[1] |
Duan L F, Yang W N, Bi K, Chen S B, Luo Q M, Liu Q. 2011. Fast discrimination and counting of filled/unfilled rice spikelets based on bi-modal imaging. Comput Electron Agric, 75(1): 196-203.
|
[2] |
Jeyaraj P R, Asokan S P, Samuel Nadar E R. 2022. Computer- assisted real-time rice variety learning using deep learning network. Rice Sci, 29(5): 489-498.
|
[3] |
Kalantari D, Jafari H, Kaveh M, Szymanek M, Asghari A, Marczuk A, Khalife E. 2022. Development of a machine vision system for the determination of some of the physical properties of very irregular small biomaterials. Int Agrophys, 36(1): 27-35.
|
[4] |
Kumar A, Taparia M, Madapu A, Rajalakshmi P, Marathi B, Desai U B. 2020. Discrimination of filled and unfilled grains of rice panicles using thermal and RGB images. J Cereal Sci, 95: 103037.
|
[5] |
Kuo T Y, Chung C L, Chen S Y, Lin H A, Kuo Y F. 2016. Identifying rice grains using image analysis and sparse-representation-based classification. Comput Electron Agric, 127: 716-725.
|
[6] |
Lafarge T, Bueno C S. 2009. Higher crop performance of rice hybrids than of elite inbreds in the tropics: 2. Does sink regulation, rather than sink size, play a major role? Field Crops Res, 112(2/3): 238-244.
|
[7] |
Liu T, Wu W, Chen W, Sun C M, Chen C, Wang R, Zhu X K, Guo W S. 2016. A shadow-based method to calculate the percentage of filled rice grains. Biosyst Eng, 150: 79-88.
|
[8] |
Luo X, Jayas D S, Symons S J. 1999. Identification of damaged kernels in wheat using a colour machine vision system. J Cereal Sci, 30(1): 49-59.
|
[9] |
Manickavasagan A, Sathya G, Jayas D S, White N D G. 2008. Wheat class identification using monochrome images. J Cereal Sci, 47(3): 518-527.
|
[10] |
Mebatsion H K, Paliwal J, Jayas D S. 2013. Automatic classification of non-touching cereal grains in digital images using limited morphological and color features. Comput Electron Agric, 90: 99-105.
|
[11] |
Neethirajan S, Jayas D S, Karunakaran C. 2007. Dual energy X-ray image analysis for classifying vitreousness in durum wheat. Postharvest Biol Technol, 45(3): 381-384.
|
[12] |
Velesaca H O, Suárez P L, Mira R, Sappa A D. 2021. Computer vision based food grain classification: A comprehensive survey. Comput Electron Agric, 187: 106287.
|
[13] |
Venora G, Grillo O, Saccone R. 2009. Quality assessment of durum wheat storage centres in Sicily: Evaluation of vitreous, starchy and shrunken kernels using an image analysis system. J Cereal Sci, 49(3): 429-440.
|
[14] |
Xing Y Z, Zhang Q F. 2010. Genetic and molecular bases of rice yield. Annu Rev Plant Biol, 61: 421-442.
DOI
PMID
|
[15] |
Yang J C, Peng S B, Visperas R M, Sanico A L, Zhu Q S, Gu S L. 2000. Grain filling pattern and cytokinin content in the grains and roots of rice plants. Plant Growth Regul, 30(3): 261-270.
|
[16] |
Zayas I, Pomeranz Y, Lai F S. 1989. Discrimination of wheat and nonwheat components in grain samples by image analysis. Cereal Chem, 66(3): 233-237.
|
[17] |
Zhang Q F. 2007. Strategies for developing Green Super Rice. Proc Natl Acad Sci USA, 104(42): 16402-16409.
DOI
PMID
|