Rice Science ›› 2024, Vol. 31 ›› Issue (5): 603-616.DOI: 10.1016/j.rsci.2024.03.004
• Research Papers • Previous Articles Next Articles
Chirag Maheshwari1,#, Nitin Kumar Garg1,2,#, Archana Singh1, Aruna Tyagi1()
Received:
2024-01-24
Accepted:
2024-03-08
Online:
2024-09-28
Published:
2024-10-11
Contact:
Aruna Tyagi (arunatyagi19@yahoo.com)
About author:
#These authors contributed equally to this work
Chirag Maheshwari, Nitin Kumar Garg, Archana Singh, Aruna Tyagi. Ameliorative Effects of Paclobutrazol via Physio-Biochemical and Molecular Manifestation in Rice under Water Deficit Stress[J]. Rice Science, 2024, 31(5): 603-616.
Add to citation manager EndNote|Ris|BibTeX
Fig. 1. Effect of 100 mg/kg paclobutrazol (PBZ) on dry matter (A), relative water content (RWC, B), membrane stability index (MSI, C), total chlorophyll content (D), chlorophyll stability index (CSI, E), drought susceptibility index (DSI, F), drought tolerance efficiency (DTE, G), grain yield (H), and global methylation level (I) in contrasting rice genotypes at the reproductive stage. WP0, Well-watered without PBZ; WP100, Well-watered with 100 mg/kg of PBZ; MSP0, Mild drought stress without PBZ; MSP100, Mild drought stress with 100 mg/kg of PBZ; SSP0, Severe drought stress without PBZ; SSP100, Severe drought stress with 100 mg/kg of PBZ. Vertical bars represent Mean ± SE (n = 6). Different lowercase letters above the bars indicate significant differences among treatments for the same variety by the least significant difference (LSD) test (P < 0.05).
Fig. 2. Effect of 100 mg/kg paclobutrazol (PBZ) on abscisic acid (ABA) content (A), gibberellic acid (GA) content (B), and total antioxidant activity (TAA, C) in contrasting rice genotypes at the reproductive stage. WP0, Well-watered without PBZ; WP100, Well-watered with 100 mg/kg of PBZ; MSP0, Mild drought stress without PBZ; MSP100, Mild drought stress with 100 mg/kg of PBZ; SSP0, Severe drought stress without PBZ; SSP100, Severe drought stress with 100 mg/kg of PBZ. Vertical bars represent Mean ± SE (n = 3). Different lowercase letters above the bars indicate significant differences among treatments for the same variety by the least significant difference (LSD) test (P < 0.05).
Fig. 3. Effect of 100 mg/kg paclobutrazol (PBZ) on relative expression levels of geranylgeranyl pyrophosphate (GGPP) biosynthesis, abscisic acid (ABA) metabolism, gibberellic acid (GA) biosynthesis, and chlorophyll metabolism relative genes. A‒L, Relative expression levels of GGPPS1 (geranylgeranyl diphosphate synthase 1, A), GGPPS2 (B), PSY2 (phytoene synthase 2, C), PSY3 (D), ZEP (zeaxanthin epoxidase, E), NCED3 (9-cis-epoxycarotenoids dioxygenase, F), ABA8OX1 (aba-8ʹ-hydroxylase 1, G), ABA8OX2 (H), CPS1 (ent-copalyl diphosphate synthase 1, I), GGR1 (geranylgeranyl reductase 1, J), GGR2 (K), and CHS (chlorophyll synthase, L) genes. WP0, Well-watered without PBZ; WP100, Well-watered with 100 mg/kg of PBZ; MSP0, Mild drought stress without PBZ; MSP100, Mild drought stress with 100 mg/kg of PBZ; SSP0, Severe drought stress without PBZ; SSP100, Severe drought stress with 100 mg/kg of PBZ. Leaf tissue was collected from control and water-stressed plants while rice Actin served as an internal control. Vertical bars represent Mean ± SE (n = 3). Different lowercase letters above the bars indicate significant differences among treatments for the same variety by the least significant difference (LSD) test (P < 0.05).
Fig. 4. Diagrammatic explanation of PBZ effect on GA, chlorophyll, and ABA biosynthesis pathways. The effect of PBZ on genes involved in the biosynthesis of ABA, GA, and chlorophyll was studied. CPS, which is involved in the biosynthesis of GA, was down-regulated, leading to a decrease in GA levels. PBZ enhanced the expression of PSY, ZEP, and NCED, which are involved in the biosynthesis of ABA, and decreased the expression of ABA8OX, involved in the degradation of ABA, resulting in an increase in endogenous ABA levels. The expression of geranylgeranyl reductase (GGR) and CHS, involved in the biosynthesis of chlorophyll, was enhanced, resulting in increased chlorophyll content and stability. ABA, Abscisic acid; ABA8OX, ABA- 8ʹ-hydroxylase; CHS, Chlorophyll synthase; CPS, ent-Copalyldiphosphate synthase; GA, Gibberellic acid; GGRS, Geranyl geranyl reductase; GGPS, Geranyl geranyl diphosphate synthase; IPI, Sopentenyl pyrophosphate: dimethyllallylpyrophosphate isomerase; KAO, ent-Kaurenoic acid oxidase; PBZ, Paclobutrazol; KS, ent- Kaurene synthase; NCED, 9-cis- Epoxycarotenoid dioxygenase; PSY, Phytoene synthase; ZEP, Zeaxanthin epoxidase.
[1] | Abu-Muriefah S S. 2015. Effects of paclobutrazol on growth and physiological attributes of soybean (Glycine max) plants grown under water stress conditions. Int J Adv Res Biol Sci, 2(7): 81-93. |
[2] | Ali K, Gujjar R S, Niwas R, Gopal M, Tyagi A. 2011. A rapid method for estimation of abscisic acid and characterization of ABA regulated gene in response to water deficit stress from rice. Am J Plant Physiol, 6(3): 144-156. |
[3] | Almeselmani M, da Silva J T A, Deshmukh P. 2011. Stability of different physiological characters, yield and yield components under high temperature stress in tolerant and susceptible wheat genotypes. Fruit Veget Cereal Sci Biotechnol, 5(2): 86-92. |
[4] | Apak R, Güçlü K, Ozyürek M, Karademir S E. 2004. Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. J Agric Food Chem, 52(26): 7970-7981. |
[5] | Asare-Boamah N K, Hofstra G, Fletcher R A, Dumbroff E B. 1986. Triadimefon protects bean plants from water stress through its effects on abscisic acid. Plant Cell Physiol, 27(3): 383-390. |
[6] | Azarcon R P, Vizmonte P T Jr, Agustin A M L. 2022. Effects of paclobutrazol on growth, yield and water use efficiency of rice (Oryza sativa L.) under drought stress condition. Mindanao J Sci Technol, 20(1): 38-60. |
[7] |
Babarashi E, Rokhzadi A, Pasari B, Mohammadi K. 2021. Ameliorating effects of exogenous paclobutrazol and putrescine on mung bean [Vigna radiata (L.) Wilczek] under water deficit stress. Plant Soil Environ, 67(1): 40-45.
DOI |
[8] |
Behnam B, Iuchi S, Fujita M, Fujita Y, Takasaki H, Osakabe Y, Yamaguchi-Shinozaki K, Kobayashi M, Shinozaki K. 2013. Characterization of the promoter region of an Arabidopsis gene for 9-cis-epoxycarotenoid dioxygenase involved in dehydration- inducible transcription. DNA Res, 20(4): 315-324.
DOI PMID |
[9] | Bin Rahman A N M R, Zhang J H. 2016. Flood and drought tolerance in rice: Opposite but may coexist. Food Energy Secur, 5(2): 76-88. |
[10] | Burondkar M M, Upreti K K, Ambavane A R, Rajan S, Mahadik S G, Bhave S G. 2016. Hormonal changes during flowering in response to paclobutrazol application in mango cv. Alphonso under Konkan conditions. Indian J Plant Physiol, 21(3): 306-311. |
[11] |
Cutler A J, Krochko J E. 1999. Formation and breakdown of ABA. Trends Plant Sci, 4(12): 472-478.
DOI PMID |
[12] |
de Carvalho M H C. 2008. Drought stress and reactive oxygen species: Production, scavenging and signaling. Plant Signal Behav, 3(3): 156-165.
DOI PMID |
[13] | Detpitthayanan S, Romyanon K, Songnuan W, Metam M, Pichakum A. 2019. Paclobutrazol application improves grain 2AP content of Thai jasmine rice KDML105 under low-salinity conditions. J Crop Sci Biotechnol, 22(3): 275-282. |
[14] | Dwivedi S K, Arora A, Kumar S. 2017. Paclobutrazol-induced alleviation of water-deficit damage in relation to photosynthetic characteristics and expression of stress markers in contrasting wheat genotypes. Photosynthetica, 55(2): 351-359. |
[15] | El-Sharkawi H M, Salama F M. 1977. Effects of drought and salinity on some growth-contributing parameters in wheat and barley. Plant Soil, 46(2): 423-433. |
[16] |
Endo A, Sawada Y, Takahashi H, Okamoto M, Ikegami K, Koiwai H, Seo M, Toyomasu T, Mitsuhashi W, Shinozaki K, Nakazono M, Kamiya Y, Koshiba T, Nambara E. 2008. Drought induction of Arabidopsis 9-cis-epoxycarotenoid dioxygenase occurs in vascular parenchyma cells. Plant Physiol, 147(4): 1984-1993.
DOI PMID |
[17] | Espasandin F D, Maiale S J, Calzadilla P, Ruiz O A, Sansberro P A. 2014. Transcriptional regulation of 9-cis-epoxycarotenoid dioxygenase (NCED) gene by putrescine accumulation positively modulates ABA synthesis and drought tolerance in Lotus tenuis plants. Plant Physiol Biochem, 76: 29-35. |
[18] | Fischer R A, Maurer R. 1978. Drought resistance in spring wheat cultivar: I. Grain yield responses. Aust J Agric Res, 29(5): 897-912. |
[19] | Frey A, Effroy D, Lefebvre V, Seo M, Perreau F, Berger A, Sechet J, To A, North H M, Marion-Poll A. 2012. Epoxycarotenoid cleavage by NCED5 fine-tunes ABA accumulation and affects seed dormancy and drought tolerance with other NCED family members. Plant J, 70(3): 501-512. |
[20] | Fukagawa N K, Ziska L H. 2019. Rice: Importance for global nutrition. J Nutr Sci Vitaminol, 65: S2-S3. |
[21] | Garg N K, Maheshwari C, Changan S S, Kumar V, Kumar A, Singh A, Ali K, Tyagi A. 2019. Paclobutrazol induced physio-biochemical manifestations to ameliorate water deficit stress in rice (Oryza sativa). Indian J Agric Sci, 89(11): 1832-1836. |
[22] | Gimhavanekar V J, Mane A V, Burondkar M M, Thorat B S, Mahadik S G, Bonde P J, Chavan S S. 2020. Studies on influence of paclobutrazol on physiological aspect of pigeon pea (Cajanus cajan (L.) Millsp) under Konkan condition. Int J Chem Stud, 8(4): 1133-1137. |
[23] | Gopi R, Jaleel C A, Sairam R, Lakshmanan G M A, Gomathinayagam M, Panneerselvam R. 2007. Differential effects of hexaconazole and paclobutrazol on biomass, electrolyte leakage, lipid peroxidation and antioxidant potential of Daucus carota L. Colloids Surf B: Biointerfaces, 60(2): 180-186. |
[24] |
Hedden P, Thomas S G. 2012. Gibberellin biosynthesis and its regulation. Biochem J, 444(1): 11-25.
DOI PMID |
[25] | Hu Y, Yu W, Liu T, Shafi M, Song L, Du X, Huang X, Yue Y, Wu J. 2017. Effects of paclobutrazol on cultivars of Chinese bayberry (Myrica rubra) under salinity stress. Photosynthetica, 55(3): 443-453. |
[26] |
Iuchi S, Kobayashi M, Taji T, Naramoto M, Seki M, Kato T, Tabata S, Kakubari Y, Yamaguchi-Shinozaki K, Shinozaki K. 2001. Regulation of drought tolerance by gene manipulation of 9-cis-epoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in Arabidopsis. Plant J, 27(4): 325-333.
DOI PMID |
[27] |
Jungklang J, Saengnil K, Uthaibutra J. 2017. Effects of water- deficit stress and paclobutrazol on growth, relative water content, electrolyte leakage, proline content and some antioxidant changes in Curcuma alismatifolia Gagnep. cv. Chiang Mai Pink. Saudi J Biol Sci, 24(7): 1505-1512.
DOI PMID |
[28] | Keeling C I, Dullat H K, Yuen M, Ralph S G, Jancsik S, Bohlmann J. 2010. Identification and functional characterization of monofunctional ent-copalyl diphosphate and ent-kaurene synthases in white spruce reveal different patterns for diterpene synthase evolution for primary and secondary metabolism in gymnosperms. Plant Physiol, 152(3): 1197-1208. |
[29] | Khan M I R, Palakolanu S R, Chopra P, Rajurkar A B, Gupta R, Iqbal N, Maheshwari C. 2021. Improving drought tolerance in rice: Ensuring food security through multi-dimensional approaches. Physiol Plant, 172(2): 645-668. |
[30] | Khunpon B, Cha-um S, Faiyue B, Uthaibutra J, Saengnil K. 2018. Paclobutrazol mitigates salt stress in indica rice seedlings by enhancing glutathione metabolism and glyoxalase system. Biologia, 73(12): 1267-1276. |
[31] | Khunpon B, Cha-Um S, Faiyue B, Uthaibutra J, Saengnil K. 2019. Regulation on antioxidant defense system in rice seedlings (Oryza sativa L. ssp. indica cv. ‘pathumthani 1’) under salt stress by paclobutrazol foliar application. Not Bot Horti Agrobot Cluj-Na, 47(2): 368-377. |
[32] | Kilen T C, Andrew R H. 1969. Measurement of drought resistance in corn. Agron J, 61(5): 669-672. |
[33] | Kitahata N, Saito S, Miyazawa Y, Umezawa T, Shimada Y, Min Y K, Mizutani M, Hirai N, Shinozaki K, Yoshida S, Asami T. 2005. Chemical regulation of abscisic acid catabolism in plants by cytochrome P450 inhibitors. Bioorg Med Chem, 13(14): 4491-4498. |
[34] | Kondhare K R, Hedden P, Kettlewell P S, Farrell A D, Monaghan J M. 2014. Use of the hormone-biosynthesis inhibitors fluridone and paclobutrazol to determine the effects of altered abscisic acid and gibberellin levels on pre-maturity α-amylase formation in wheat grains. J Cereal Sci, 60(1): 210-216. |
[35] |
Kumar S, Chinnusamy V, Mohapatra T. 2018. Epigenetics of modified DNA bases: 5-Methylcytosine and beyond. Front Genet, 9: 640.
DOI PMID |
[36] |
Latif A, Sun Y, Pu C X, Ali N. 2023. Rice curled its leaves either adaxially or abaxially to combat drought stress. Rice Sci, 30(5): 405-416.
DOI |
[37] | Latimer J G. 1992. Drought, paclobutrazol, abscisic acid, and gibberellic acid as alternatives to daminozide in tomato transplant production. J Am Soc Hortic Sci, 117(2): 243-247. |
[38] | Lin H, Karki S, Coe R A, Bagha S, Khoshravesh R, Balahadia C P, Sagun J V, Tapia R, Krystler Israel W, Montecillo F, de Luna A, Danila F R, Lazaro A, Realubit C M, Acoba M G, Sage T L, von Caemmerer S, Furbank R T, Cousins A B, Hibberd J M, Quick W P, Covshoff S. 2016. Targeted knockdown of GDCH in rice leads to a photorespiratory-deficient phenotype useful as a building block for C4 rice. Plant Cell Physiol, 57(5): 919-932. |
[39] | Liu B W, Long S, Liu K N, Zhu T Q, Gong J J, Gao S H, Wang R J, Zhang L Y, Liu T Y, Xu Y F. 2022. Paclobutrazol ameliorates low-light-induced damage by improving photosynthesis, antioxidant defense system, and regulating hormone levels in tall fescue. Int J Mol Sci, 23(17): 9966. |
[40] | Liu Y T, Guo P, Wang J, Xu Z Y. 2023. Growth-regulating factors: Conserved and divergent roles in plant growth and development and potential value for crop improvement. Plant J, 113(6): 1122-1145. |
[41] |
Livak K J, Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 25(4): 402-408.
DOI PMID |
[42] | Lucibelli F, Valoroso M C, Aceto S. 2022. Plant DNA methylation: An epigenetic mark in development, environmental interactions, and evolution. Int J Mol Sci, 23(15): 8299. |
[43] | Maheshwari C, Garg N K, Hasan M, V P, Meena N L, Singh A, Tyagi A. 2022. Insight of PBZ mediated drought amelioration in crop plants. Front Plant Sci, 13: 1008993. |
[44] | Maheshwari C, Garg N K, Singh A, Tyagi A. 2023. Optimization of paclobutrazol dose for mitigation of water-deficit stress in rice (Oryza sativa L.). Biochem Syst Ecol, 107: 104596. |
[45] | Martin U, Pallardy S G, Bahari Z A. 1987. Dehydration tolerance of leaf tissues of six woody angiosperm species. Physiol Plant, 69(1): 182-186. |
[46] | Mohamed G F, Agamy R A, Rady M M. 2011. Ameliorative effects of some antioxidants on water-stressed tomato (Lycopersicon esculentum Mill.) plants. J Appl Sci Res, 7(12): 2470-2478. |
[47] | Murphy K S, Majumdar S K. 1962. Modification of the technique for determination of chlorophyll stability index in relation to studies of drought resistance in rice. Curr Sci, 31: 470-471. |
[48] | Nagar S, Singh V P, Arora A, Dhakar R, Singh N, Singh G P, Meena S, Kumar S, Shiv Ramakrishnan R. 2021. Understanding the role of gibberellic acid and paclobutrazol in terminal heat stress tolerance in wheat. Front Plant Sci, 12: 692252. |
[49] |
Okada K, Saito T, Nakagawa T, Kawamukai M, Kamiya Y. 2000. Five geranylgeranyl diphosphate synthases expressed in different organs are localized into three subcellular compartments in Arabidopsis. Plant Physiol, 122(4): 1045-1056.
DOI PMID |
[50] | Orabi S A, Salman S R, Shalaby M A F. 2010. Increasing resistance to oxidative damage in cucumber (Cucumis sativus L.) plants by exogenous application of salicylic acid and paclobutrazol. World J Agric Sci, 6(3): 252-259. |
[51] |
Pal S, Zhao J S, Khan A, Yadav N S, Batushansky A, Barak S, Rewald B, Fait A, Lazarovitch N, Rachmilevitch S. 2016. Paclobutrazol induces tolerance in tomato to deficit irrigation through diversified effects on plant morphology, physiology and metabolism. Sci Rep, 6: 39321.
DOI PMID |
[52] | Pan Y J, Fu B Y, Wang D, Zhu L H, Li Z K. 2009. Spatial and temporal profiling of DNA methylation induced by drought stress in rice. Sci Agric Sin, 42(9): 3009-3018. |
[53] | Percival G C, Salim AlBalushi A M. 2007. Paclobutrazol-induced drought tolerance in containerized English and evergreen oak. Arboric Urban For, 33(6): 397-409. |
[54] |
Percival G C, Noviss K. 2008. Triazole induced drought tolerance in horse chestnut (Aesculus hippocastanum). Tree Physiol, 28(11): 1685-1692.
PMID |
[55] | Rady M M, Gaballah M S. 2012. Improving barley yield grown under water stress conditions. Res J Recent Sci, 1(6): 1-6. |
[56] | Rajput V D, Harish, Singh R K, Verma K K, Sharma L, Quiroz- Figueroa F R, Meena M, Gour V S, Minkina T, Sushkova S, Mandzhieva S. 2021. Recent developments in enzymatic antioxidant defence mechanism in plants with special reference to abiotic stress. Biology, 10(4): 267. |
[57] | Rout D, Jena D, Singh V, Kumar M, Arsode P, Singh P, Lal Katara J, Samantaray S, Verma R. 2021. Hybrid rice research: Current status and prospects. In: Ansari M. Recent Advances in Rice Research. London, United Kingdom: IntechOpen. |
[58] | Sampathkumar T, Pandian B J, Jeyakumar P, Manickasundaram P. 2014. Effect of deficit irrigation on yield, relative leaf water content, leaf proline accumulation and chlorophyll stability index of cotton-maize cropping sequence. Exp Agric, 50(3): 407-425. |
[59] | Sankar B, Jaleel C A, Manivannan P, Kishorekumar A, Somasundaram R, Panneerselvam R. 2007. Effect of paclobutrazol on water stress amelioration through antioxidants and free radical scavenging enzymes in Arachis hypogaea L. Colloids Surf B: Biointerfaces, 60(2): 229-235. |
[60] | Shahrokhi M, Tehranifar A, Hadizadeh H, Selahvarzi Y. 2011. Effect of drought stress and paclobutrazol-treated seeds on physiological response of Festuca arundinacea L. Master and Lolium perenne L. Barrage. J Biol Environ Sci, 5(14): 77-85. |
[61] | Sinniah U R, Wahyuni S, Syahputra B S A, Gantait S. 2012. A potential retardant for lodging resistance in direct seeded rice (Oryza sativa L.). Can J Plant Sci, 92(1): 13-18. |
[62] | Somasundaram R, Abdul Jaleel C, Sindhu S. Abraham, Azooz MM. Panneerselvam R. 2009. Role of Paclobutrazol and ABA in drought stress amelioration in Sesamum indicum L. Glob J Mol Sci, 4(2): 56-62. |
[63] | Song J, Guo B J, Song F W, Peng H R, Yao Y Y, Zhang Y R, Sun Q X, Ni Z F. 2011. Genome-wide identification of gibberellins metabolic enzyme genes and expression profiling analysis during seed germination in maize. Gene, 482(1/2): 34-42. |
[64] | Soumya P R, Kumar P. 2017. Optimization of paclobutrazol dose for foliar and drenching applications under water deficit stress in chickpea (Cicer arietinum L.). Int J Bio-resour Stress Manag, 8(4): 566-573. |
[65] | Sun M H, Yang Z, Liu L, Duan L. 2022. DNA methylation in plant responses and adaption to abiotic stresses. Int J Mol Sci, 23(13): 6910. |
[66] | Talbi S, Rojas J A, Sahrawy M, Rodríguez-Serrano M, Cárdenas K E, Debouba M, Sandalio L M. 2020. Effect of drought on growth, photosynthesis and total antioxidant capacity of the Saharan plant Oudeneya africana. Environ Exp Bot, 176: 104099. |
[67] |
Thabet I, Guirimand G, Guihur A, Lanoue A, Courdavault V, Papon N, Bouzid S, Giglioli-Guivarc’h N, Simkin A J, Clastre M. 2012. Characterization and subcellular localization of geranylgeranyl diphosphate synthase from Catharanthus roseus. Mol Biol Rep, 39(3): 3235-3243.
DOI PMID |
[68] | Vikram P, Swamy B P M, Dixit S, Ahmed H U, Teresa Sta Cruz M, Singh A K, Kumar A. 2011. qDTY1.1, a major QTL for rice grain yield under reproductive-stage drought stress with a consistent effect in multiple elite genetic backgrounds. BMC Genet, 12: 89. |
[69] | Wu H, Chen H Z, Zhang Y K, Zhang Y P, Zhu D F, Xiang J. 2019. Effects of 1-aminocyclopropane-1-carboxylate and paclobutrazol on the endogenous hormones of two contrasting rice varieties under submergence stress. Plant Growth Regul, 87(1): 109-121. |
[70] | Xu P P, Cai W M. 2017. Functional characterization of the BnNCED3 gene in Brassica napus. Plant Sci, 256: 16-24. |
[71] | Ye N H, Zhu G H, Liu Y G, Li Y X, Zhang J H. 2011. ABA controls H2O2 accumulation through the induction of OsCATB in rice leaves under water stress. Plant Cell Physiol, 52(4): 689-698. |
[72] |
Zeevaart J A, Gage D A, Talon M. 1993. Gibberellin A1 is required for stem elongation in spinach. Proc Natl Acad Sci USA, 90(15): 7401-7405.
PMID |
[73] |
Zerbe P, Hamberger B, Yuen M M S, Chiang A, Sandhu H K, Madilao L L, Nguyen A, Hamberger B, Bach S S, Bohlmann J. 2013. Gene discovery of modular diterpene metabolism in nonmodel systems. Plant Physiol, 162(2): 1073-1091.
DOI PMID |
[74] | Zhu J K. 2002. Salt and drought stress signal transduction in plants. Annu Rev Plant Biol, 53: 247-273. |
[75] | Zhu L H, van de Peppel A, Li X Y, Welander M. 2004. Changes of leaf water potential and endogenous cytokinins in young apple trees treated with or without paclobutrazol under drought conditions. Sci Hortic, 99(2): 133-141. |
[76] | Zhu X P, Chai M, Li Y, Sun M Y, Zhang J Z, Sun G F, Jiang C D, Shi L. 2016. Global transcriptome profiling analysis of inhibitory effects of paclobutrazol on leaf growth in lily (Lilium longiflorum- asiatic hybrid). Front Plant Sci, 7: 491. |
[1] | Durga Prasad Mullangie, Kalaimagal Thiyagarajan, Manonmani Swaminathan, Jagadeesan Ramalingam, Sritharan Natarajan, Senthilkumar Govindan. Breeding Resilience: Exploring Lodging Resistance Mechanisms in Rice [J]. Rice Science, 2024, 31(6): 659-672. |
[2] | Fu Yiwei, Wu Jiayelu, Wu Mingming, Ye Shenghai, Zhai Rongrong, Ye Jing, Zhu Guofu, Yu Faming, Lu Yanting, Zhang Xiaoming. Progress on Molecular Mechanism of Heat Tolerance in Rice [J]. Rice Science, 2024, 31(6): 673-687. |
[3] | Yang Yigang, Xu Ya’nan, Bai Yeran, Zhang Yuanpei, Han Wei, Makoto Saito, Lü Guohua, Song Jiqing, Bai Wenbo. Mixed-Oligosaccharides Promote Seedling Growth of Direct-Seeded Rice under Salt and Alkaline Stress [J]. Rice Science, 2024, 31(6): 712-724. |
[4] | Ren Jian, Hu Kelin, Feng Puyu, William D. Batchelor, Liu Haitao, Lü Shihua. Simulating Responses of Rice Yield and Nitrogen Fates to Ground Cover Rice Production System under Different Types of Precipitation Years [J]. Rice Science, 2024, 31(6): 725-739. |
[5] | Tao Yi, Xiao Deshun, Ye Chang, Liu Kancheng, Tang Xinxin, Ma Hengyu, Chu Guang, Yu Kai, Xu Chunmei, Wang Danying. Compound Microbial Agent Improves Soil Redox Status to Reduce Methane Emissions from Paddy Fields [J]. Rice Science, 2024, 31(6): 740-750. |
[6] | Sitthikorn Bodeerath, Jeeraporn Veeradittakit, Sansanee Jamjod, Chanakan Prom-U-Thai. Applying Boron Fertilizer at Different Growth Stages Promotes Boron Uptake and Productivity in Rice [J]. Rice Science, 2024, 31(6): 751-760. |
[7] | Kunhikrishnan Hemalatha Dhanyalakshmi, Reshma Mohan, Sasmita Behera, Uday Chand Jha, Debashis Moharana, Ahalya Behera, Sini Thomas, Preman Rejitha Soumya, Rameswar Prasad Sah, Radha Beena. Next Generation Nutrition: Genomic and Molecular Breeding Innovations for Iron and Zinc Biofortification in Rice [J]. Rice Science, 2024, 31(5): 526-544. |
[8] | Zhang Youliang, Zhu Kaican, Tang Yongqi, Feng Shaoyuan. Rice Cultivation under Film Mulching Can Improve Soil Environment and Be Beneficial for Rice Production in China [J]. Rice Science, 2024, 31(5): 545-555. |
[9] | Hong Weiyuan, Li Ziqiu, Feng Xiangqian, Qin Jinhua, Wang Aidong, Jin Shichao, Wang Danying, Chen Song. Estimating Key Phenological Dates of Multiple Rice Accessions Using Unmanned Aerial Vehicle-Based Plant Height Dynamics for Breeding [J]. Rice Science, 2024, 31(5): 617-628. |
[10] | Liyana Sara, Sompop Saeheng, Panupong Puttarak, Lompong Klinnawee. Changes in Metabolites and Allelopathic Effects of Non-Pigmented and Black-Pigmented Lowland Indica Rice Varieties in Phosphorus Deficiency [J]. Rice Science, 2024, 31(4): 434-448. |
[11] | Zhou Tianshun, Yu Dong, Wu Liubing, Xu Yusheng, Duan Meijuan, Yuan Dingyang. Seed Storability in Rice: Physiological Foundations, Molecular Mechanisms, and Applications in Breeding [J]. Rice Science, 2024, 31(4): 401-416. |
[12] | Mingyo Ha, Hyo-Young Jeong, Ju Hun Lee, Hyun-Jung Chung. Combined Insights from Leachate Structure and Microstructure Characteristics for Eating Quality of Convenience Rice Processed by Super-Heated and Pressurized Steam Technologies [J]. Rice Science, 2024, 31(4): 475-488. |
[13] | Anuradha Kumari, Wusirika Ramakrishna. Anticancer Activity of Rice Callus Suspension Cultures from Aromatic Varieties and Metabolites Regulated in Treated Cancer Cell Lines [J]. Rice Science, 2024, 31(4): 449-462. |
[14] | Priyanka Negi, Jagadish Rane, Rajendra Sadashiv Wagh, Tukaram Jayaram Bhor, Dipti Digambar Godse, Priyanka Jadhav, C. Anilkumar, Dasari Sreekanth, K. Sammi Reddy, Sharad Ramrao Gadakh, K. M. Boraih, C. B. Harisha, P. S. Basavaraj. Direct-Seeded Rice: Genetic Improvement of Game-Changing Traits for Better Adaption [J]. Rice Science, 2024, 31(4): 417-433. |
[15] | Zhang Fengmin, Cao Zhenzhen, Zheng Xin, He Yuntao, Chen Mingxue, Lin Xiaoyan. Interaction Between Ustilaginoidea virens and Rice and Its Sustainable Control [J]. Rice Science, 2024, 31(3): 269-284. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||