Rice Science ›› 2016, Vol. 23 ›› Issue (3): 111-118.DOI: 10.1016/j.rsci.2016.01.007
• Orginal Article • Next Articles
Zhou-qi Cui1, Bo Zhu2, Guan-lin Xie1(), Bin Li1, Shi-wen Huang3(
)
Received:
2015-12-08
Accepted:
2016-01-13
Online:
2016-06-08
Published:
2016-02-04
Zhou-qi Cui, Bo Zhu, Guan-lin Xie, Bin Li, Shi-wen Huang. Research Status and Prospect of Burkholderia glumae, the Pathogen Causing Bacterial Panicle Blight[J]. Rice Science, 2016, 23(3): 111-118.
Add to citation manager EndNote|Ris|BibTeX
[1] | An J H, Goo E, Kim H, Seo Y S, Hwang I.2014. Bacterial quorum sensing and metabolic slowing in a cooperative population.Proc Natl Acad Sci USA, 111: 14912-14917. |
[2] | Barnard A M L, Bowden S D, Burr T, Coulthurst S J, Monson R E, Salmond G P C.2007. Quorum sensing, virulence and secondary metabolite production in plant soft-rotting bacteria.Philos Trans R Soc B, 362: 1165-1183. |
[3] | Cha K H, Lee Y H, Ko S J, Park S K, Park I J.2001. Influence of weather condition at heading period on the development of rice bacterial grain rot caused by Burkholderia glumae.Res Plant Dis, 7: 150-154. |
[4] | Cho H S, Park S Y, Ryu C M, Kim J F, Kim J G, Park S H.2007. Interference of quorum sensing and virulence of the rice pathogen Burkholderia glumae by an engineered endophytic bacterium.Fems Microbiol Ecol, 60: 14-23. |
[5] | Chun H, Choi O, Goo E, Kim N, Kim H, Kang Y, Kim J, Moon J S, Hwang I.2009. The quorum sensing-dependent gene katG of Burkholderia glumae is important for protection from visible light.J Bacteriol, 191: 4152-4157. |
[6] | Costa S G V A O, Déziel E, Lépine F.2011. Characterization of rhamnolipid production by Burkholderia glumae.Lett Appl Microbiol, 53(6): 620-627. |
[7] | Cui Z Q, Ibrahim M, Yang C L, Fang Y, Annam H, Li B, Wang Y L, Xie G L, Sun G C.2014. Susceptibility of opportunistic Burkholderia glumae to copper surfaces following wet or dry surface contact.Molecules, 19(7): 9975-9985. |
[8] | Davey M E, O’Toole G A.2000. Microbial biofilms: From ecology to molecular genetics.Microbiol Mol Biol Rev, 64(4): 847-867. |
[9] | Degrassi G, Devescovi G, Kim J, Hwang I, Venturi V.2008. Identification, characterization and regulation of two secreted polygalacturonases of the emerging rice pathogen Burkholderia glumae.Fems Microbiol Ecol, 65(2): 251-262. |
[10] | Devescovi G, Bigirimana J, Degrassi G, Cabrio L, LiPuma J J, Kim J, Hwang I, Venturi V.2007. Involvement of a quorum- sensing-regulated lipase secreted by a clinical isolate of Burkholderia glumae in severe disease symptoms in rice.Appl Environ Microb, 73(15): 4950-4958. |
[11] | El Khattabi M, van Gelder P, Bitter W, Tommassen J.2000. Role of the lipase-specific foldase of Burkholderia glumae as a steric chaperone.J Biol Chem, 275: 26885-26891. |
[12] | Fang Y, Xu L H, Tian W X, Huai Y, Yu S H, Lou M M, Xie G L.2009. Real-time fluorescence PCR method for detection of Burkholderia glumae from rice.Rice Sci, 16(2): 157-160. |
[13] | Fory P A, Triplett L, Ballen C, Abello J F, Duitama J, Aricapa M G, Prado G A, Correa F, Hamilton J, Leach J E, Tohme J, Mosquera G M.2014. Comparative analysis of two emerging rice seed bacterial pathogens.Phytopathology, 104(5): 436-444. |
[14] | Francis F, Kim J, Ramaraj T, Farmer A, Rush M C, Ham J H.2013. Comparative genomic analysis of two Burkholderia glumae strains from different geographic origins reveals a high degree of plasticity in genome structure associated with genomic islands.Mol Genet Genom, 288: 195-203. |
[15] | Frenken L G J, Bos J W, Visser C, Muller W, Tommassen J, Verrips C T.1993. An accessory gene, lipB, required for the production of active Pseudomonas-glumae lipase.Mol Microbiol, 9(3): 579-589. |
[16] | Goo E, An J H, Kang Y, Hwang I.2015. Control of bacterial metabolism by quorum sensing.Trends Microbiol, 23(9): 567-576. |
[17] | Ham J H, Groth D E.2011. Bacterial Panicle Blight, an Emerging Rice Disease. Baton Rouge, Louisiana, USA: Louisiana State University Agricultural Center: 16-17. |
[18] | Ham J H, Melanson R A, Rush M C.2011. Burkholderia glumae: Next major pathogen of rice?Mol Plant Pathol, 12(4): 329-339. |
[19] | Jang M S, Goo E, An J H, Kim J, Hwang I.2014. Quorum sensing controls flagellar morphogenesis in Burkholderia glumae.PLoS One, 9: e84831. |
[20] | Jeong Y, Kim J, Kim S, Kang Y, Nagamatsu T, Hwang I.2003. Toxoflavin produced by Burkholderia glumae causing rice grain rot is responsible for inducing bacterial wilt in many field crops.Plant Dis, 87: 890-895. |
[21] | Jung B, Lee S, Ha J, Park J C, Han S S, Hwang I, Lee Y W, Lee J.2013. Development of a selective medium for the fungal pathogen Fusarium graminearum using toxoflavin produced by the bacterial pathogen Burkholderia glumae.Plant Pathol J, 29(4): 446-450. |
[22] | Kang Y, Kim J, Kim S, Kim H, Lim J Y, Kim M, Kwak J, Moon J S, Hwang I.2008. Proteomic analysis of the proteins regulated by HrpB from the plant pathogenic bacterium Burkholderia glumae.Proteomics, 8(1): 106-121. |
[23] | Karki H S, Ham J H.2014. The roles of the shikimate pathway genes, aroA and aroB, in virulence, growth and UV tolerance of Burkholderia glumae strain 411gr-6.Mol Plant Pathol, 15(9): 940-947. |
[24] | Karki H S, Shrestha B K, Han J W, Groth D E, Barphagha I K, Rush M C, Melanson R A, Kim B S, Han J H.2012. Diversities in virulence, antifungal activity, pigmentation and DNA fingerprint among strains of Burkholderia glumae. PLoS One, 7: e45376. |
[25] | Kim B K, Cho M S, Kim M H, Choi H J, Kang M J, Shim H S.2012. Rapid and specific detection of Burkholderia glumae in rice seed by real-time Bio-PCR using species-specific primers based on an rhs family gene.Plant Dis, 96(4): 577-580. |
[26] | Kim J, Kim J G, Kang Y, Jang J Y, Jog G J, Lim J Y, Kim S, Suga H, Nagamatsu T, Hwang I.2004. Quorum sensing and the LysR-type transcriptional activator ToxR regulate toxoflavin biosynthesis and transport in Burkholderia glumae.Mol Microbiol, 54(4): 921-934. |
[27] | Kim J, Kang Y, Choi O, Jeong Y, Jeong J E, Lim J Y, Kim M, Moon J S, Suga H, Hwang I.2007. Regulation of polar flagellum genes is mediated by quorum sensing and FlhDC in Burkholderia glumae.Mol Microbiol, 64(1): 165-179. |
[28] | Kim J, Kang Y, Kim J G, Choi O, Hwang I.2010. Occurrence of Burkholderia glumae on rice and field crops in Korea.Plant Pathol J, 26(3): 271-272. |
[29] | Kim S, Park J, Lee J, Shin D, Park D S, Lim J S, Choi I Y, Seo Y S.2014. Understanding pathogenic Burkholderia glumae metabolic and signaling pathways within rice tissues through in vivo transcriptome analyses.Gene, 547(1): 77-85. |
[30] | Li W, Mo J, Peng Z, Jiang J L, Zhu J G.2010. Using TaqMan probe for the detection of Burkholderia glumae.Plant Quar, 24: 32-34. |
[31] | Lim J, Lee T H, Nahm B H, Choi Y D, Kim M, Hwang I.2009. Complete genome sequence of Burkholderia glumae BGR1.J Bacteriol, 191(11): 3758-3759. |
[32] | Luo J Y, Xie G L, Li B Q, Xu L H.2007. First report of Burkholderia glumae isolated from symptomless rice seeds in China.Plant Dis, 91(10): 1363. |
[33] | Luo J Y, Xu F S, Wang P, Xu L H, Xie G L.2008. Isolation and identification of the causal organism of bacterial grain rot from rice.Chin J Rice Sci, 22(1): 82-86. (in Chinese with English abstract) |
[34] | Maeda Y, Kiba A, Ohnish K, Hikichi Y.2004. New method to detect oxolinic acid-resistant Burkholderia glumae infecting rice seeds using a mismatch amplification mutation assay polymerase chain reaction.J General Plant Pathol, 70(4): 215-217. |
[35] | Maeda Y, Shinohara H, Kiba A, Ohnishi K, Furuya N, Kawamura Y, Ezaki T, Vandamme P, Tsushima S, Hikichi Y.2006. Phylogenetic study and multiplex PCR-based detection of Burkholderia plantarii, Burkholderia glumae and Burkholderia gladioli using gyrB and rpoD sequences.Int J Syst Evol Microb, 56: 1031-1038. |
[36] | Magbanua Z V, Arick II M, Buza T, Hsu C Y, Showmaker K C, Chouvarine P, Deng P, Peterson D G, Lu S.2014. Transcriptomic dissection of the rice: Burkholderia glumae interaction.BMC Genom, 15: 755. |
[37] | Matsuda I, Sato Z.1988. Relation between pathogenicity and pigment productivity in the causal agent of bacterial grain rot of rice.Ann Phytopathol Soc Jpn, 54: 378. (in Japanese with English abstract) |
[38] | Mizobuchi R, Sato H, Fukuoka S, Tsushima S, Yano M.2015. Fine mapping of RBG2, a quantitative trait locus for resistance to Burkholderia glumae, on rice chromosome 1.Mol Breeding, 35: 15. |
[39] | Mondal K K, Mani C, Verma G.2015. Emergence of bacterial panicle blight caused by Burkholderia glumae in North India.Plant Dis, 99(9): 1268. |
[40] | Nandakumar R, Rush M, Shahjahan A, O’Reilly K, Groth D.2005. Bacterial panicle blight of rice in the southern United States caused by Burkholderia glumae and B. gladioli.Phytopathology, 95: S73. |
[41] | Nandakumar R, Rush M C, Correa F.2007. Association of Burkholderia glumae and B. gladioli with panicle blight symptoms on rice in Panama. Plant Dis, 91(6): 767. |
[42] | Nandakumar R, Shahjahan A K M, Yuan X L, Dickstein E R, Groth D E, Clark C A, Cartwright R D, Rush M C.2009. Burkholderia glumae and B. gladioli cause bacterial panicle blight in rice in the southern United States.Plant Dis, 93(9): 896-905. |
[43] | Quesada-González A, García-Santamaría F.2014. Burkholderia glumae in the rice crop in Costa Rica.Agron Mesoam, 25(2): 371-381. |
[44] | Riera-Ruiz C, Vargas J, Cedeno C, Quirola P, Escobar M, Cevallos-Cevallos J M, Ratti M, Peralta E L.2014. First report of Burkholderia glumae causing bacterial panicle blight on rice in Ecuador.Plant Dis, 98: 988-989. |
[45] | Saddler G S.1994. IMI descriptions of fungi and bacteria, Set 122, Nos 1211-1220.Mycopathologia, 128(1): 59-60. |
[46] | Sayler R J, Cartwright R D, Yang Y N.2006. Genetic characterization and real-time PCR detection of Burkholderia glumae, a newly emerging bacterial pathogen of rice in the United States.Plant Dis, 90(5): 603-610. |
[47] | Seo Y S, Lim J Y, Park J, Kim S, Lee H H, Cheong H, Kim S M, Moon J S, Hwang I.2015. Comparative genome analysis of rice-pathogenic Burkholderia provides insight into capacity to adapt to different environments and hosts.BMC Genom, 16: 349. |
[48] | Shingu Y, Yoneyama K.2004. Eessential regulator gene toxR for toxoflavin biosynthesis of Burkholderia glumae.J General Plant Pathol, 70(2): 108-114. |
[49] | Suzuki F, Sawada H, Azegami K, Tsuchiya K.2004. Molecular characterization of the tox operon involved in toxoflavin biosynthesis of Burkholderia glumae.J General Plant Pathol, 70(2): 97-107. |
[50] | Trung H M, Van N V, Vien N V, Lam D T, Lien M.1993. Occurrence of rice grain rot disease in Vietnam.Int Rice Res Notes, 18(3): 30. |
[51] | Tsushima S1996. Epidemiology of bacterial grain rot of rice caused by Pseudomonas glumae.Jpn Agric Res Quart, 30: 85-89. |
[52] | Voget S, Knapp A, Poehlein A, Vollstedt C, Streit W, Daniel R, Jaeger K E.2015. Complete genome sequence of the lipase producing strain Burkholderia glumae PG1. J Biotechnol, 204: 3-4. |
[53] | Wang C J, Luo H Y, Chen D Q.2006. The occurrence and identification of Burkholderia glumae in China.Moderniz Agar, 4: 6. (in Chinese) |
[54] | Weinberg J B, Alexander B D, Majure J M, Williams L W, Kim J Y, Vandamme P, LiPuma J J.2007. Burkholderia glumae infection in an infant with chronic granulomatous disease.J Clin Microbiol, 45(2): 662-665. |
[55] | Xie G L, Luo J Y, Li B.2003. Bacterial panicle blight: A rice dangerous diseases and its identification. Plant Prot, 29: 47-49. (in Chinese with English abstract) |
[56] | Yabuuchi E, Kosako Y, Oyaizu H, Yano I, Hotta H, Hashimoto Y, Ezaki T, Arakawa M.1992. Proposal of Burkholderia gen. nov. and transfer of seven species of the genus Pseudomonas homology group II to the new genus, with the type species Burkholderia cepacia (Palleroni and Holmes 1981) comb. nov.Microbiol Immunol, 36(12): 1251-1275. |
[57] | Zhou X G.2014. First report of bacterial panicle blight of rice caused by Burkholderia glumae in south Africa.Plant Dis, 98(4): 566. |
[58] | Zhu J G, Jin M O, Zhu S F, Zhao W J, Peng Z, Liu H X, Zhong W Y.2010. Duplex PCR-DHPLC for detection of Burkholderia glumae.Acta Phytopathol Sin, 40(5): 449-455. (in Chinese with English abstract) |
[59] | Zughaier S M, Ryley H C, Jackson S K.1999. A melanin pigment purified from an epidemic strain of Burkholderia cepacia attenuates monocyte respiratory burst activity by scavenging superoxide anion.Infect Immun, 67(2): 908-913. |
[1] | Prathap V, Suresh KUMAR, Nand Lal MEENA, Chirag MAHESHWARI, Monika DALAL, Aruna TYAGI. Phosphorus Starvation Tolerance in Rice Through a Combined Physiological, Biochemical and Proteome Analysis [J]. Rice Science, 2023, 30(6): 8-. |
[2] | Serena REGGI, Elisabetta ONELLI, Alessandra MOSCATELLI, Nadia STROPPA, Matteo Dell’ANNO, Kiril PERFANOV, Luciana ROSSI. Seed-Specific Expression of Apolipoprotein A-IMilano Dimer in Rice Engineered Lines [J]. Rice Science, 2023, 30(6): 6-. |
[3] | Sundus ZAFAR, XU Jianlong. Recent Advances to Enhance Nutritional Quality of Rice [J]. Rice Science, 2023, 30(6): 4-. |
[4] | Kankunlanach KHAMPUANG, Nanthana CHAIWONG, Atilla YAZICI, Baris DEMIRER, Ismail CAKMAK, Chanakan PROM-U-THAI. Effect of Sulfur Fertilization on Productivity and Grain Zinc Yield of Rice Grown under Low and Adequate Soil Zinc Applications [J]. Rice Science, 2023, 30(6): 9-. |
[5] | FAN Fengfeng, CAI Meng, LUO Xiong, LIU Manman, YUAN Huanran, CHENG Mingxing, Ayaz AHMAD, LI Nengwu, LI Shaoqing. Novel QTLs from Wild Rice Oryza longistaminata Confer Rice Strong Tolerance to High Temperature at Seedling Stage [J]. Rice Science, 2023, 30(6): 14-. |
[6] | LIN Shaodan, YAO Yue, LI Jiayi, LI Xiaobin, MA Jie, WENG Haiyong, CHENG Zuxin, YE Dapeng. Application of UAV-Based Imaging and Deep Learning in Assessment of Rice Blast Resistance [J]. Rice Science, 2023, 30(6): 10-. |
[7] | Md. Forshed DEWAN, Md. AHIDUZZAMAN, Md. Nahidul ISLAM, Habibul Bari SHOZIB. Potential Benefits of Bioactive Compounds of Traditional Rice Grown in South and South-East Asia: A Review [J]. Rice Science, 2023, 30(6): 5-. |
[8] | Raja CHAKRABORTY, Pratap KALITA, Saikat SEN. Phenolic Profile, Antioxidant, Antihyperlipidemic and Cardiac Risk Preventive Effect of Chakhao Poireiton (A Pigmented Black Rice) in High-Fat High-Sugar induced Rats [J]. Rice Science, 2023, 30(6): 11-. |
[9] | LI Qianlong, FENG Qi, WANG Heqin, KANG Yunhai, ZHANG Conghe, DU Ming, ZHANG Yunhu, WANG Hui, CHEN Jinjie, HAN Bin, FANG Yu, WANG Ahong. Genome-Wide Dissection of Quan 9311A Breeding Process and Application Advantages [J]. Rice Science, 2023, 30(6): 7-. |
[10] | JI Dongling, XIAO Wenhui, SUN Zhiwei, LIU Lijun, GU Junfei, ZHANG Hao, Tom Matthew HARRISON, LIU Ke, WANG Zhiqin, WANG Weilu, YANG Jianchang. Translocation and Distribution of Carbon-Nitrogen in Relation to Rice Yield and Grain Quality as Affected by High Temperature at Early Panicle Initiation Stage [J]. Rice Science, 2023, 30(6): 12-. |
[11] | Nazaratul Ashifa Abdullah Salim, Norlida Mat Daud, Julieta Griboff, Abdul Rahim Harun. Elemental Assessments in Paddy Soil for Geographical Traceability of Rice from Peninsular Malaysia [J]. Rice Science, 2023, 30(5): 486-498. |
[12] | Ammara Latif, Sun Ying, Pu Cuixia, Noman Ali. Rice Curled Its Leaves Either Adaxially or Abaxially to Combat Drought Stress [J]. Rice Science, 2023, 30(5): 405-416. |
[13] | Liu Qiao, Qiu Linlin, Hua Yangguang, Li Jing, Pang Bo, Zhai Yufeng, Wang Dekai. LHD3 Encoding a J-Domain Protein Controls Heading Date in Rice [J]. Rice Science, 2023, 30(5): 437-448. |
[14] | Lu Xuedan, Li Fan, Xiao Yunhua, Wang Feng, Zhang Guilian, Deng Huabing, Tang Wenbang. Grain Shape Genes: Shaping the Future of Rice Breeding [J]. Rice Science, 2023, 30(5): 379-404. |
[15] | Zhang Guomei, Li Han, Liu Shanshan, Zhou Xuming, Lu Mingyang, Tang Liang, Sun Lihua. Water Extract of Rice False Smut Balls Activates Nrf2/HO-1 and Apoptosis Pathways, Causing Liver Injury [J]. Rice Science, 2023, 30(5): 473-485. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||