genes and its traits related to tolerance. Indian J Biotechnol, 20: 65-75. |
[54] | Hayano-Saito Y, Hayashi K. 2020. Stvb-i, a rice gene conferring durable resistance to Rice stripe virus, protects plant growth from heat stress. Front Plant Sci, 11: 519. |
[55] | He S, Tan L L, Hu Z L, Chen G P, Wang G X, Hu T Z. 2012. Molecular characterization and functional analysis by heterologous expression in E. coli under diverse abiotic stresses for OsLEA5, the atypical hydrophobic LEA protein from Oryza sativa L. Mol Genet Genomics, 287: 39-54. |
[56] | Hirabayashi H, Sasaki K, Kambe T, Gannaban R B, Miras M A, Mendioro M S, Simon E V, Lumanglas P D, Fujita D, Takemoto-Kuno Y, Takeuchi Y, Kaji R, Kondo M, Kobayashi N, Ogawa T, Ando I, Jagadish K S V, Ishimaru T. 2015. qEMF3, a novel QTL for the early-morning flowering trait from wild rice, Oryza officinalis, to mitigate heat stress damage at flowering in rice, O. sativa. J Exp Bot, 66(5): 1227-1236. |
[57] | Hoang T V, Vo K T X, Rahman M M, Choi S H, Jeon J S. 2019. Heat stress transcription factor OsSPL7 plays a critical role in reactive oxygen species balance and stress responses in rice. Plant Sci, 289: 110273. |
[58] | Hu C M, Jiang J H, Li Y L, Song S J, Zou Y, Jing C Y, Zhang Y, Wang D Z, He Q, Dang X J. 2022. QTL mapping and identification of candidate genes using a genome-wide association study for heat tolerance at anthesis in rice (Oryza sativa L.). Front Genet, 13: 983525. |
[59] | Hu Q Q, Wang W C, Lu Q F, Huang J L, Peng S B, Cui K H. 2021. Abnormal anther development leads to lower spikelet fertility in rice (Oryza sativa L.) under high temperature during the panicle initiation stage. BMC Plant Biol, 21(1): 428. |
[60] | Hu Y, Li S L, Fan X W, Song S, Zhou X, Weng X Y, Xiao J H, Li X H, Xiong L Z, You A Q, Xing Y Z. 2020. OsHOX1 and OsHOX28 redundantly shape rice tiller angle by reducing HSFA2D expression and auxin content. Plant Physiol, 184(3): 1424-1437. |
[61] | Huang X H, Han B. 2014. Natural variations and genome-wide association studies in crop plants. Annu Rev Plant Biol, 65: 531-551. |
[62] | Impa S M, Raju B, Hein N T, Sandhu J, Prasad P V V, Walia H, Jagadish S V K. 2021. High night temperature effects on wheat and rice: Current status and way forward. Plant Cell Environ, 44(7): 2049-2065. |
[63] | Ishimaru T, Hirabayashi H, Ida M, Takai T, San-Oh Y A, Yoshinaga S, Ando I, Ogawa T, Kondo M. 2010. A genetic resource for early-morning flowering trait of wild rice Oryza officinalis to mitigate high temperature-induced spikelet sterility at anthesis. Ann Bot, 106(3): 515-520. |
[64] | Ishimaru T, Hirabayashi H, Sasaki K, Ye C R, Kobayashi A. 2016. Breeding efforts to mitigate damage by heat stress to spikelet sterility and grain quality. Plant Prod Sci, 19(1): 12-21. |
[65] | Ishimaru T, Parween S, Saito Y, Shigemitsu T, Yamakawa H, Nakazono M, Masumura T, Nishizawa N K, Kondo M, Sreenivasulu N. 2019. Laser microdissection-based tissue-specific transcriptome analysis reveals a novel regulatory network of genes involved in heat-induced grain chalk in rice endosperm. Plant Cell Physiol, 60(3): 626-642 |
[66] | Jagadish S V K. 2020. Heat stress during flowering in cereals: Effects and adaptation strategies. New Phytol, 226(6): 1567-1572. |
[67] | Jagadish S V K, Craufurd P Q, Wheeler T R. 2007. High temperature stress and spikelet fertility in rice (Oryza sativa L.). J Exp Bot, 58(7): 1627-1635. |
[68] | Jagadish S V K, Craufurd P Q, Wheeler T R. 2008. Phenotyping parents of mapping populations of rice for heat tolerance during anthesis. Crop Sci, 48(3): 1140-1146. |
[69] | Jagadish S V K, Cairns J, Lafitte R, Wheeler T R, Price A H, Craufurd P Q. 2010. Genetic analysis of heat tolerance at anthesis in rice. Crop Sci, 50(5): 1633-1641. |
[70] | Jähne F, Hahn V, Würschum T. Leiser W L. 2020. Speed breeding short-day crops by LED-controlled light schemes. Theor Appl Genet, 133(8): 2335-2342. |
[71] | Janni M, Gullì M, Maestri E, Marmiroli M, Valliyodan B, Nguyen H T, Marmiroli N. 2020. Molecular and genetic bases of heat stress responses in crop plants and breeding for increased resilience and productivity. J Exp Bot, 71(13): 3780-3802. |
[72] | Jiang L R, Zhong H, Jiang X B, Zhang J P, Huang R Y, Liao F R, Deng Y Q, Liu Q Q, Huang Y M, Wang H C, Tao Y, Zheng J S. 2021. Identification and pleiotropic effect analysis of GSE5 on rice chalkiness and grain shape. Front Plant Sci, 12: 814928. |
[73] | Kan Y, Lin H X. 2021. Molecular regulation and genetic control of rice thermal response. Crop J, 9(3): 497-505. |
[74] | Kan Y, Mu X R, Zhang H, Gao J, Shan J X, Ye W W, Lin H X. 2022. TT2 controls rice thermotolerance through SCT1-dependent alteration of wax biosynthesis. Nat Plants, 8(1): 53-67. |
[75] | Kaneko K, Sasaki M, Kuribayashi N, Suzuki H, Sasuga Y, Shiraya T, Inomata T, Itoh K, Baslam M, Mitsui T. 2016. Proteomic and glycomic characterization of rice chalky grains produced under moderate and high-temperature conditions in field system. Rice, 9(1): 26. |
[76] | Karwa S, Bahuguna R N, Chaturvedi A K, Maurya S, Arya S S, Chinnusamy V, Pal M. 2020. Phenotyping and characterization of heat stress tolerance at reproductive stage in rice (Oryza sativa L.). Acta Physiol Plant, 42(2): 1-16. |
[77] | Khan A, Ahmad M, Ahmed M, Gill K S, Akram Z. 2021. Association analysis for agronomic traits in wheat under terminal heat stress. Saudi J Biol Sci, 28(12): 7404-7415. |
[78] | Kilasi N L, Singh J, Vallejos C E, Ye C R, Jagadish S V K, Kusolwa P, Rathinasabapathi B. 2018. Heat stress tolerance in rice (Oryza sativa L.): Identification of quantitative trait loci and candidate genes for seedling growth under heat stress. Front Plant Sci, 9: 1578. |
[79] | Klap C, Yeshayahou E, Bolger A M, Arazi T, Gupta S K, Shabtai S, Usadel B, Salts Y, Barg R. 2017. Tomato facultative parthenocarpy results from SlAGAMOUS-LIKE 6 loss of function. Plant Biotechnol J, 15(5): 634-647. |
[80] | Kobayashi K, Matsui T, Murata Y, Yamamoto M. 2011. Percentage of dehisced thecae and length of dehiscence control pollination stability of rice cultivars at high temperatures. Plant Prod Sci, 14(2): 89-95. |
[81] | Kouhen M, García-Caparrós P, Twyman R M, Abdelly C, Mahmoudi H, Schillberg S, Debez A. 2023. Improving environmental stress resilience in crops by genome editing: Insights from extremophile plants. Crit Rev Biotechnol, 43(4): 559-574. |
[82] | Krishnan P, Ramakrishnan B, Reddy K R, Reddy V R. 2011. High-temperature effects on rice growth, yield, and grain quality. Adv Agron, 111: 87-206. |
[83] | Kumar A, Saripalli G, Jan I, Kumar K, Sharma P K, Balyan H S, Gupta P K. 2020. Meta-QTL analysis and identification of candidate genes for drought tolerance in bread wheat (Triticum aestivum L.). Physiol Mol Biol Plants, 26(8): 1713-1725. |
[84] | Lafarge T, Bueno C, Frouin J, Jacquin L, Courtois B, Ahmadi N. 2017. Genome-wide association analysis for heat tolerance at flowering detected a large set of genes involved in adaptation to thermal and other stresses. PLoS One, 12(2): e0171254. |
[85] | Lakshmi G, Beena R, Soni K B, Viji M M, Jha U C. 2023. Exogenously applied plant growth regulator protects rice from heat-induced damage by modulating plant defense mechanism. J Crop Sci Biotechnol, 26(1): 63-75. |
[86] | Lal M K, Tiwari R K, Gahlaut V, Mangal V, Kumar A, Singh M P, Paul V, Kumar S, Singh B, Zinta G. 2022. Physiological and molecular insights on wheat responses to heat stress. Plant Cell Rep, 41(3): 501-518. |
[87] | Lang N T, Ha P T T, Tru P C, Toan T B, Buu B C, Cho Y C. 2015. Breeding for heat tolerance rice based on marker-assisted backcrosing in Vietnam. Plant Breed Biotechnol, 3(3): 274-281. |
[88] | Li M M, Li X, Yu L Q, Wu J W, Li H, Liu J, Ma X D, Jo S M, Park D S, Song Y C, Shin D, Han L Z. 2018. Identification of QTLs associated with heat tolerance at the heading and flowering stage in rice (Oryza sativa L.). Euphytica, 214(4): 1-11. |
[89] | Li P J, Wang Y H, Qian Q, Fu Z M, Wang M, Zeng D L, Li B H, Wang X J, Li J Y. 2007. LAZY1 controls rice shoot gravitropism through regulating polar auxin transport. Cell Res, 17(5): 402-410. |
[90] | Li P P, Jiang J, Zhang G G, Miao S Y, Lu J B, Qian Y K, Zhao X Q, Wang W S, Qiu X J, Zhang F, Xu J L. 2023. Integrating GWAS and transcriptomics to identify candidate genes conferring heat tolerance in rice. Front Plant Sci, 13: 1102938. |
[91] | Li X M, Chao D Y, Wu Y, Huang X H, Chen K, Cui L G, Su L, Ye W W, Chen H, Chen H C, Dong N Q, Guo T, Shi M, Feng Q, Zhang P, Han B, Shan J X, Gao J P, Lin H X. 2015. Natural alleles of a proteasome α2 subunit gene contribute to thermotolerance and adaptation of African rice. Nat Genet, 47(7): 827-833. |
[92] | Li Y, Li J L, Chen Z H, Wei Y, Qi Y H, Wu C Y. 2020. OsmiR167a-targeted auxin response factors modulate tiller angle via fine-tuning auxin distribution in rice. Plant Biotechnol J, 18(10): 2015-2026. |
[93] | Liao J L, Zhang H Y, Shao X L, Zhong P A, Huang Y J. 2011. Identification for heat tolerance in backcross recombinant lines and screening of backcross introgression lines with heat tolerance at milky stage in rice. Rice Sci, 18(4): 279-286. |
[94] | Lim S D, Cho H Y, Park Y C, Ham D J, Lee J K, Jang C S. 2013. The rice RING finger E3 ligase, OsHCI1, drives nuclear export of multiple substrate proteins and its heterogeneous overexpression enhances acquired thermotolerance. J Exp Bot, 64(10): 2899-2914. |
[95] | Lin Y R, Zhu Y W, Cui Y C, Qian H G, Yuan Q L, Chen R, Lin Y, Chen J M, Zhou X S, Shi C L, He H Y, Hu T J, Gu C B, Yu X M, Zhu X Y, Wang Y X, Qian Q, Zhang C J, Wang F, Shang L G. 2023. Identification of natural allelic variation in TTL1 controlling thermotolerance and grain size by a rice super pan-genome. J Integr Plant Biol, 65(12): 2541-2551. |
[96] | Liu G, Zha Z P, Cai H Y, Qin D D, Jia H T, Liu C Y, Qiu D F, Zhang Z J, Wan Z H, Yang Y Y, Wan B L, You A Q, Jiao C H. 2020. Dynamic transcriptome analysis of anther response to heat stress during anthesis in thermotolerant rice (Oryza sativa L.). Int J Mol Sci, 21(3): 1155. |
[97] | Liu H T, Gao F, Cui S J, Han J L, Sun D Y, Zhou R G. 2006. Primary evidence for involvement of IP3 in heat-shock signal transduction in Arabidopsis. Cell Res, 16(4): 394-400. |
[98] | Liu H T, Gao F, Li G L, Han J L, Liu D L, Sun D Y, Zhou R G. 2008. The calmodulin-binding protein kinase 3 is part of heat-shock signal transduction in Arabidopsis thaliana. Plant J, 55(5): 760-773. |
[99] | Liu J, Hasanuzzaman M, Wen H L, Zhang J, Peng T, Sun H W, Zhao Q Z. 2019. High temperature and drought stress cause abscisic acid and reactive oxygen species accumulation and suppress seed germination growth in rice. Protoplasma, 256(5): 1217-1227. |
[100] | Liu J H, Shen J Q, Xu Y, Li X H, Xiao J H, Xiong L Z. 2016. Ghd2, a CONSTANS-like gene, confers drought sensitivity through regulation of senescence in rice. J Exp Bot, 67(19): 5785-5798. |
[101] | Liu J P, Zhang C C, Wei CC, Liu X, Wang M G, Yu F F, Xie Q, Tu J M. 2016. The RING finger ubiquitin E3 ligase OsHTAS enhances heat tolerance by promoting H2O2-induced stomatal closure in rice. Plant physiol, 170(1): 429-443. |
[102] | Liu J P, Sun X J, Xu F Y, Zhang Y J, Zhang Q, Miao R, Zhang J H, Liang J S, Xu W F. 2018. Suppression of OsMDHAR4 enhances heat tolerance by mediating H2O2-induced stomatal closure in rice plants. Rice, 11(1): 38. |
[103] | Liu J Z, Feng L L, Li J M, He Z H. 2015. Genetic and epigenetic control of plant heat responses. Front Plant Sci, 6: 267. |
[104] | Liu X H, Lyu Y S, Yang W P, Yang Z T, Lu S J, Liu J X. 2020. A membrane-associated NAC transcription factor OsNTL3 is involved in thermotolerance in rice. Plant Biotechnol J, 18(5): 1317-1329. |
[105] | Lu S J, Yang Z T, Sun L, Sun L, Song Z T, Liu J X. 2012. Conservation of IRE1-regulated bZIP74 mRNA unconventional splicing in rice (Oryza sativa L.) involved in ER stress responses. Mol Plant, 5(2): 504-514. |
[106] | Ma Z M, Lv J, Wu W H, Fu D, Lü S Y, Ke Y G, Yang P F. 2023. Regulatory network of rice in response to heat stress and its potential application in breeding strategy. Mol Breed, 43(9): 68. |
[107] | MacKill D J, Coffman W R, Rutger J N. 1982. Pollen shedding and combining ability for high temperature tolerance in rice. Crop Sci, 22(4): 730-733. |
[108] | Mahmood A, Wang W, Ali I, Zhen F X, Osman R, Liu B, Liu L L, Zhu Y, Cao W X, Tang L A. 2021. Individual and combined effects of booting and flowering high-temperature stress on rice biomass accumulation. Plants, 10(5): 1021. |
[109] | Maldonado C, Mora F, Scapim C A, Coan M. 2019. Genome-wide haplotype-based association analysis of key traits of plant lodging and architecture of maize identifies major determinants for leaf angle: hapLA4. PLoS One, 14(3): e0212925. |
[110] | Manigbas N L, Lambio L A F, Madrid L B, Cardenas C C. 2014. Germplasm innovation of heat tolerance in rice for irrigated lowland conditions in the Philippines. Rice Sci, 21(3): 162-169. |
[111] | Maruyama A, Weerakoon W M W, Wakiyama Y, Ohba K. 2013. Effects of increasing temperatures on spikelet fertility in different rice cultivars based on temperature gradient chamber experiments. J Agron Crop Sci, 199(6): 416-423. |
[112] | Matsui T, Omasa K, Horie T. 2015. The difference in sterility due to high temperatures during the flowering period among japonica-rice varieties. Plant Prod Sci, 4(2): 90-93. |
[113] | Matsui T, Omasa K, Horie T. 2000. High temperature at flowering inhibits swelling of pollen grains, a driving force for thecae dehiscence in rice (Oryza sativa L.). Plant Prod Sci, 3(4): 430-434. |
[114] | Matsui T, Omasa K, Horie T. 2001. The difference in sterility due to high temperatures during the flowering period among japonica-rice varieties. Plant Prod Sci, 4: 90-93. |
[115] | Matsui T, Omasa K. 2002. Rice (Oryza sativa L.) cultivars tolerant to high temperature at flowering: Anther characteristics. Ann Bot, 89(6): 683-687. |
[116] | Maulana F, Ayalew H, Anderson J D, Kumssa T T, Huang W Q, Ma X F. 2018. Genome-wide association mapping of seedling heat tolerance in winter wheat. Front Plant Sci, 9: 1272. |
[117] | Miao C B, Xiao L H, Hua K, Zou C S, Zhao Y, Bressan R A, Zhu J K. 2018. Mutations in a subfamily of abscisic acid receptor genes promote rice growth and productivity. Proc Natl Acad Sci USA, 115(23): 6058-6063. |
[118] | Mo Y J, Li G Y, Liu L, Zhang Y J, Li J Y, Yang M Z, Chen S L, Lin Q L, Fu G F, Zheng D F, Ling Y. 2023. OsGRF4AA compromises heat tolerance of developing pollen grains in rice. Front Plant Sci, 14: 1121852. |
[119] | Müller F, Rieu I. 2016. Acclimation to high temperature during pollen development. Plant Reprod, 29(1/2): 107-118. |
[120] | Murata K, Iyama Y, Yamaguchi T, Ozaki H, Kidani Y, Ebitani T. 2014. Identification of a novel gene (Apq1) from the indica rice cultivar ‘Habataki’ that improves the quality of grains produced under high temperature stress. Breed Sci, 64(4): 273-281. |
[121] | Nguyen T, Shen S J, Cheng M Y, Chen Q Q. 2022. Identification of QTLs for heat tolerance at the flowering stage using chromosome segment substitution lines in rice. Genes, 13(12): 2248. |
[122] | Nguyen T T, Pham D T, Nguyen N H, Do P T, To H T M. 2023. The Germin-like protein gene OsGER4 is involved in heat stress response in rice root development. Funct Integr Genomics, 23(3): 271. |
[123] | Ohnishi T, Yoshino M, Yamakawa H, Kinoshita T. 2011. The biotron breeding system: A rapid and reliable procedure for genetic studies and breeding in rice. Plant Cell Physiol, 52(7): 1249-1257. |
[124] | Pandey B, Chand H, Barsha K C, Magar B R, Bhandari J, Lamichhane P, Kayastha P, Baduwal P, Poudel M R. 2022. Review on effects of heat stress on rice. Global Sci J, 10(12): 626-630. |
[125] | Park H J, You Y N, Lee A, Jung H, Jo S H, Oh N, Kim H S, Lee H J, Kim J K, Kim Y S, Jung C, Cho H S. 2020. OsFKBP20-1b interacts with the splicing factor OsSR45 and participates in the environmental stress response at the post-transcriptional level in rice. Plant J, 102(5): 992-1007. |
[126] | Park J R, Yang W T, Kim D H, Kim K M. 2020. Identification of a novel gene, Osbht, in response to high temperature tolerance at booting stage in rice. Int J Mol Sci, 21(16): 5862. |
[127] | Park J R, Kim E G, Jang Y H, Kim K M. 2021. Screening and identification of genes affecting grain quality and spikelet fertility during high-temperature treatment in grain filling stage of rice. BMC Plant Biol, 21(1): 263. |
[128] | Paterson A H, Lander E S, Hewitt J D, Peterson S, Lincoln S E, Tanksley S D. 1988. Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms. Nature, 335: 721-726. |
[129] | Piveta L B, Roma-Burgos N, Noldin J A, Viana V E, de Oliveira C, Lamego F P, de Avila L A. 2020. Molecular and physiological responses of rice and weedy rice to heat and drought stress. Agriculture, 11(1): 9. |
[130] | Platten J D, Cobb J N, Zantua R E. 2019. Criteria for evaluating molecular markers: Comprehensive quality metrics to improve marker-assisted selection. PLoS One, 14(1): e0210529. |
[131] | Poli Y, Basava R K, Panigrahy M, Vinukonda V P, Dokula N R, Voleti S R, Desiraju S, Neelamraju S. 2013. Characterization of a Nagina22 rice mutant for heat tolerance and mapping of yield traits. Rice, 6(1): 36. |
[132] | Prasad P V V, Boote K J, Allen Jr L H, Sheehy J E, Thomas J M G. 2006. Species, ecotype and cultivar differences in spikelet fertility and harvest index of rice in response to high temperature stress. Field Crops Res, 95(2/3): 398-411. |
[133] | Prasanth V V, Babu M S, Basava R K, Tripura Venkata V G N, Mangrauthia S K, Voleti S R, Neelamraju S. 2017a. Trait and marker associations in Oryza nivara and O. rufipogon derived rice lines under two different heat stress conditions. Front Plant Sci, 8: 1819. |
[134] | Prasanth V V, Babu M S, VGN T V, Kiran T V, Swamy K N, Babu V R, Mangrauthia S K, Subrahmanyam D, Voleti S R, Sarla N. 2017b. Response of popular rice varieties to late sown high temperature conditions in field. Indian J Plant Physiol, 22(2): 156-163. |
[135] | Qian L, Hickey L T, Stahl A, Werner C R, Hayes B, Snowdon R J, Voss-Fels K P. 2017. Exploring and harnessing haplotype diversity to improve yield stability in crops. Front Plant Sci, 8: 1534. |
[136] | Qiao B, Zhang Q, Liu D L, Wang H Q, Yin J Y, Wang R, He M L, Cui M, Shang Z L, Wang D K, Zhu Z G. 2015. A calcium-binding protein, rice annexin OsANN1, enhances heat stress tolerance by modulating the production of H2O2. J Exp Bot, 66(19): 5853-5866. |
[137] | Qiu Z N, Kang S J, He L, Zhao J, Zhang S, Hu J, Zeng D L, Zhang G H, Dong G J, Gao Z Y, Ren D Y, Chen G, Guo L B, Qian Q, Zhu L. 2018. The newly identified heat-stress sensitive albino 1 gene affects chloroplast development in rice. Plant Sci, 267: 168-179. |
[138] | Radha B, Sunitha N C, Sah R P, Md Azharudheen T P, Krishna G K, Umesh D K, Thomas S, Anilkumar C, Upadhyay S, Kumar A, Ch L N M, Behera S, Marndi B C, Siddique K H M. 2023. Physiological and molecular implications of multiple abiotic stresses on yield and quality of rice. Front Plant Sci, 13: 996514. |
[139] | Raghunath M P, Beena R, Mohan V, Viji M M, Manju R V, Stephen R. 2021. High temperature stress mitigation in rice (Oryza sativa L.): Foliar application of plant growth regulators and nutrients. J Crop Weed, 17(1): 34-47. |
[140] | Rana M M, Takamatsu T, Baslam M, Kaneko K, Itoh K, Harada N, Sugiyama T, Ohnishi T, Kinoshita T, Takagi H, Mitsui T. 2019. Salt tolerance improvement in rice through efficient SNP marker-assisted selection coupled with speed-breeding. Int J Mol Sci, 20(10): 2585. |
[141] | Ravikiran K T, Gopala Krishnan S, Abhijith K P, Bollinedi H, Nagarajan M, Vinod K K, Bhowmick P K, Pal M, Ellur R K, Singh A K. 2022. Genome-wide association mapping reveals novel putative gene candidates governing reproductive stage heat stress tolerance in rice. Front Genet, 13: 876522. |
[142] | Raza Q, Riaz A, Bashir K, Sabar M. 2020. Reproductive tissues-specific meta-QTLs and candidate genes for development of heat-tolerant rice cultivars. Plant Mol Biol, 104(1/2): 97-112. |
[143] | Ren H M, Bao J P, Gao Z X, Sun D Y, Zheng S Z, Bai J T. 2023. How rice adapts to high temperatures. Front Plant Sci, 14: 1137923. |
[144] | Reshma M, Beena R. 2022. Drought and heat stress mitigation in rice for yield improvement using temperature induction response technique. Agric Res J, 59(4): 653-662. |
[145] | Robson J K, Ferguson J N, McAusland L, Atkinson J A, Tranchant-Dubreuil C, Cubry P, Sabot F, Wells D M, Price A H, Wilson Z A, Murchie E H. 2023. Chlorophyll fluorescence-based high-throughput phenotyping facilitates the genetic dissection of photosynthetic heat tolerance in African (Oryza glaberrima) and Asian (Oryza sativa) rice. J Exp Bot, 74(17): 5181-5197. |
[146] | Sánchez-Reinoso A D, Garcés-Varón G, Restrepo-Díaz H. 2014. Biochemical and physiological characterization of three rice cultivars under different daytime temperature conditions. Chilean J Agric Res, 74(4): 373-379. |
[147] | Sarangthem K, Yumlembam S, Benazir S, Yendrembam R, Mikawlrawng K. 2021. Current understanding of the mechanisms of heat stress tolerance in rice (Oryza sativa L.). J Exp Biol Agric Sci, 9: S321-S329. |
[148] | Scafaro A P, Haynes P A, Atwell B J. 2010. Physiological and molecular changes in Oryza meridionalis Ng., a heat-tolerant species of wild rice. J Exp Bot, 61(1): 191-202. |
[149] | Scafaro A P, Gallé A, van Rie J, Carmo-Silva E, Salvucci M E, Atwell B J. 2016. Heat tolerance in a wild Oryza species is attributed to maintenance of Rubisco activation by a thermally stable Rubisco activase ortholog. New Phytol, 211(3): 899-911. |
[150] | Sheoran S, Gupta M, Kumari S, Kumar S, Rakshit S. 2022. Meta-QTL analysis and candidate genes identification for various abiotic stresses in maize (Zea mays L.) and their implications in breeding programs. Mol Breed, 42(5): 26 |
[151] | Shi P H, Tang L, Lin C B, Liu L L, Wang H H, Cao W X, Zhu Y. 2015. Modeling the effects of post-anthesis heat stress on rice phenology. Field Crops Res, 177: 26-36. |
[152] | Shi P H, Zhu Y, Tang L, Chen J L, Sun T, Cao W X, Tian Y C. 2016. Differential effects of temperature and duration of heat stress during anthesis and grain filling stages in rice. Environ Exp Bot, 132: 28-41. |
[153] | Shi W J, Yin X Y, Struik P C, Solis C, Xie F M, Schmidt R C, Huang M, Zou Y B, Ye C R, Jagadish S V K. 2017. High day- and night-time temperatures affect grain growth dynamics in contrasting rice genotypes. J Exp Bot, 68(18): 5233-5245. |
[154] | Shi W J, Li X, Schmidt R C, Struik P C, Yin X Y, Jagadish S V K. 2018. Pollen germination and in vivo fertilization in response to high-temperature during flowering in hybrid and inbred rice. Plant Cell Environ, 41(6): 1287-1297. |
[155] | Shirdelmoghanloo H, Chen K F, Paynter B H, Angessa T T, Westcott S, Khan H A, Hill C B, Li C D. 2022. Grain-filling rate improves physical grain quality in barley under heat stress conditions during the grain-filling period. Front Plant Sci, 13: 858652. |
[156] | Shrestha S, Mahat J, Shrestha J, Madhav K C, Paudel K. 2022. Influence of high-temperature stress on rice growth and development: A review. Heliyon, 8(12): e12651. |
[157] | Singh B, Singh N, Mishra S, Tripathi K, Singh B P, Rai V, Singh A K, Singh N K. 2018. Morphological and molecular data reveal three distinct populations of Indian wild rice Oryza rufipogon griff. species complex. Front Plant Sci, 9: 123. |
[158] | Sinha P, Singh V K, Saxena R K, Khan A W, Abbai R, Chitikineni A, Desai A, Molla J, Upadhyaya H D, Kumar A, Varshney R K. 2020. Superior haplotypes for haplotype-based breeding for drought tolerance in pigeonpea (Cajanus cajan L.). Plant Biotechnol J, 18(12): 2482-2490. |
[159] | Sinha P, Singh V K, Bohra A, Kumar A, Reif J C, Varshney R K. 2021. Genomics and breeding innovations for enhancing genetic gain for climate resilience and nutrition traits. Theor Appl Genet, 134(6): 1829-1843. |
[160] | Sita K, Sehgal A, HanumanthaRao B, Nair R M, Vara Prasad P V, Kumar S, Gaur P M, Farooq M, Siddique K H M, Varshney R K, Nayyar H. 2017. Food legumes and rising temperatures: Effects, adaptive functional mechanisms specific to reproductive growth stage and strategies to improve heat tolerance. Front Plant Sci, 8: 1658. |
[161] | Smalle J, Vierstra R D. 2004. The ubiquitin 26S proteasome proteolytic pathway. Annu Rev Plant Biol, 55: 555-590. |
[162] | Sreenivasulu N, Butardo Jr V M, Misra G, Cuevas R P, Anacleto R, Kavi Kishor P B. 2015. Designing climate-resilient rice with ideal grain quality suited for high-temperature stress. J Exp Bot, 66(7): 1737-1748. |
[163] | Stephen K, Beena R, Kiran A G, Shanija S, Saravanan R. 2022a. Changes in physiological traits and expression of key genes involved in sugar signaling pathway in rice under high temperature stress. 3 Biotech, 12(2): 183. |
[164] | Stephen K, Beena R, Neethu M, Shanija S. 2022b. Identification of heat-tolerant rice genotypes and their molecular characterisation using SSR markers. Plant Sci Today, 9(4): 802-813. |
[165] | Stephen K, Aparna K, Beena R, Sah R P, Jha U C, Behera S. 2023. Identification of simple sequence repeat markers linked to heat tolerance in rice using bulked segregant analysis in F2 population of NERICA-L44 × Uma. Front Plant Sci, 14: 1113838. |
[166] | Stram D O, Seshan V E. 2012. Multi-SNP haplotype analysis methods for association analysis. Methods Mol Biol, 850: 423-452. |
[167] | Su Y, Xiao L T. 2020. 3D visualization and volume-based quantification of rice chalkiness in vivo by using high resolution micro-CT. Rice, 13(1): 69. |
[168] | Suriyasak C, Oyama Y, Ishida T, Mashiguchi K, Yamaguchi S, Hamaoka N, Iwaya-Inoue M, Ishibashi Y. 2020. Mechanism of delayed seed germination caused by high temperature during grain filling in rice (Oryza sativa l.). Sci Rep, 10(1): 17378. |
[169] | Takeda S, Matsuoka M. 2008. Genetic approaches to crop improvement: Responding to environmental and population changes. Nat Rev Genet, 9(6): 444-457. |
[170] | Takeoka Y, Hiroi K, Kitano H, Wada T. 1991. Pistil hyperplasia in rice spikelets as affected by heat stress. Sexual Plant Reprod, 4(1): 39-43. |
[171] | Tanaka J, Hayashi T, Iwata H. 2016. A practical, rapid generation-advancement system for rice breeding using simplified biotron breeding system. Breed Sci, 66(4): 542-551. |
[172] | Tang Y Y, Gao C C, Gao Y, Yang Y, Shi B Y, Yu J L, Lyu C, Sun B F, Wang H L, Xu Y Y, Yang Y G, Chong K. 2020. OsNSUN2-mediated 5-methylcytosine mRNA modification enhances rice adaptation to high temperature. Dev Cell, 53(3): 272-286.e7. |
[173] | Tao L X, Tan H J, Wang X, Cao L Y, Song J, Cheng S H. 2008. Effects of high-temperature stress on flowering and grain-setting characteristics of Guodao 6. Acta Agron Sin, 34(4): 609-674.(in Chinese with English abstract) |
[174] | Tayade R, Nguyen T, Oh S A, Hwang Y S, Yoon I S, Deshmuk R, Jung K H, Park S K. 2018. Effective strategies for enhancing tolerance to high-temperature stress in rice during the reproductive and ripening stages. Plant Breed Biotechnol, 6(1): 1-18. |
[175] | Tenorio F A, Ye C, Redoña E, Sierra S, Laza M, Argayoso M A. 2013. Screening rice genetic resources for heat tolerance. SABRAO J Breed Genet, 45(3): 371-381. |
[176] | Tian T, Chen L J, Ai Y F, He H Q. 2022. Selection of candidate genes conferring blast resistance and heat tolerance in rice through integration of meta-QTLs and RNA-seq. Genes, 13(2): 224. |
[177] | Topbjerg H B, Kaminski K P, Kørup K, Nielsen K L, Kirk H G, Andersen M N, Liu F L. 2015. Screening for intrinsic water use efficiency in a potato dihaploid mapping population under progressive drought conditions. Acta Agric Scand Sect B: Soil Plant Sci, 65(5): 400-411. |
[178] | UN DESA. 2022. Revision of world population prospects 2022. [2023-10-12]. https://population.un.org/wpp/. |
[179] | USDA. 2023. World production, markets, and trade report. [2023-10-20]. https://www.fas.usda.gov/data/world-agricultural-production. |
[180] | Vanitha J, Mahendran R, Raveendran M, Jegadeeswaran M. 2023. Marker assisted backcross analysis for high temperature tolerance in rice. Vegetos, 2023: 1-7. |
[181] | Varshney R K, Terauchi R, McCouch S R. 2014. Harvesting the promising fruits of genomics: Applying genome sequencing technologies to crop breeding. PLoS Biol, 12(6): e1001883. |
[182] | Varshney R K, Sinha P, Singh V K, Kumar A, Zhang Q F, Bennetzen J L. 2020. 5Gs for crop genetic improvement. Curr Opin Plant Biol, 56: 190-196. |
[183] | Vivitha P, Raveendran M, Vijayalakshmi D. 2017. Introgression of QTLs controlling spikelet fertility maintains membrane integrity and grain yield in improved white ponni derived progenies exposed to heat stress. Rice Sci, 24(1): 32-40. |
[184] | Wada T, Miyahara K, Sonoda J Y, Tsukaguchi T, Miyazaki M, Tsubone M, Ando T, Ebana K, Yamamoto T, Iwasawa N, Umemoto T, Kondo M, Yano M. 2015. Detection of QTLs for white-back and basal-white grains caused by high temperature during ripening period in japonica rice. Breed Sci, 65(3): 216-225. |
[185] | Waghmare S G, Sindhumole P, Mathew D, Shylaja M R, Francies R M, Abida P S, Narayanankutty, M C. 2021. Identification of QTL linked to heat tolerance in rice (Oryza sativa L.) using SSR markers through bulked segregant analysis. Electron J Plant Breed, 12(1): 46-53. |
[186] | Wang C X, Caragea D, Kodadinne Narayana N, Hein N T, Bheemanahalli R, Somayanda I M, Jagadish SV K. 2022. Deep learning based high-throughput phenotyping of chalkiness in rice exposed to high night temperature. Plant Methods, 18(1): 9. |
[187] | Wang D, Qin B X, Li X, Tang D, Zhang Y E, Cheng Z K, Xue Y B. 2016. Nucleolar DEAD-box RNA helicase TOGR1 regulates thermotolerant growth as a pre-rRNA chaperone in rice. PLoS Genet, 12(2): e1005844. |
[188] | Wang D R, Bunce J A, Tomecek M B, Gealy D, McClung A, McCouch S R, Ziska L H. 2016. Evidence for divergence of response in indica, japonica, and wild rice to high CO2 × temperature interaction. Glob Chang Biol, 22(7): 2620-2632. |
[189] | Wang J J, Xu J, Wang L, Zhou M Y, Nian J Q, Chen M M, Lu X L, Liu X, Wang Z A, Cen J S, Liu Y T, Zhang Z H, Zeng D L, Hu J, Zhu L, Dong G J, Ren D Y, Gao Z Y, Shen L, Zhang Q, Li Q, Guo L B, Yu S B, Qian Q, Zhang G H. 2023. SEMI-ROLLED LEAF 10 stabilizes catalase isozyme B to regulate leaf morphology and thermotolerance in rice (Oryza sativa L.). Plant Biotechnol J, 21(4): 819-838. |
[190] | Wang Q, Tang J L, Han B, Huang X H. 2020. Advances in genome-wide association studies of complex traits in rice. Theor Appl Genet, 133(5): 1415-1425. |
[191] | Wang Y L, Wang L, Zhou J X, Hu S B, Chen H Z, Xiang J, Zhang Y K, Zeng Y J, Shi Q H, Zhu D F, Zhang Y P. 2019. Research progress on heat stress of rice at flowering stage. Rice Sci, 26(1): 1-10. |
[192] | Watson A, Hickey L T, Christopher J, Rutkoski J, Poland J, Hayes B J. 2019. Multivariate genomic selection and potential of rapid indirect selection with speed breeding in spring wheat. Crop Sci, 59(5): 1945-1959. |
[193] | Wei H, Liu J P, Wang Y, Huang N R, Zhang X B, Wang L C, Zhang J W, Tu J M, Zhong X H. 2013. A dominant major locus in chromosome 9 of rice (Oryza sativa L.) confers tolerance to 48 ºC high temperature at seedling stage. J Hered, 104(2): 287-294. |
[194] | Wei Z R, Yuan Q L, Lin H, Li X X, Zhang C, Gao H S, Zhang B, He H Y, Liu T J, Jie Z, Gao X, Shi S D, Wang B, Gao Z Y, Kong L R, Qian Q, Shang L G. 2021. Linkage analysis, GWAS, transcriptome analysis to identify candidate genes for rice seedlings in response to high temperature stress. BMC Plant Biol, 21(1): 85. |
[195] | Withanawasam D M, Kommana M, Pulindala S, Eragam A, Moode V N, Kolimigundla A, Puram R V, Palagiri S, Balam R, Vemireddy L R. 2022. Improvement of grain yield under moisture and heat stress conditions through marker-assisted pedigree breeding in rice (Oryza sativa L.). Crop Pasture Sci, 73(4): 356-369. |
[196] | Wu C, Cui K H, Wang W C, Li Q, Fahad S, Hu Q Q, Huang J L, Nie L X, Mohapatra P K, Peng S B. 2017. Heat-induced cytokinin transportation and degradation are associated with reduced panicle cytokinin expression and fewer spikelets per panicle in rice. Front Plant Sci, 8: 371. |
[197] | Wu C, Tang S, Li G H, Wang S H, Fahad S, Ding Y F. 2019. Roles of phytohormone changes in the grain yield of rice plants exposed to heat: A review. PeerJ, 7: e7792. |
[198] | Xia S S, Liu H, Cui Y J, Yu H P, Rao Y C, Yan Y P, Zeng D L, Hu J, Zhang G H, Gao Z Y, Zhu L, Shen L, Zhang Q, Li Q, Dong G J, Guo L B, Qian Q, Ren D Y. 2022. UDP-N-acetylglucosamine pyrophosphorylase enhances rice survival at high temperature. New Phytol, 233(1): 344-359. |
[199] | Xiao Q L, Bai X L, Zhang C, He Y. 2022. Advanced high-throughput plant phenotyping techniques for genome-wide association studies: A review. J Adv Res, 35: 215-230. |
[200] | Xu J M, Henry A, Sreenivasulu N. 2020. Rice yield formation under high day and night temperatures: A prerequisite to ensure future food security. Plant Cell Environ, 43(7): 1595-1608. |
[201] | Xu W W, Dou Y F, Geng H, Fu J M, Dan Z W, Liang T, Cheng M X, Zhao W B, Zeng Y F, Hu Z L, Huang W C. 2022. OsGRP3 enhances drought resistance by altering phenylpropanoid biosynthesis pathway in rice (Oryza sativa L.). Int J Mol Sci, 23(13): 7045. |
[202] | Xu Y F, Zhang L, Ou S J, Wang R C, Wang Y M, Chu C C, Yao S G. 2020. Natural variations of SLG1 confer high-temperature tolerance in indica rice. Nat Commun, 11(1): 5441. |
[203] | Yan H L, Zhang B L, Zhang Y B, Chen X L, Xiong H, Matsui T, Tian X H. 2017. High temperature induced glume closure resulted in lower fertility in hybrid rice seed production. Front Plant Sci, 7: 1960. |
[204] | Yang Y X, Zhang C, Zhu D, He H Y, Wei Z R, Yuan Q L, Li X X, Gao X, Zhang B, Gao H S, Wang B, Cao S M, Wang T Y, Li Y H, Yu X M, Guo L B, Hu G J, Qian Q, Shang L G. 2022. Identifying candidate genes and patterns of heat-stress response in rice using a genome-wide association study and transcriptome analyses. Crop J, 10(6): 1633-1643. |
[205] | Ye C R, Argayoso M A, Redoña E D, Sierra S N, Laza M A, Dilla C J, Mo Y J, Thomson M J, Chin J, Delaviña C B, Diaz G Q, Hernandez J E. 2012. Mapping QTL for heat tolerance at flowering stage in rice using SNP markers. Plant Breed, 131(1): 33-41. |
[206] | Ye C R, Tenorio F A, Argayoso M A, Laza M A, Koh H J, Redoña E D, Jagadish K S V, Gregorio G B. 2015a. Identifying and confirming quantitative trait loci associated with heat tolerance at flowering stage in different rice populations. BMC Genet, 16: 41. |
[207] | Ye C R, Tenorio F A, Redoña E D, Morales-Cortezano P S, Cabrega G A, Jagadish K S V, Gregorio G B. 2015b. Fine-mapping and validating qHTSF4.1 to increase spikelet fertility under heat stress at flowering in rice. Theor Appl Genet, 128: 1507-1517. |
[208] | Ye C R, Li X L, Redoña E, Ishimaru T, Jagadish K. 2021. Genetics and breeding of heat tolerance in rice. In: Ali J, Wani, S H. Rice Improvement: Physiological, Molecular Breeding and Genetic Perspectives. Cham, Switzerland: Springer International Publishing: 203-220. |
[209] | Ye C R, Ishimaru T, Lambio L, Li L, Long Y, He Z Z, Htun T M, Tang S X, Su Z X. 2022. Marker-assisted pyramiding of QTLs for heat tolerance and escape upgrades heat resilience in rice (Oryza sativa L.). Theor Appl Genet, 135(4): 1345-1354. |
[210] | Yonemaru J I, Ebana K, Yano M. 2014. Haprice, an SNP haplotype database and a web tool for rice. Plant Cell Physiol, 55(1): e9. |
[211] | Yoshida S. 1981. High temperature stress in rice. IRRI Res Ser, 67: 1-15. |
[212] | Zaidi S H R, Zakari S A, Zhao Q, Khan, A R, Shah, J M, Cheng F M. 2019. Anthocyanin accumulation in black kernel mutant rice and its contribution to ROS detoxification in response to high temperature at the filling stage. Antioxidants, 8(11): 510. |
[213] | Zakaria S, Matsuda T, Tajima S, Nitta Y. 2002. Effect of high temperature at ripening stage on the reserve accumulation in seed in some rice cultivars. Plant Prod Sci, 5(2): 160-168. |
[214] | Zhang B Y, Wu S H, Zhang Y E, Xu T, Guo F F, Tang H S, Li X, Wang P F, Qian W F, Xue Y B. 2016. A high temperature-dependent mitochondrial lipase EXTRA GLUME1 promotes floral phenotypic robustness against temperature fluctuation in rice (Oryza sativa L.). PLoS Genet, 12(7): e1006152. |
[215] | Zhang C X, Feng B H, Chen T T, Zhang X F, Tao L X, Fu G F. 2017. Sugars, antioxidant enzymes and IAA mediate salicylic acid to prevent rice spikelet degeneration caused by heat stress. Plant Growth Regul, 83(2): 313-323. |
[216] | Zhang G L, Chen L Y, Xiao G Y, Xiao Y H, Chen X B, Zhang S T. 2009. Bulked segregant analysis to detect QTL related to heat tolerance in rice (Oryza sativa L.) using SSR markers. Agric Sci China, 8(4): 482-487. |
[217] | Zhang H, Xu H, Jiang Y Y, Zhang H, Wang S Y, Wang F L, Zhu Y. 2021. Genetic control and high temperature effects on starch biosynthesis and grain quality in rice. Front Plant Sci, 12: 757997. |
[218] | Zhang H, Zhou J F, Kan Y, Shan J X, Ye W W, Dong N Q, Guo T, Xiang Y H, Yang Y B, Li Y C, Zhao H Y, Yu H X, Lu Z Q, Guo S Q, Lei J J, Liao B, Mu X R, Cai Y J, Yu J J, Lin Y S, Lin H X. 2022. A genetic module at one locus in rice protects chloroplasts to enhance thermotolerance. Science, 376: 1293-1300. |
[219] | Zhang H H, Xu N, Li X, Jin W W, Tian Q, Gu S Y, Sun G Y. 2017. Overexpression of 2-Cys Prx increased salt tolerance of photosystem Ⅱ in tobacco. Int J Agric Biol, 19: 735-745. |
[220] | Zhang J Y, Li X M, Lin H X, Chong K. 2019. Crop improvement through temperature resilience. Annu Rev Plant Biol, 70: 753-780. |
[221] | Zhang M, Feng K X, Dong X D, Zhou Y J, Chen J H, Teng B, Li Z, Ren L T, Wu W G. 2022. Screening of heat-tolerant indica rice varieties in the middle and lower Yangtze River. Agronomy, 12(10): 2462. |
[222] | Zhang N, Yu H, Yu H, Cai Y Y, Huang L Z, Xu C, Xiong G S, Meng X B, Wang J Y, Chen H F, Liu G F, Jing Y H, Yuan Y D, Liang Y, Li S J, Smith S M, Li J Y, Wang Y H. 2018. A core regulatory pathway controlling rice tiller angle mediated by the LAZY1-dependent asymmetric distribution of auxin. Plant Cell, 30(7): 1461-1475. |
[223] | Zhang T, Yang L, Jiang K F, Huang M, Sun Q, Chen W F, Zheng J K. 2008. QTL mapping for heat tolerance of the tassel period of rice. Mol Plant Breed, 6(5): 867-873.(in Chinese with English abstract) |
[224] | Zhang Y J, Liu X, Su R, Xiao Y H, Deng H B, Lu X D, Wang F, Chen G H, Tang W B, Zhang G L. 2022. 9-cis-epoxycarotenoid dioxygenase 1 confers heat stress tolerance in rice seedling plants. Front Plant Sci, 13: 1092630. |
[225] | Zhang Z Y, Liu H H, Sun C, Ma Q B, Bu H Y, Chong K, Xu Y Y. 2018. A C2H2 zinc-finger protein OsZFP213 interacts with OsMAPK3 to enhance salt tolerance in rice. J Plant Physiol, 229: 100-110. |
[226] | Zhao C, Liu B, Piao S L, Wang X H, Lobell D B, Huang Y, Huang M T, Yao Y T, Bassu S, Ciais P, Durand J L, Elliott J, Ewert F, Janssens I A, Li T, Lin E D, Liu Q, Martre P, Müller C, Peng S S, Peñuelas J, Ruane A C, Wallach D, Wang T, Wu D H, Liu Z, Zhu Y, Zhu Z C, Asseng S. 2017. Temperature increase reduces global yields of major crops in four independent estimates. Proc Natl Acad Sci USA, 114(35): 9326-9331. |
[227] | Zhao L, Lei J G, Huang Y J, Zhu S, Chen H P, Huang R L, Peng Z Q, Tu Q H, Shen X H, Yan S. 2016. Mapping quantitative trait loci for heat tolerance at anthesis in rice using chromosomal segment substitution lines. Breed Sci, 66(3): 358-366. |
[228] | Zhao Q, Guan X Y, Zhou L J, Asad M A U, Xu Y Q, Pan G, Cheng F M. 2023. ABA-triggered ROS burst in rice developing anthers is critical for tapetal programmed cell death induction and heat stress-induced pollen abortion. Plant Cell Environ, 46(5): 1453-1471. |
[229] | Zhao Z G, Jiang L, Xiao Y H, Zhang W W, Zhai H Q, Wan J M. 2006. Identification of QTLs for heat tolerance at the booting stage in rice (Oryza sativa L.). Acta Agron Sin, 32(5): 640-644.(in Chinese with English abstract) |
[230] | Zhen F X, Wang W, Wang H Y, Zhou J J, Liu B, Zhu Y, Liu L L, Cao W X, Tang L. 2019. Effects of short-term heat stress at booting stage on rice-grain quality. Crop Pasture Sci, 70(6): 486-498. |
[231] | Zhen F X, Liu Y J, Ali I, Liu B, Liu L L, Cao W X, Tang L, Zhu Y. 2020. Short-term heat stress at booting stage inhibited nitrogen remobilization to grain in rice. J Agric Food Res, 2: 100066. |
[232] | Zheng K L, Zhao J, Lin D Z, Chen J Y, Xu J L, Zhou H, Teng S, Dong Y J. 2016. The rice TCM5 gene encoding a novel deg protease protein is essential for chloroplast development under high temperatures. Rice, 9(1): 13. |
[233] | Zhu S, Huang R L, Wai H P, Xiong H L, Shen X H, He H H, Yan S. 2017. Mapping quantitative trait loci for heat tolerance at the booting stage using chromosomal segment substitution lines in rice. Physiol Mol Biol Plants, 23(4): 817-825. |
[234] | Zou J, Liu C F, Chen X B. 2011. Proteomics of rice in response to heat stress and advances in genetic engineering for heat tolerance in rice. Plant Cell Rep, 30(12): 2155-2165. |
[1] | Ning Xiao, Yunyu Wu, Aihong Li. Strategy for Use of Rice Blast Resistance Genes in Rice Molecular Breeding [J]. Rice Science, 2020, 27(4): 263-277. |
[2] | Srivastava Deepti, Shamim Md, Kumar Mahesh, Mishra Anurag, Pandey Pramila, Kumar Deepak, Yadav Prashant, Harrish Siddiqui Mohammed, Narayan Singh Kapildeo. Current Status of Conventional and Molecular Interventions for Blast Resistance in Rice [J]. Rice Science, 2017, 24(6): 299-321. |
[3] | ZHANG Hong-jun, QU Li-jun, XIANG Chao, WANG Hui, XIA Jia-fa, LI Ze-fu, GAO Yong-ming, SHI Ying-yao. Dissection of Genetic Mechanism of Abnormal Heading in Hybrid Rice [J]. RICE SCIENCE, 2014, 21(4): 201-209. |
[4] | XIAO Yu-long, YU Chuan-yuan, LEI Jian-guo, LI Ma-zhong, JIANG Lin, WAN Jian-min. Genetic Mechanism of Dominant Earliness in Kefeng A, a New Rice Cytoplasmic Male Sterile Line [J]. RICE SCIENCE, 2009, 16(4): 267-273 . |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||