Rice Science ›› 2016, Vol. 23 ›› Issue (5): 255-265.DOI: 10.1016/j.rsci.2016.08.003
• Orginal Article • Previous Articles Next Articles
Kumari Manisha, Asthir Bavita()
Received:
2015-11-17
Accepted:
2016-05-05
Online:
2016-09-05
Published:
2016-06-12
Kumari Manisha, Asthir Bavita. Transformation of Sucrose to Starch and Protein in Rice Leaves and Grains under Two Establishment Methods[J]. Rice Science, 2016, 23(5): 255-265.
Add to citation manager EndNote|Ris|BibTeX
Variety | Plant height (cm) | No. of tillers per m2 | No. of grains per panicle | 1000-grain weight (g) | Grain yield (t/hm2) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Aerobic | Transplanted | Aerobic | Transplanted | Aerobic | Transplanted | Aerobic | Transplanted | Aerobic | Transplanted | |||||
PR120 | 71 | 95 | 54 | 60 | 54 | 60 | 24.8 | 26.9 | 10.9 | 11.9 | ||||
PR115 | 75 | 100 | 52 | 63 | 52 | 63 | 20.2 | 24.3 | 11.4 | 12.2 | ||||
PR116 | 67 | 104 | 46 | 67 | 46 | 69 | 22.7 | 28.1 | 10.3 | 13.5 | ||||
FengAiZan | 75 | 86 | 57 | 65 | 57 | 51 | 25.5 | 24.1 | 11.6 | 11.7 | ||||
PAU201 | 62 | 107 | 48 | 67 | 49 | 67 | 21.5 | 26.3 | 9.7 | 13.1 | ||||
Punjab Mehak 1 | 64 | 97 | 50 | 65 | 50 | 65 | 23.2 | 25.2 | 8.9 | 12.7 | ||||
CD (5%) | ||||||||||||||
Variety | 0.69 | 0.65 | 0.65 | 0.47 | 36 | |||||||||
Condition | 0.15 | 0.13 | 0.13 | 0.50 | 76 | |||||||||
Variety × Condition | 1.29 | 1.27 | 1.27 | 1.20 | 153 |
Table 1 Yield attributes and yields of the studied rice varieties.
Variety | Plant height (cm) | No. of tillers per m2 | No. of grains per panicle | 1000-grain weight (g) | Grain yield (t/hm2) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Aerobic | Transplanted | Aerobic | Transplanted | Aerobic | Transplanted | Aerobic | Transplanted | Aerobic | Transplanted | |||||
PR120 | 71 | 95 | 54 | 60 | 54 | 60 | 24.8 | 26.9 | 10.9 | 11.9 | ||||
PR115 | 75 | 100 | 52 | 63 | 52 | 63 | 20.2 | 24.3 | 11.4 | 12.2 | ||||
PR116 | 67 | 104 | 46 | 67 | 46 | 69 | 22.7 | 28.1 | 10.3 | 13.5 | ||||
FengAiZan | 75 | 86 | 57 | 65 | 57 | 51 | 25.5 | 24.1 | 11.6 | 11.7 | ||||
PAU201 | 62 | 107 | 48 | 67 | 49 | 67 | 21.5 | 26.3 | 9.7 | 13.1 | ||||
Punjab Mehak 1 | 64 | 97 | 50 | 65 | 50 | 65 | 23.2 | 25.2 | 8.9 | 12.7 | ||||
CD (5%) | ||||||||||||||
Variety | 0.69 | 0.65 | 0.65 | 0.47 | 36 | |||||||||
Condition | 0.15 | 0.13 | 0.13 | 0.50 | 76 | |||||||||
Variety × Condition | 1.29 | 1.27 | 1.27 | 1.20 | 153 |
Trait | Variety | Aerobic | Transplanted | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
T | F | 7 DAF | 15 DAF | 30 DAF | T | F | 7 DAF | 15 DAF | 30 DAF | |||
Chlorophyll (mg/g) | PR120 | 2.55 | 3.64 | 3.19 | 2.45 | 1.15 | 2.71 | 4.01 | 3.41 | 2.58 | 1.24 | |
PR115 | 2.73 | 3.81 | 2.97 | 2.61 | 1.22 | 2.99 | 4.23 | 3.08 | 2.75 | 1.40 | ||
PR116 | 2.39 | 3.37 | 2.91 | 2.35 | 1.05 | 2.84 | 4.45 | 4.10 | 3.01 | 2.21 | ||
FengAiZan | 2.47 | 3.90 | 3.51 | 2.79 | 1.65 | 2.54 | 3.97 | 3.75 | 2.95 | 1.71 | ||
PAU201 | 2.22 | 3.22 | 2.81 | 2.19 | 0.94 | 3.41 | 4.69 | 4.31 | 3.52 | 2.10 | ||
Punjab Mehak 1 | 2.08 | 3.01 | 2.65 | 1.57 | 0.81 | 3.05 | 4.18 | 3.94 | 3.31 | 1.61 | ||
CD (5%) | V (0.28), C (0.21), S (0.47), V × C (0.48), V × S (0.55), C × S (0.09) | |||||||||||
Amino acid (%) | PR120 | 0.53 | 0.83 | 0.68 | 0.43 | 0.34 | 0.28 | 0.50 | 0.36 | 0.21 | 0.20 | |
PR115 | 0.46 | 0.76 | 0.61 | 0.35 | 0.24 | 0.26 | 0.54 | 0.39 | 0.20 | 0.23 | ||
PR116 | 0.39 | 0.69 | 0.54 | 0.29 | 0.20 | 0.34 | 0.64 | 0.50 | 0.26 | 0.18 | ||
FengAiZan | 0.49 | 0.79 | 0.64 | 0.40 | 0.31 | 0.24 | 0.58 | 0.42 | 0.24 | 0.22 | ||
PAU201 | 0.44 | 0.74 | 0.59 | 0.37 | 0.28 | 0.40 | 0.68 | 0.55 | 0.30 | 0.26 | ||
Punjab Mehak 1 | 0.34 | 0.65 | 0.49 | 0.33 | 0.26 | 0.31 | 0.61 | 0.45 | 0.28 | 0.24 | ||
CD (5%) | V (0.51), C (0.94), S (0.47), V × C (0.08), V × S (0.05), C × S (0.02) | |||||||||||
Protein | PR120 | 5.21 | 5.84 | 4.61 | 3.40 | 1.60 | 3.21 | 3.72 | 2.20 | 1.91 | 1.24 | |
(%) | PR115 | 5.01 | 5.61 | 4.42 | 3.18 | 1.21 | 3.11 | 3.20 | 2.53 | 1.72 | 0.92 | |
PR116 | 4.31 | 5.06 | 3.72 | 2.52 | 1.50 | 3.71 | 4.31 | 3.51 | 2.36 | 1.01 | ||
FengAiZan | 4.75 | 5.31 | 4.10 | 2.93 | 1.42 | 2.81 | 3.50 | 2.72 | 1.84 | 1.14 | ||
PAU201 | 3.93 | 4.54 | 3.24 | 2.20 | 1.03 | 3.52 | 3.91 | 3.04 | 2.01 | 0.91 | ||
Punjab Mehak 1 | 4.54 | 5.11 | 3.92 | 2.73 | 0.80 | 3.87 | 4.50 | 3.72 | 2.21 | 0.71 | ||
CD (5%) | V (0.08), C (0.09), S (0.67), V × C (0.07), V × S (0.04), C × S (0.08) | |||||||||||
Starch | PR120 | 7.7 | 20.3 | 17.6 | 13.6 | 10.5 | 8.3 | 21.4 | 19.1 | 14.5 | 12.5 | |
(%) | PR115 | 7.1 | 21.8 | 18.9 | 14.8 | 11.6 | 7.6 | 22.8 | 20.6 | 16.1 | 13.4 | |
PR116 | 4.2 | 14.4 | 12.5 | 8.9 | 8.4 | 8.6 | 25.4 | 21.7 | 16.4 | 13.5 | ||
FengAiZan | 6.5 | 19.1 | 16.5 | 12.4 | 10.2 | 7.2 | 19.7 | 17.4 | 13.1 | 12.1 | ||
PAU201 | 5.8 | 17.5 | 15.2 | 10.8 | 9.6 | 9.1 | 24.0 | 23.4 | 17.4 | 14.1 | ||
Punjab Mehak 1 | 5.8 | 17.5 | 15.2 | 10.8 | 9.6 | 8.7 | 27.1 | 24.1 | 16.8 | 13.8 | ||
CD (5%) | V (0.28), C (0.21), S (0.47), V × C (0.48), V × S (0.55), C × S (0.09) |
Table 2 Variation in chlorophyll, amino acid, protein and starch contents in rice flag leaves.
Trait | Variety | Aerobic | Transplanted | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
T | F | 7 DAF | 15 DAF | 30 DAF | T | F | 7 DAF | 15 DAF | 30 DAF | |||
Chlorophyll (mg/g) | PR120 | 2.55 | 3.64 | 3.19 | 2.45 | 1.15 | 2.71 | 4.01 | 3.41 | 2.58 | 1.24 | |
PR115 | 2.73 | 3.81 | 2.97 | 2.61 | 1.22 | 2.99 | 4.23 | 3.08 | 2.75 | 1.40 | ||
PR116 | 2.39 | 3.37 | 2.91 | 2.35 | 1.05 | 2.84 | 4.45 | 4.10 | 3.01 | 2.21 | ||
FengAiZan | 2.47 | 3.90 | 3.51 | 2.79 | 1.65 | 2.54 | 3.97 | 3.75 | 2.95 | 1.71 | ||
PAU201 | 2.22 | 3.22 | 2.81 | 2.19 | 0.94 | 3.41 | 4.69 | 4.31 | 3.52 | 2.10 | ||
Punjab Mehak 1 | 2.08 | 3.01 | 2.65 | 1.57 | 0.81 | 3.05 | 4.18 | 3.94 | 3.31 | 1.61 | ||
CD (5%) | V (0.28), C (0.21), S (0.47), V × C (0.48), V × S (0.55), C × S (0.09) | |||||||||||
Amino acid (%) | PR120 | 0.53 | 0.83 | 0.68 | 0.43 | 0.34 | 0.28 | 0.50 | 0.36 | 0.21 | 0.20 | |
PR115 | 0.46 | 0.76 | 0.61 | 0.35 | 0.24 | 0.26 | 0.54 | 0.39 | 0.20 | 0.23 | ||
PR116 | 0.39 | 0.69 | 0.54 | 0.29 | 0.20 | 0.34 | 0.64 | 0.50 | 0.26 | 0.18 | ||
FengAiZan | 0.49 | 0.79 | 0.64 | 0.40 | 0.31 | 0.24 | 0.58 | 0.42 | 0.24 | 0.22 | ||
PAU201 | 0.44 | 0.74 | 0.59 | 0.37 | 0.28 | 0.40 | 0.68 | 0.55 | 0.30 | 0.26 | ||
Punjab Mehak 1 | 0.34 | 0.65 | 0.49 | 0.33 | 0.26 | 0.31 | 0.61 | 0.45 | 0.28 | 0.24 | ||
CD (5%) | V (0.51), C (0.94), S (0.47), V × C (0.08), V × S (0.05), C × S (0.02) | |||||||||||
Protein | PR120 | 5.21 | 5.84 | 4.61 | 3.40 | 1.60 | 3.21 | 3.72 | 2.20 | 1.91 | 1.24 | |
(%) | PR115 | 5.01 | 5.61 | 4.42 | 3.18 | 1.21 | 3.11 | 3.20 | 2.53 | 1.72 | 0.92 | |
PR116 | 4.31 | 5.06 | 3.72 | 2.52 | 1.50 | 3.71 | 4.31 | 3.51 | 2.36 | 1.01 | ||
FengAiZan | 4.75 | 5.31 | 4.10 | 2.93 | 1.42 | 2.81 | 3.50 | 2.72 | 1.84 | 1.14 | ||
PAU201 | 3.93 | 4.54 | 3.24 | 2.20 | 1.03 | 3.52 | 3.91 | 3.04 | 2.01 | 0.91 | ||
Punjab Mehak 1 | 4.54 | 5.11 | 3.92 | 2.73 | 0.80 | 3.87 | 4.50 | 3.72 | 2.21 | 0.71 | ||
CD (5%) | V (0.08), C (0.09), S (0.67), V × C (0.07), V × S (0.04), C × S (0.08) | |||||||||||
Starch | PR120 | 7.7 | 20.3 | 17.6 | 13.6 | 10.5 | 8.3 | 21.4 | 19.1 | 14.5 | 12.5 | |
(%) | PR115 | 7.1 | 21.8 | 18.9 | 14.8 | 11.6 | 7.6 | 22.8 | 20.6 | 16.1 | 13.4 | |
PR116 | 4.2 | 14.4 | 12.5 | 8.9 | 8.4 | 8.6 | 25.4 | 21.7 | 16.4 | 13.5 | ||
FengAiZan | 6.5 | 19.1 | 16.5 | 12.4 | 10.2 | 7.2 | 19.7 | 17.4 | 13.1 | 12.1 | ||
PAU201 | 5.8 | 17.5 | 15.2 | 10.8 | 9.6 | 9.1 | 24.0 | 23.4 | 17.4 | 14.1 | ||
Punjab Mehak 1 | 5.8 | 17.5 | 15.2 | 10.8 | 9.6 | 8.7 | 27.1 | 24.1 | 16.8 | 13.8 | ||
CD (5%) | V (0.28), C (0.21), S (0.47), V × C (0.48), V × S (0.55), C × S (0.09) |
Fig. 1. Variation in contents of protein, amino acid, starch, reducing sugar and non-reducing sugar in rice grains under aerobic and transplanted conditions.
Fig. 2. Variation in reducing and non-reducing sugar contents in flag leaves of rice varieties under aerobic and transplanted conditions. DAF, Days after flowering.
Fig. 3. Variation in activities of sucrose phosphate synthase, sucrose synthase (cleavage), sucrose synthase (synthesis), acid invertase and neutral invertase in flag leaves of rice varieties under aerobic and transplanted conditions. DAF, Days after flowering.
Fig. 4. Variation in activities of sucrose phosphate synthase, sucrose synthase (cleavage), sucrose synthase (synthesis), acid invertase and neutral invertase in grains of rice varieties under aerobic and transplanted conditions.
1 | Bala S, Asthir B, Bains N S.2010. High temperature response leads to altered membrane permeability in conjunction with carbon utilization in wheat.Seed Sci Biotech, 4(1): 10-14. |
2 | Bernier J, Atlin G N, Serraj R, Kumar A, Spaner D.2008. Breeding upland rice for drought resistance.J Sci Food Agric, 88(6): 927-939. |
3 | Chaum S, Supaibulwatana K, Kirdmanee C.2007. Glycinebetaine accumulation, physiological characterizations and growth efficiency in salt-tolerance and salt-sensitive lines of indica rice (Oryza sativa L.) in response to salt stress.J Agron Crop Sci, 193(3): 157-166. |
4 | Chen S, Hajirezaei M, Bornke F.2005. Differential expression of sucrose-phosphate synthase iso enzymes in tobacco reflects their functional specialization during dark-governed starch mobilization in source leaves.Plant Physiol, 139(3): 1163-1174. |
5 | Danai-Tambhale S, Kumar V, Shriram V.2011. Differential response of two scented indica rice (Oryza sativa) cultivars under salt stress.J Stress Physiol Biochem, 7(4): 387-397. |
6 | Dubois M, Gilles K A, Hamilton J K, Rebers P A, Smith F.1956. Colorimetric method for the determination of sugars and related substances.Anal Chem, 28(3): 350-356. |
7 | Emam M M, Khattab H E, Helal N M, Deraz A E.2014. Effect of selenium and silicon on yield quality of rice plant grown under drought stress.Aust J Crop Sc, 8(4): 596-605. |
8 | Farooq M, Siddique K H M, Rehman H, Aziz T, Lee D J, Wahid A.2011. Rice direct seeding: Experiences, challenges and opportunities.Soil Till Res, 111(2): 87-98. |
9 | Fresneau C, Ghashghaie J, Gabriel C.2007. Drought effect on nitrate reductase and sucrose-phosphate synthase activities in wheat (Triticum durum L.): Role of leaf internal CO2.J Exp Bot, 58(11): 2983-2992. |
10 | Haryanto T A D, Suwarto S, Yoshida T.2008. Yield stability of aromatic upland rice with high yielding ability in Indonesia.Plant Prod Sci, 11(1): 96-103. |
11 | Heidary R, Heidary M, Jameiy R.2007. Study on tolerance to salinity and drought of 4 barley cultivar in germination phase.Res Recon Mag, 4: 34-42. |
12 | Hubbard N L, Huber S C, Pharr D M.1989. Sucrose phopshate synthase and acid invertase as determinants of sucrose concentration in developing muskmelon (Cucumis melo L.) fruits.Plant Physiol, 91(4): 1527-1534. |
13 | Jayashree B, Pradeep R, Kumar A, Gopal B.2008. Correlation between the sucrose synthase protein subfamilies variations in structure and expression in stress-derived expressed sequence tag datasets.J Proteomic Bioinform, 1(8): 408-423. |
14 | Ke Y Q, Han G Q, He H Q, Li J X.2009. Differential regulation of proteins and phosphoproteins in rice under drought stress.Biochem Biophys Res Commun, 379(1): 133-138. |
15 | Lee Y P, Takahashi T.1966. An improved colorimetric determination of amino acids with the use of ninhydrin.Anal Biochem, 14(1): 71-77. |
16 | Li X J, Wang H G, Li H B, Zhang L Y, Teng N J, Lin Q Q, Wang J, Kuang T Y, Li Z S, Li B, Zhang A M, Lin J X.2006. Awns play a dominant role in carbohydrate production during the grain-filling stages in wheat (Triticum aestivum L.).Physiol Plant, 127: 701-709. |
17 | Liang J S, Zhang J H, Cao X Z.2001. Grain sink strength may be related to the poor grain filling of indica-japonica rice (Oryza sativa) hybrids.Physiol Plant, 112(4): 470-477. |
18 | Liao J L, Zhou H W, Zhang H Y, Zhong P A, Huang Y J.2014. Comparative proteomic analysis of differentially expressed proteins in the early milky stage of rice grains during high temperature stress.J Exp Bot, 65(2): 655-671. |
19 | Liu Y H, Cao J S, Li G J, Wu X H, Wang B G, Xu P, Hu T T, Lu Z F, Patrick J W, Ruan Y L.2012. Genotypic differences in pod wall and seed growth relate to invertase activities and assimilate transport pathways in asparagus bean.Ann Bot, 109: 1277-1284. |
20 | Loomis W E, Shull C A.1937. Methods in Plant Physiology. Mund W. Sinnot. Mc Graw-Hill Publication in Bbotanical Science: 290. |
21 | Lowry O H, Rosebrough N J, Farr A L, Randall R J.1951. Protein measurement with the folin phenol reagent.J Biol Chem, 193(1): 265-275. |
22 | Meena R K, Verulkar S B, Chandel G.2012. Nutrient characters analysis in rice genotypes under different environmental conditions.Bull Environ Pharmacol Life Sci, 1: 61-64. |
23 | Nelson N.1944. A photometric adaptation of the Somogyi method for the determination of glucose.J Biol Chem, 153: 375-380. |
24 | Parvaiz A, Satyawati S.2008. Salt stress and phyto-biochemical responses of plants: A review. Plant Soil Environ, 54(3): 89-99. |
25 | Patel D P, Das A, Munda G C, Ghosh P K, Bordoloi J S, Kumar M.2010. Evaluation of yield and physiological attributes of high yielding rice varieties under aerobic and flood irrigated management practices in mid-hills ecosystem.Agric Water Manage, 97(9): 1269-1276. |
26 | Pyngrope S, Kumari B, Dubey R S.2013. Oxidative stress, protein carbonylation, proteolysis and antioxidative defense system as a model for depicting water deficit tolerance in indica rice seedlings.Plant Growth Regul, 69(2): 149-165. |
27 | Reguera M, Peleg Z, Abdel-Tawab Y M, Tumimbang E B, Delatorre C A, Blumwald E.2013. Stress-induced cytokinin synthesis increases drought tolerance through the coordinated regulation of carbon and nitrogen assimilation in rice.Plant Physiol, 163(4): 1609-1622. |
28 | Roe J H.1934. A colorimetric method for the determination of fructose in blood and urine.J Biol Chem, 107: 15-22. |
29 | Ruan Y L, Jin Y, Yang Y J, Li G J, Boyer J S.2010. Sugar input, metabolism, and signaling mediated by invertase: Roles in development, yield potential, and response to drought and heat.Mol Plant, 3(6): 942-955. |
30 | Ruan Y L.2014. Sucrose metabolism: Gateway to diverse carbon use and sugar signaling.Annu Rev Plant Biol, 65: 33-67. |
31 | Saeedipour S.2011. Effect of drought at the post-flowering stage on remobilization of carbon reserves in two wheat cultivars differing in senescence properties.Afr J Biotech, 10(18): 3549-3557. |
32 | Schaffer A A, Rylski L, Fogelman M.1989. Carbohydrate content and sucrose metabolism in developing Solanum muricatum fruits.Phytochem, 28(3): 737-739. |
33 | Singh S, Asthir B, Bains N S.2008. High temperature tolerance in relation to carbohydrate metabolism in barley.Ecol Environ Cons, 14: 55-59. |
34 | Singh N, Kaur R, Sharma N, Mahajan G, Bharaj T S.2012. Changes in yield and grain quality characteristics of irrigated rice (Oryza sativa) genotypes under aerobic conditions.Ind J Agric Sci, 82: 589-595. |
35 | Tang R S, Zheng J C, Jin Z Q, Zhang D D, Huang Y H, Chen L G.2008. Possible correlation between high temperature-induced floret sterility and endogenous levels of IAA, GAs and ABA in rice (Oryza sativa L.).Plant Growth Regul, 54(1): 37-43. |
36 | Tang T, Xie H, Wang Y X, Lu B, Liang J S.2009. The effect of sucrose and abscisic acid interaction on sucrose synthase and its relationship of grain filling of rice (Oryza sativa L.).J Exp Bot, 60(9): 2641-2652. |
37 | Tuong T P, Bouman B A M.2003. Rice production in water scarce environments. In: Kijne J W, Barker R, Molden D J. Water Productivity in Agriculture: Limits and Opportunities, for Improvement. Colombo, Sri Lanka: International Water Management Institute: 53-67. |
38 | Vanitha K, Mohandass S.2014. Drip fertigation could improve source-sink relationship of aerobic rice (Oryza sativa L.).Afr J Agric Res, 9(2): 294-301. |
39 | Winder T L, Sun J D, Okita T W, Edwards G E.1998. Evidence for the occurrence of feedback inhibition of photosynthesis in rice.Plant Cell Physiol, 39(8): 813-820. |
40 | Xue G P, Mclntyre C L, Jenkins C L D, Glassop D, van Herwaarden A F, Shorter R.2008. Molecular dissection of variation in carbohydrate metabolism related to water-soluble carbohydrate accumulation in stem of wheat.Plant Physiol, 146: 441-454. |
41 | Yang J C, Zhang J H, Wang Z Q, Zhu Q S, Liu L J.2003. Activities of enzymes involved in source-to-starch metabolism in rice grains subjected to water stress during filling.Field Crops Res, 81(1): 69-81. |
42 | Yoshida S, Forno D A, Cock J H, Gomez K A.1976. Laboratory Manual for Physiological Studies of Rice. Los Banos, the Philippines: International Rice research Institute: 46-49. |
43 | Zhao D L, Bastiaans L, Atlin G N, Spiertz J H J.2007. Interaction of genotype × management on vegetative growth and weed suppression of aerobic rice.Field Crops Res, 100: 327-340. |
[1] | LI Qianlong, FENG Qi, WANG Heqin, KANG Yunhai, ZHANG Conghe, DU Ming, ZHANG Yunhu, WANG Hui, CHEN Jinjie, HAN Bin, FANG Yu, WANG Ahong. Genome-Wide Dissection of Quan 9311A Breeding Process and Application Advantages [J]. Rice Science, 2023, 30(6): 7-. |
[2] | JI Dongling, XIAO Wenhui, SUN Zhiwei, LIU Lijun, GU Junfei, ZHANG Hao, Tom Matthew HARRISON, LIU Ke, WANG Zhiqin, WANG Weilu, YANG Jianchang. Translocation and Distribution of Carbon-Nitrogen in Relation to Rice Yield and Grain Quality as Affected by High Temperature at Early Panicle Initiation Stage [J]. Rice Science, 2023, 30(6): 12-. |
[3] | Prathap V, Suresh KUMAR, Nand Lal MEENA, Chirag MAHESHWARI, Monika DALAL, Aruna TYAGI. Phosphorus Starvation Tolerance in Rice Through a Combined Physiological, Biochemical and Proteome Analysis [J]. Rice Science, 2023, 30(6): 8-. |
[4] | Serena REGGI, Elisabetta ONELLI, Alessandra MOSCATELLI, Nadia STROPPA, Matteo Dell’ANNO, Kiril PERFANOV, Luciana ROSSI. Seed-Specific Expression of Apolipoprotein A-IMilano Dimer in Rice Engineered Lines [J]. Rice Science, 2023, 30(6): 6-. |
[5] | Sundus ZAFAR, XU Jianlong. Recent Advances to Enhance Nutritional Quality of Rice [J]. Rice Science, 2023, 30(6): 4-. |
[6] | Kankunlanach KHAMPUANG, Nanthana CHAIWONG, Atilla YAZICI, Baris DEMIRER, Ismail CAKMAK, Chanakan PROM-U-THAI. Effect of Sulfur Fertilization on Productivity and Grain Zinc Yield of Rice Grown under Low and Adequate Soil Zinc Applications [J]. Rice Science, 2023, 30(6): 9-. |
[7] | FAN Fengfeng, CAI Meng, LUO Xiong, LIU Manman, YUAN Huanran, CHENG Mingxing, Ayaz AHMAD, LI Nengwu, LI Shaoqing. Novel QTLs from Wild Rice Oryza longistaminata Confer Rice Strong Tolerance to High Temperature at Seedling Stage [J]. Rice Science, 2023, 30(6): 14-. |
[8] | LIN Shaodan, YAO Yue, LI Jiayi, LI Xiaobin, MA Jie, WENG Haiyong, CHENG Zuxin, YE Dapeng. Application of UAV-Based Imaging and Deep Learning in Assessment of Rice Blast Resistance [J]. Rice Science, 2023, 30(6): 10-. |
[9] | Md. Forshed DEWAN, Md. AHIDUZZAMAN, Md. Nahidul ISLAM, Habibul Bari SHOZIB. Potential Benefits of Bioactive Compounds of Traditional Rice Grown in South and South-East Asia: A Review [J]. Rice Science, 2023, 30(6): 5-. |
[10] | Raja CHAKRABORTY, Pratap KALITA, Saikat SEN. Phenolic Profile, Antioxidant, Antihyperlipidemic and Cardiac Risk Preventive Effect of Chakhao Poireiton (A Pigmented Black Rice) in High-Fat High-Sugar induced Rats [J]. Rice Science, 2023, 30(6): 11-. |
[11] | Nazaratul Ashifa Abdullah Salim, Norlida Mat Daud, Julieta Griboff, Abdul Rahim Harun. Elemental Assessments in Paddy Soil for Geographical Traceability of Rice from Peninsular Malaysia [J]. Rice Science, 2023, 30(5): 486-498. |
[12] | Zhang Guomei, Li Han, Liu Shanshan, Zhou Xuming, Lu Mingyang, Tang Liang, Sun Lihua. Water Extract of Rice False Smut Balls Activates Nrf2/HO-1 and Apoptosis Pathways, Causing Liver Injury [J]. Rice Science, 2023, 30(5): 473-485. |
[13] | Monica Ruffini Castiglione, Stefania Bottega, Carlo Sorce, Carmelina SpanÒ. Effects of Zinc Oxide Particles with Different Sizes on Root Development in Oryza sativa [J]. Rice Science, 2023, 30(5): 449-458. |
[14] | Tan Jingyi, Zhang Xiaobo, Shang Huihui, Li Panpan, Wang Zhonghao, Liao Xinwei, Xu Xia, Yang Shihua, Gong Junyi, Wu Jianli. ORYZA SATIVA SPOTTED-LEAF 41 (OsSPL41) Negatively Regulates Plant Immunity in Rice [J]. Rice Science, 2023, 30(5): 426-436. |
[15] | Ammara Latif, Sun Ying, Pu Cuixia, Noman Ali. Rice Curled Its Leaves Either Adaxially or Abaxially to Combat Drought Stress [J]. Rice Science, 2023, 30(5): 405-416. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||