Loading...

Archive

    For Selected: Toggle Thumbnails
    Experimental Techniques
    Mechanism of Sterility and Breeding Strategies for Photoperiod/Thermo- Sensitive Genic Male Sterile Rice
    CHEN Li-yun, XIAO Ying-hui, LEI Dong-yang
    2010, 17(3): 161-167 .  DOI: 10.1016/S1672-6308(09)60012-3
    Abstract ( )   PDF  
    To understand the male sterility mechanism of photoperiod/thermo-sensitive genic male sterile [P(T)GMS] lines in rice, the research progress on genetics of photoperiod and/or temperature sensitive genic male sterility in rice was reviewed. A new idea was proposed to explain the sterility mechanism of P(T)GMS rice. The fertility transition from sterile to fertile is the result of cooperative regulation of major-effect sterile genes with photoperiod and/or temperature sensitive genes, but not the so-called pgms gene in P(T)GMS rice. The minor-effect genes, which exhibit accumulative effect on sterility, are the important factors for the critical temperature of sterility transition. The more minor-effect genes the sterile line holds, the lower the critical temperature of sterility transition is. The critical temperature of sterility transition will be invariable if all the minor-effect genes are homozygous. The strategies for breeding P(T)GMS rice were also proposed. The selective indices of critical photoperiod and temperature for sterility transition should be set according to varietal type and ecological region. Imposing selection pressure is a key technology for breeding P(T)GMS rice with lower critical temperature for sterility, and improving the comprehensive performance of the whole traits and combining ability is vital for breeding P(T)GMS rice lines.
    Sawah Rice Eco-technology and Actualization of Green Revolution in West Africa: Experiences from Nigeria and Ghana
    O. I. OLADELE, T. WAKATSUKI
    2010, 17(3): 168-172 .  DOI: 10.1016/S1672-6308(09)60013-5
    Abstract ( )   PDF  
    The development and dissemination of sawah rice eco-technology in Nigeria and Ghana as prerequisites for the actualization of green revolution in West Africa were described. It showed that the neglect of the eco-technology and the overemphasis of the biotechnology have rendered the ineffective transferability of the green revolution process from Asia to Africa. The sawah eco-technology increases yield up to 5 t/hm2 through bunding and the use of inlet and outlet connecting irrigation and drainage, which enhances effective water control and management, improves the efficiency of fertilizer, improves nitrogen fixation by soil microbes and algae, increases the use of wetlands, improves soil organic matter accumulation, suppresses weed growth, and enhances immune mechanism of rice through nutrient supply. The current experience has therefore established that the technology overcomes the constraints that have limited the realization of green revolution in West Africa.
    Research Paper
    Development of Simple Functional Markers for Low Glutelin Content Gene 1 (Lgc1) in Rice (Oryza sativa)
    CHEN Tao, TIAN Meng-xiang, ZHANG Ya-dong, ZHU Zhen, ZHAO Ling, ZHAO Qing-yong, LIN Jing, ZHOU Li-hui, WANG Cai-lin
    2010, 17(3): 173-178 .  DOI: 10.1016/S1672-6308(09)60014-7
    Abstract ( )   PDF  
    Rice with low glutelin content is suitable as functional food for patients affected by kidney failure. Low glutelin- content gene Lgc1 in rice has a 3.5-kb deletion between two highly similar glutelin genes GluB4 and GluB5, which locates on the short arm of chromosome 2. To improve the selection efficiency in low glutelin-content rice breeding, two molecular markers designated as InDel-Lgc1-1 and InDel-Lgc1-2 were developed to detect the low glutelin-content gene Lgc1. A double PCR detection indicated that combined use of the two markers could easily distinguish the genotypes of Lgc1 from different rice varieties. Therefore, as a simple and low-cost technique, the molecular marker could be widely used to identify different varieties with Lgc1 gene and applied in marker-assisted selection of low glutelin-content rice.
    Rice Blast Resistance of Transgenic Rice Plants with Pi-d2 Gene
    CHEN De-xi, CHEN Xue-wei, LEI Cai-lin, MA Bing-tian, WANG Yu-ping, LI Shi-gui
    2010, 17(3): 179-184 .  DOI: 10.1016/S1672-6308(09)60015-9
    Abstract ( )   PDF  
    Resistance to rice blast of transgenic rice lines harboring rice blast resistance gene Pi-d2 transformed from three different expression vectors of pCB6.3kb, pCB5.3kb and pZH01-2.72kb were analyzed. Nine advanced-generation transgenic rice lines with Pi-d2 gene displayed various resistance to 39 rice blast strains, and the highest disease-resistant frequency reached 91.7%. Four early-generation homozygous transgenic lines with Pi-d2 gene exhibited resistance to more than 81.5% of 58 rice blast strains, showing the characteristic of wide-spectrum resistance. The transgenic embryonic calli selected by the crude toxin of rice blast fungus showed that the callus induction rate of immature embryo from transgenic rice plants decreased as the concentration of crude toxin in the culture medium increased. When the concentration of crude toxin reached 40%, the callus induction rate of immature embryo from transgenic lines was 49.3%, and that of the receptor control was 5%. The disease incidence of neck blast of the transgenic rice lines in fields under induction was 0% to 50%, indicating that the rice blast resistance of transgenic rice lines is much higher than that of the receptor control.
    Comparative Analysis on Genomes from Oryza alta and Oryza latifolia by C0t-1 DNA
    WANG De-bin, WANG Yang, WU Qi, ZHAO Hou-ming, LI Gang, QIN Rui, WANG Chun-tai, LIU Hong
    2010, 17(3): 185-191 .  DOI: 10.1016/S1672-6308(09)60016-0
    Abstract ( )   PDF  
    In order to reveal the origin and evolutionary relationship between two CCDD genome species, Oryza alta and Oryza latifolia, fluorescence in situ hybridization (FISH) was adopted to analyze the genomes of the two species with C0t-1 DNA from O. alta as a probe. Karyotype was also comparatively analyzed between O. alta and O. latifolia based on their similar band patterns of the hybridization signals. There were a high homology and close relationship between O. alta and O. latifolia, however, the distinction between the hybridization signals was also clear. C0t-1 DNA was proved to be species- and genome type-specific. It is suggested that C0t-1 DNA-FISH could be more efficient to analyze the genomic relationship between different species. According to the comparative analysis of highly and moderately repetitive DNA sequences between the two allotetraploidy species, O. alta and O. latifolia, the possible origin and evolutionary mechanism of allotetraploidy of Oryza were discussed.
    QTL Analysis of Anoxic Tolerance at Seedling Stage in Rice
    WANG Yang, GUO Yuan, HONG De-lin
    2010, 17(3): 192-198 .  DOI: 10.1016/S1672-6308(09)60017-2
    Abstract ( )   PDF  
    Coleoptile lengths of 7-day-old seedlings under anoxic stress and normal conditions were investigated in two permanently segregated populations and their parents in rice (Oryza sativa L.). Using anoxic response index, a ratio of coleoptile length under anoxic stress to coleoptile length under normal conditions, as an indicator of seedling anoxic tolerance (SAT), QTLs for SAT were detected. Two loci controlling SAT, designated as qSAT-2-R and qSAT-7-R, were detected in a recombinant inbred line (RIL) population (247 lines) derived from a cross between Xiushui 79 (japonica variety) and C Bao (japonica restorer line). qSAT-2-R, explaining 8.7% of the phenotype variation, was tightly linked with the SSR marker RM525. qSAT-7-R, explaining 9.8% of the phenotype variation, was tightly linked with the marker RM418. The positive alleles of the two loci came from C Bao. Six loci controlling SAT, designated as qSAT-2-B, qSAT-3-B, qSAT-5-B, qSAT-8-B, qSAT-9-B and qSAT-12-B, were detected in a backcross inbred line (BIL) population (98 lines) derived from a backcross of Nipponbare (japonica)/Kasalath (indica)//Nipponbare (japonica). The positive alleles of qSAT-2-B, qSAT-3-B and qSAT-9-B, which explained 16.2%, 11.4% and 9.5% of the phenotype variation, respectively, came from Nipponbare. Besides, the positive alleles of qSAT-5-B, qSAT-8-B and qSAT-12-B, which explained 7.3%, 5.8% and 14.0% of the phenotype variation, respectively, were from Kasalath.
    Relationship of Parental Indica-Japonica Indexes with Yield and Grain Quality Traits of Japonica Hybrid Rice in Northern China
    WANG Yan-rong, QIU Fu-lin, HUA Ze-tian, DAI Gui-jin
    2010, 17(3): 199-205 .  DOI: 10.1016/S1672-6308(09)60018-4
    Abstract ( )   PDF  
    Taking the main parents (10 male sterile lines and 10 restorer lines) and their 100 combinations of japonica hybrid rice in northern China as materials, the relationships of parental indica-japonica indexes determined by the methods of the Cheng’s index as well as simple sequence repeat (SSR) markers with yield and grain quality traits of hybrid rice were studied. For the parents, the Cheng’s index (Chi) ranged from 13.5 to 19.3 and the indica index in SSR markers (ADi) were from 0.12 to 0.38. The classification of parents by Chi was not completely consistent with that by ADi. The Chi of male parent was more closely related to hybrid traits than that of female parent, as contrasted to ADi. At the same time, the difference between parents (PD) in Chi was more closely related to hybrid traits than that in ADi. The indica-japonica indexes of parents and their difference between parents appeared quadratic relationship to hybrid traits with the critical extremum. The directions of the correlation of indica-japonica indexes of parents and their differences with hybrid yield traits were on the opposition to those with hybrid grain quality traits. Therefore, the female parent should match the male parent moderately in indica-japonica index to obtain the optimum of hybrid traits, high yield as well as good quality.
    Biomasses in Different Organs of Rice Cultivars Developed During Recent Forty-Seven Years in Jilin Province, China
    JIANG Nan, DI Yu-ting, ZHAO Guo-chen, XU Ke-zhang, WU Zhi-hai, ZHANG Zhi-an, LING Feng-lou
    2010, 17(3): 206-212 .  DOI: 10.1016/S1672-6308(09)60019-6
    Abstract ( )   PDF  
    To understand the changes in yield, harvest index (HI) and biomass of aboveground parts of rice, 33 japonica rice cultivars released from 1958 to 2005 were planted. During the 47 years, the grain yield increased from 9 118.36 to 15 060.1 kg/hm2 and HI from 0.46 to 0.55. In the genetic improvement, the total number of tillers per plant decreased, and the biomass per unit area slightly increased at the harvest stage. The increases of yield and HI resulted from the increased biomasses of effective tillers and single stem, and the increase of biomass per stem was related to the increased biomasses of different organs along with the genetic improvement. The stem and sheath biomass at heading and the leaf biomass at 30 days after heading showed the highest increase, up by 75.17% and 49.94%, respectively. The biomasses of leaf and stem-sheath at 10 days after heading, and biomass per stem at 30 days after heading were obviously correlated with the yield. The results indicate that the genetic improvement has resulted in the increase of yield and HI. This increase is correlated with the decrease of total tiller number per plant, and increase of biomasses of effective tillers and single stem. The leaf biomass after heading and the stem and sheath biomass at 10 days after heading can be used as selection criteria for breeding high yielding rice cultivars.
    Effects of Different Nitrogen Fertilizer Levels and Native Soil Properties on Rice Grain Fe, Zn and Protein Contents
    G. CHANDEL, S. BANERJEE, S. SEE, R. MEENA, D. J. SHARMA, S. B. VERULKAR
    2010, 17(3): 213-227 .  DOI: 10.1016/S1672-6308(09)60020-2
    Abstract ( )   PDF  
    Deposition of protein and metal ions (Fe, Zn) in rice grains is a complex polygenic trait showing considerable environmental effect. To analyze the effect of nitrogen application levels and native soil properties on rice grain protein, iron (Fe) and zinc (Zn) contents, 32 rice genotypes were grown at three different locations each under 80 and 120 kg/hm2 nitrogen fertilizer applications. In treatments with nitrogen fertilizer application, the brown rice grain protein content (GPC) increased significantly (1.1% to 7.0%) under higher nitrogen fertilizer application (120 kg/hm2) whereas grain Fe/Zn contents showed non-significant effect of nitrogen application level, thus suggesting that the rate of uptake and translocation of macro-elements does not influence the uptake and translocation of micro-elements. The pH, organic matter content and inherent Fe/Zn levels of native soil showed significant effects on grain Fe and Zn contents of all the rice genotypes. Grain Zn content of almost all the tested rice genotypes was found to increase at Location III having loamy soil texture, neutral pH value (pH 6.83) and higher organic matter content than the other two locations (Locations I and II), indicating significant influence of native soil properties on brown rice grain Zn content while grain Fe content showed significant genotype × environment interaction effect. Genotypic difference was found to be the most significant factor to affect grain Fe/Zn contents in all the tested rice genotypes, indicating that although native soil properties influence phyto-availability of micronutrients and consequently influencing absorption, translocation and grain deposition of Fe/Zn ions, yet genetic makeup of a plant determines its response to varied soil conditions and other external factors. Two indica rice genotypes R-RF-31 (27.62 µg/g grain Zn content and 7.80% GPC) and R1033-968-2-1 (30.05 µg/g grain Zn content and 8.47% GPC) were identified as high grain Zn and moderate GPC rice genotypes. These results indicate that soil property and organic matter content increase the availability of Fe and Zn in rhizosphere, which in turn enhances the uptake, translocation and redistribution of Fe/Zn into rice grains.
    Response of Iron Content in Milled Rice to Nitrogen Levels and Its Genotypic Differences
    WEI Hai-yan, ZHANG Hong-cheng, DAI Qi-gen, MA Qun, LI Jie, ZHANG Qing, HUO Zhong-yang, XU Ke
    2010, 17(3): 228-234 .  DOI: 10.1016/S1672-6308(09)60021-4
    Abstract ( )   PDF  
    To investigate the effect of nitrogen (N) level on iron (Fe) content in milled rice, a field experiment was carried out under three N application levels including 0, 150 and 300 kg/hm2 by using 120 rice genotypes. In addition to the genotypic differences of iron content in milled rice, grain yield, 1000-grain weight and N content in grains under the same N level, there were also variations in the response of Fe content in milled rice to N levels. Based on the range and variation coefficient of Fe content in milled rice under the three N levels, the response of Fe content in milled rice to N levels could be classified into four types including highly insensitive, insensitive, sensitive and highly sensitive types. A significant quadratic correlation was found between the Fe content in milled rice and 1000-grain weight or the N content in grains. However, no significant correlation between the Fe content in milled rice and grain yield was detected. In conclusion, there are genotypic differences in the effects of N levels on Fe content in milled rice, which is favorable to breeding of Fe-rich rice under different N environments. Furthermore, high yield and Fe-rich rice could be grown through the regulation of nitrogen on Fe content in milled rice, 1000-grain weight and N content in milled rice.
    Plant Type and Its Effects on Canopy Structure at Heading Stage in Various Ecological Areas for a Two-line Hybrid Rice Combination, Liangyoupeijiu
    LU Chuan-gen, HU Ning, YAO Ke-min, XIA Shi-jian, QI Qing-ming
    2010, 17(3): 235-242 .  DOI: 10.1016/S1672-6308(09)60022-6
    Abstract ( )   PDF  
    A two-line hybrid rice combination, Liangyoupeijiu, was used to estimate several factors of plant type, and environmental models for these factors at the heading stage were established using the data of eight ecological experimental sites in 2006 and 2007. According to climatic data from 1951 to 2005, the differences in those factors and their effects on plant canopy were analyzed for four rice cropping areas in China, including South China, the middle-lower reaches of the Yangtze River, Sichuan Basin, and river valley in Yunnan, China. The thickness of leaf layer (the distance from pulvinus of the third leaf from the top to the tip of flag leaf) and distribution of leaf area could be used as candidate indices for the plant type of a rice canopy.
    Short Communication
    Changes in Activities of Key Enzymes for Starch Synthesis and Glutamine Synthetase in Grains of Progenies from a Rice Cross During Grain Filling
    LI Xiao-guang, LIU Hai-ying, JIN Zheng-xun, LIU Hong-liang, HUANG Xing, XU Mei-lan, ZHANG Feng-zhuan
    2010, 17(3): 243-246 .  DOI: 10.1016/S1672-6308(09)60023-8
    Abstract ( )   PDF  
    The progenies differed in amylose and protein contents in grains, which derived from a rice cross, Dongnong 423×Toukei 180, were used to study changes in the activities of ADP-glucose pyrophosphorylase (AGPP), soluble starch synthetase (SSS), starch branching enzyme (SBE) and glutamine synthetase (GS) in rice grains during grain filling. The activities of AGPP, SSS and SBE gradually increased and then declined as a single-peak curve with the process of grain filling in the progenies with high and low amylose contents in grains. The progenies with high amylose content peaked earlier in the AGPP, SSS and SBE activities and had higher AGPP, SSS and SBE activities at the early grain filling stage than those with low amylose content. The GS activity peaked earlier and was higher at the late stage of grain filling in the progenies with high protein content than in those with low protein content. It is suggested that the activities of key enzymes for starch synthesis and glutamine synthetase could be changed in oriented breeding for amylose and protein contents in grains.