Rice Science ›› 2025, Vol. 32 ›› Issue (4): 512-524.DOI: 10.1016/j.rsci.2025.02.003
• Research Papers • Previous Articles Next Articles
Li Xinyan1,2, Weng Lüshui1, Xiao Youlun3, Li Jinjiang1, Deng Lihua1, Liu Qing1, Kang Weiwei1, Duan Yaping1, Yang Daji1, Xiao Guoying1,4()
Received:
2024-12-01
Accepted:
2025-02-15
Online:
2025-07-28
Published:
2025-08-06
Contact:
Xiao Guoying
Li Xinyan, Weng Lüshui, Xiao Youlun, Li Jinjiang, Deng Lihua, Liu Qing, Kang Weiwei, Duan Yaping, Yang Daji, Xiao Guoying. Characteristic Analysis of Penta-Resistance Restorer Line for Hybrid Rice[J]. Rice Science, 2025, 32(4): 512-524.
Add to citation manager EndNote|Ris|BibTeX
Fig. 1. PCR detection of resistance genes in B2A1920 and its hybrids. A‒F, PCR of Bar (A), Cry2Aa (B), Xa23 (C), Pi2 (D), Bph14 (E), and Bph15 (F) genes in B2A1920 and its hybrids. M, DL2000 DNA Marker; Lanes 1‒21, B2A68, B2A1920, R43-02, Gui A, Gui A × B2A1920, Gui A × R43-02, Quan 9311A, Quan 9311A × B2A1920, Quan 9311A × R43-02, Yexiang A, Yexiang A × B2A1920, Yexiang A × R43-02, Xianglong A, Xianglong A × B2A1920, Xianglong A × R43-02, Tiantai A, Tiantai A × B2A1920, Tiantai A × R43-02, Shen 9A, Shen 9A × B2A1920, and Shen 9A × R43-02, respectively. ‘±’, ‘+’, and ‘-’ in F represent heterozygous control (23F201), positive, and negative bands, respectively.
Fig. 2. Plant height of rice at the seedling stage after spraying glufosinate for four weeks. A‒H, Plant height of B2A68 and D68 (A), B2A1920 and R43-02 (B), Gui A × B2A1920 and Gui A × R43-02 (C), Quan 9311A × B2A1920 and Quan 9311A × R43-02 (D), Yexiang A × B2A1920 and Yexiang A × R43-02 (E), Xianglong A × B2A1920 and Xianglong A × R43-02 (F), Tiantai A × B2A1920 and Tiantai A × R43-02 (G), and Shen 9A × B2A1920 and Shen 9A × R43-02 (H) after spraying glufosinate for four weeks. 1×, Plants treated with the median recommended dose (MRD, 600 g/hm2) glufosinate; 2×, Plants treated with 2-fold MRD (1 200 g/hm2) glufosinate; 4×, Plants treated with 4-fold MRD (2 400 g/hm2) glufosinate. Data are presented as mean ± SD (n = 5) and processed by two-way analysis of variance, with the following significant probabilities: *, P < 0.05; **, P < 0.01; ***, P < 0.001; and ****, P < 0.0001.
Fig. 3. Corrected mortality of rice leaf roller fed on leaves of B2A1920 and its hybrids. Data are represented as mean ± SD (n = 3) and processed by one-way analysis of variance with the following significance probabilities: ****, P < 0.0001.
Fig. 4. Resistances of B2A1920 and its hybrids to bacterial blight. FuJ and YN24 are strains of Xanthomonas oryzae pv. oryzae. Tianyouhuazhan was used as a susceptible control.
Rice material | Strain of Magnaporthe oryzae | |||
---|---|---|---|---|
23TJ43- 1-6 | 23WN46- 3-5 | 23FH34- 3-2 | 23TJ34- 1-33 | |
Lijiangxintuanheigu (CK) | S | S | S | S |
Tetep (CK) | R | R | R | R |
B2A1920 | R | R | R | R |
R43-02 | R | R | R | R |
Gui A | S | S | S | S |
Gui A × B2A1920 | R | R | R | R |
Gui A × R43-02 | R | R | R | R |
Quan 9311A | S | R | S | S |
Quan 9311A × B2A1920 | R | R | R | R |
Quan 9311A × R43-02 | R | R | R | R |
Yexiang A | R | R | R | R |
Yexiang A × B2A1920 | R | R | R | R |
Yexiang A × R43-02 | R | R | R | R |
Xianglong A | S | S | S | S |
Xianglong A × B2A1920 | S | R | R | R |
Xianglong A × R43-02 | R | R | R | R |
Tiantai A | R | R | R | R |
Tiantai A × B2A1920 | R | R | R | R |
Tiantai A × R43-02 | R | R | R | R |
Shen 9A | R | R | R | R |
Shen 9A × B2A1920 | R | R | R | R |
Shen 9A × R43-02 | R | R | R | R |
Table 1. Infection response to four strains of blast fungus.
Rice material | Strain of Magnaporthe oryzae | |||
---|---|---|---|---|
23TJ43- 1-6 | 23WN46- 3-5 | 23FH34- 3-2 | 23TJ34- 1-33 | |
Lijiangxintuanheigu (CK) | S | S | S | S |
Tetep (CK) | R | R | R | R |
B2A1920 | R | R | R | R |
R43-02 | R | R | R | R |
Gui A | S | S | S | S |
Gui A × B2A1920 | R | R | R | R |
Gui A × R43-02 | R | R | R | R |
Quan 9311A | S | R | S | S |
Quan 9311A × B2A1920 | R | R | R | R |
Quan 9311A × R43-02 | R | R | R | R |
Yexiang A | R | R | R | R |
Yexiang A × B2A1920 | R | R | R | R |
Yexiang A × R43-02 | R | R | R | R |
Xianglong A | S | S | S | S |
Xianglong A × B2A1920 | S | R | R | R |
Xianglong A × R43-02 | R | R | R | R |
Tiantai A | R | R | R | R |
Tiantai A × B2A1920 | R | R | R | R |
Tiantai A × R43-02 | R | R | R | R |
Shen 9A | R | R | R | R |
Shen 9A × B2A1920 | R | R | R | R |
Shen 9A × R43-02 | R | R | R | R |
Rice material | Resistance score | Resistance level |
---|---|---|
TN1 (CK) | 9.0 ± 0.0 | HS |
R43-02 | 0.0 ± 0.0 | I |
B2A1920 | 0.0 ± 0.0 | I |
B2A68 | 9.0 ± 0.0 | HS |
Gui A | 7.8 ± 0.3 | S |
Gui A × R43-02 | 0.4 ± 0.1 | HR |
Gui A × B2A1920 | 0.0 ± 0.0 | I |
Quan 9311A | 9.0 ± 0.0 | HS |
Quan 9311A × R43-02 | 0.5 ± 0.0 | HR |
Quan 9311A × B2A1920 | 0.3 ± 0.1 | HR |
Yexiang A | 2.6 ± 0.3 | R |
Yexiang A × R43-02 | 2.2 ± 0.4 | R |
Yexiang A × B2A1920 | 0.8 ± 0.1 | HR |
Xianglong A | 9.0 ± 0.0 | HS |
Xianglong A × R43-02 | 0.3 ± 0.0 | HR |
Xianglong A × B2A1920 | 0.1 ± 0.0 | HR |
Tiantai A | 9.0 ± 0.0 | HS |
Tiantai A × R43-02 | 0.0 ± 0.0 | I |
Tiantai A × B2A1920 | 1.7 ± 0.1 | HR |
Shen 9A | 2.8 ± 0.0 | R |
Shen 9A × R43-02 | 0.1 ± 0.0 | HR |
Shen 9A × B2A1920 | 0.0 ± 0.0 | I |
Table 2. Brown planthopper (BPH) resistance scores and levels.
Rice material | Resistance score | Resistance level |
---|---|---|
TN1 (CK) | 9.0 ± 0.0 | HS |
R43-02 | 0.0 ± 0.0 | I |
B2A1920 | 0.0 ± 0.0 | I |
B2A68 | 9.0 ± 0.0 | HS |
Gui A | 7.8 ± 0.3 | S |
Gui A × R43-02 | 0.4 ± 0.1 | HR |
Gui A × B2A1920 | 0.0 ± 0.0 | I |
Quan 9311A | 9.0 ± 0.0 | HS |
Quan 9311A × R43-02 | 0.5 ± 0.0 | HR |
Quan 9311A × B2A1920 | 0.3 ± 0.1 | HR |
Yexiang A | 2.6 ± 0.3 | R |
Yexiang A × R43-02 | 2.2 ± 0.4 | R |
Yexiang A × B2A1920 | 0.8 ± 0.1 | HR |
Xianglong A | 9.0 ± 0.0 | HS |
Xianglong A × R43-02 | 0.3 ± 0.0 | HR |
Xianglong A × B2A1920 | 0.1 ± 0.0 | HR |
Tiantai A | 9.0 ± 0.0 | HS |
Tiantai A × R43-02 | 0.0 ± 0.0 | I |
Tiantai A × B2A1920 | 1.7 ± 0.1 | HR |
Shen 9A | 2.8 ± 0.0 | R |
Shen 9A × R43-02 | 0.1 ± 0.0 | HR |
Shen 9A × B2A1920 | 0.0 ± 0.0 | I |
Fig. 5. Agronomic traits of B2A1920 and R43-02. A‒G, Plant height (A), panicle length (B), number of tillers per plant (C), number of spikelets per plant (D), seed-setting rate (E), 1000-grain weight (F), and yield per plant (G) of rice lines B2A1920 and R43-02 grown at Changsha, Hunan Province, China. H‒N, Plant height (H), panicle length (I), number of tillers per plant (J), number of spikelets per plant (K), seed-setting rate (L), 1000-grain weight (M), and yield per plant (N) of rice lines B2A1920 and R43-02 grown at Lingshui, Hainan Province, China. Data are represented as mean ± SD (n = 9) and processed by two-way analysis of variance with the following significant probabilities: *, P < 0.05; **, P < 0.01; ***, P < 0.001; and ****, P < 0.0001.
Fig. 6. Agronomic traits of B2A1920 and R43-02 hybrids. A‒E, Number of tillers per plant (A), number of spikelets per plant (B), seed-setting rate (C), 1000-grain weight (D), and yield per plant (E) of B2A1920 and R43-02 hybrids grown at Changsha, Hunan Province, China. F‒J, Number of tillers per plant (F), number of spikelets per plant (G), seed-setting rate (H), 1000-grain weight (I), and yield per plant (J) B2A1920 and R43-02 hybrids grown at Lingshui, Hainan Province, China. CM, Conventional management; IFM, Insecticide-free management. Data are represented as mean ± SD (n = 54) and processed by two-way analysis of variance with the following significant probabilities: *, P < 0.05; and ***, P < 0.001.
Treatment | Hybrid | Growth duration (d) | No. of spikelets per plant | Seed-setting rate (%) | 1000-grain weight (g) | Yield per plant (g) | Daily yield (kg/hm2) |
---|---|---|---|---|---|---|---|
Changsha, Hunan Province, China | |||||||
CMa | Yueyou 9113 (CK) | 111 | 2 009.0 ± 242.5 a | 69.26 ± 1.07 ab | 23.00 ± 0.18 b | 32.19 ± 4.46 a | 65.25 ± 9.04 a |
Gui A × B2A1920 | 111 | 2 010.3 ± 95.4 a | 74.46 ± 1.28 a | 20.36 ± 1.20 c | 30.68 ± 2.69 a | 62.19 ± 5.45 a | |
Gui A × R43-02 | 111 | 2 039.4 ± 193.0 a | 68.44 ± 2.54 ab | 20.27 ± 0.29 c | 28.20 ± 3.04 a | 57.16 ± 6.16 a | |
Xianglong A × R43-02 | 112 | 1 708.8 ± 27.9 a | 64.17 ± 4.78 b | 25.36 ± 0.25 a | 27.48 ± 2.18 a | 55.21 ± 4.37 a | |
IFMa | Yueyou 9113 (CK) | 111 | 1 891.0 ± 252.5 ab | 68.06 ± 1.20 a | 23.96 ± 0.18 ab | 30.74 ± 3.92 a | 62.31 ± 7.95 a |
Gui A × B2A1920 | 111 | 2 730.8 ± 485.2 a | 74.84 ± 0.62 a | 20.44 ± 1.41 b | 41.74 ± 6.13 a | 84.60 ± 12.42 a | |
Gui A × R43-02 | 111 | 2 041.6 ± 365.7 ab | 69.05 ± 3.27 a | 21.11 ± 2.08 b | 29.46 ± 5.01 a | 59.72 ± 10.15 a | |
Xianglong A × R43-02 | 112 | 1 613.7 ± 225.4 b | 67.05 ± 6.82 a | 28.24 ± 2.33 a | 30.59 ± 3.87 a | 61.45 ± 7.78 a | |
CMb | Tianyouhuazhan (CK) | 114 | 1 997.8 ± 219.7 a | 69.43 ± 1.79 abc | 21.16 ± 0.13 d | 29.31 ± 2.65 a | 57.84 ± 5.22 ab |
Quan 9311A × B2A1920 | 116 | 1 738.3 ± 176.0 a | 67.72 ± 4.26 abc | 27.99 ± 1.91 a | 33.68 ± 6.17 a | 65.33 ± 11.96 ab | |
Quan 9311A × R43-02 | 118 | 1 708.6 ± 345.0 a | 65.13 ± 3.95 bc | 23.68 ± 0.85 bcd | 26.38 ± 6.29 a | 50.30 ± 11.99 ab | |
Yexiang A × B2A1920 | 113 | 1 781.1 ± 321.1 a | 77.09 ± 3.33 a | 23.01 ± 0.45 bcd | 31.77 ± 6.63 a | 63.25 ± 13.20 ab | |
Yexiang A × R43-02 | 120 | 2 093.0 ± 72.1 a | 72.81 ± 1.03 ab | 21.96 ± 0.71 cd | 33.56 ± 0.74 a | 62.92 ± 1.39 ab | |
Tiantai A × B2A1920 | 116 | 1 552.1 ± 41.3 a | 66.44 ± 3.21 abc | 25.28 ± 0.78 abc | 26.19 ± 2.51 a | 50.80 ± 4.87 ab | |
Tiantai A × R43-02 | 122 | 1 536.2 ± 61.1 a | 60.53 ± 3.10 c | 25.24 ± 0.59 abc | 23.18 ± 2.99 a | 42.75 ± 5.51 b | |
Shen 9A × B2A1920 | 116 | 1 647.6 ± 321.8 a | 70.07 ± 4.83 abc | 22.57 ± 1.14 bcd | 25.82 ± 5.17 a | 50.09 ± 10.03 ab | |
Shen 9A × R43-02 | 118 | 2 201.3 ± 253.9 a | 69.49 ± 3.60 abc | 22.71 ± 1.50 bcd | 34.62 ± 3.98 a | 66.02 ± 7.59 ab | |
Xianglong A × B2A1920 | 114 | 1 475.3 ± 88.8 a | 70.09 ± 2.11 abc | 25.78 ± 0.42 ab | 38.62 ± 2.44 a | 76.23 ± 4.81 a | |
IFMb | Tianyouhuazhan (CK) | 114 | 1 896.9 ± 114.6 a | 65.76 ± 4.74 c | 22.16 ± 0.61c | 27.47 ± 2.75 a | 54.21 ± 5.43 a |
Quan 9311A × B2A1920 | 116 | 1 959.7 ± 164.3 a | 78.10 ± 0.82 ab | 26.70 ± 1.54 abc | 40.91 ± 5.06 a | 79.36 ± 9.81 a | |
Quan 9311A × R43-02 | 118 | 1 797.8 ± 208.0 a | 72.84 ± 1.35 bc | 27.61 ± 2.02 abc | 35.92 ± 3.03 a | 68.49 ± 5.78 a | |
Yexiang A × B2A1920 | 113 | 2 107.8 ± 371.9 a | 83.83 ± 2.65 a | 22.56 ± 2.21 bc | 39.67 ± 7.08 a | 79.00 ± 14.10 a | |
Yexiang A × R43-02 | 120 | 2 027.0 ± 341.4 a | 71.93 ± 2.21 bc | 22.66 ± 2.56 bc | 32.80 ± 3.84 a | 61.51 ± 7.20 a | |
Tiantai A × B2A1920 | 116 | 1 773.6 ± 345.2 a | 72.51 ± 1.09 bc | 28.26 ± 1.11 a | 36.14 ± 5.51 a | 70.10 ± 10.69 a | |
Tiantai A × R43-02 | 122 | 1 664.0 ± 202.3 a | 70.28 ± 2.84 bc | 26.43 ± 1.46 abc | 31.09 ± 4.00 a | 57.33 ± 7.37 a | |
Shen 9A × B2A1920 | 116 | 2 202.6 ± 447.1 a | 77.08 ± 3.04 ab | 23.84 ± 1.41 abc | 40.20 ± 7.70 a | 77.97 ± 14.94 a | |
Shen 9A × R43-02 | 118 | 1 884.1 ± 148.3 a | 72.08 ± 2.26 bc | 23.62 ± 0.55 abc | 32.40 ± 2.37 a | 61.78 ± 4.51 a | |
Xianglong A × B2A1920 | 114 | 2 096.4 ± 272.0 a | 72.31 ± 3.81 bc | 27.73 ± 0.75 ab | 41.84 ± 3.79 a | 82.58 ± 7.47 a | |
Lingshui, Hainan Province, China | |||||||
IFMb | Tianyouhuazhan (CK) | 115 | 1 491.9 ± 225.6 a | 77.56 ± 1.01 a | 28.65 ± 0.44 ab | 33.03 ± 5.88 ab | 64.62 ± 11.50 ab |
Yexiang A × R43-02 | 124 | 1 191.2 ± 78.6 a | 78.11 ± 3.78 a | 30.41 ± 1.72 ab | 28.12 ± 0.75 b | 51.02 ± 1.35 bc | |
Yexiang A × B2A1920 | 125 | 1 257.6 ± 132.9 a | 78.33 ± 0.57 a | 29.59 ± 3.45 ab | 28.57 ± 0.60 b | 51.43 ± 1.09 bc | |
Xianglong A × B2A1920 | 121 | 1 518.1 ± 121.2 a | 79.73 ± 1.26 a | 33.97 ± 1.94 a | 40.72 ± 1.94 a | 75.73 ± 3.61 a | |
Xianglong A × R43-02 | 119 | 976.1 ± 92.3 a | 77.63 ± 1.47 a | 33.56 ± 1.67 a | 25.02 ± 1.79 b | 47.30 ± 3.39 bc | |
Tiantai A × B2A1920 | 114 | 1 175.6 ± 75.4 a | 70.50 ± 5.42 a | 28.40 ± 0.75 ab | 23.23 ± 1.94 b | 45.85 ± 3.83 bc | |
Tiantai A × R43-02 | 113 | 1 262.4 ± 121.2 a | 76.84 ± 1.86 a | 31.16 ± 0.95 ab | 29.61 ± 2.91 b | 58.96 ± 5.79 abc | |
Shen 9A × B2A1920 | 126 | 1 371.2 ± 69.1 a | 80.74 ± 6.41 a | 26.65 ± 2.05 b | 29.20 ± 3.82 b | 52.14 ± 6.83 bc | |
Shen 9A × R43-02 | 124 | 1 233.0 ± 83.6 a | 71.54 ± 1.42 a | 28.61 ± 1.61 ab | 24.85 ± 1.10 b | 45.09 ± 1.99 c | |
Gui A × R43-02 | 115 | 1 320.8 ± 62.7 a | 73.24 ± 3.28 a | 29.20 ± 2.40 ab | 27.88 ± 3.02 b | 54.55 ± 5.90 bc | |
IFMc | Fengliangyou 4 (CK) | 140 | 1 270.4 ± 145.5 a | 70.83 ± 4.49 a | 29.57 ± 1.18 ab | 25.97 ± 3.06 a | 41.74 ± 4.92 a |
Quan 9311A × B2A1920 | 130 | 1 193.7 ± 95.7 a | 64.53 ± 2.89 a | 30.71 ± 2.57 a | 23.29 ± 1.09 a | 40.30 ± 1.88 a | |
Quan 9311A × R43-02 | 129 | 1 290.6 ± 55.4 a | 73.42 ± 6.80 a | 28.41 ± 0.63 ab | 26.63 ± 1.06 a | 46.45 ± 1.85 a | |
Gui A × B2A1920 | 131 | 1 421.9 ± 87.2 a | 75.73 ± 4.62 a | 24.27 ± 2.06 b | 25.52 ± 0.93 a | 43.83 ± 1.60 a |
Table 3. Comparison of yield-related traits between hybrid rice and checks with similar growth duration.
Treatment | Hybrid | Growth duration (d) | No. of spikelets per plant | Seed-setting rate (%) | 1000-grain weight (g) | Yield per plant (g) | Daily yield (kg/hm2) |
---|---|---|---|---|---|---|---|
Changsha, Hunan Province, China | |||||||
CMa | Yueyou 9113 (CK) | 111 | 2 009.0 ± 242.5 a | 69.26 ± 1.07 ab | 23.00 ± 0.18 b | 32.19 ± 4.46 a | 65.25 ± 9.04 a |
Gui A × B2A1920 | 111 | 2 010.3 ± 95.4 a | 74.46 ± 1.28 a | 20.36 ± 1.20 c | 30.68 ± 2.69 a | 62.19 ± 5.45 a | |
Gui A × R43-02 | 111 | 2 039.4 ± 193.0 a | 68.44 ± 2.54 ab | 20.27 ± 0.29 c | 28.20 ± 3.04 a | 57.16 ± 6.16 a | |
Xianglong A × R43-02 | 112 | 1 708.8 ± 27.9 a | 64.17 ± 4.78 b | 25.36 ± 0.25 a | 27.48 ± 2.18 a | 55.21 ± 4.37 a | |
IFMa | Yueyou 9113 (CK) | 111 | 1 891.0 ± 252.5 ab | 68.06 ± 1.20 a | 23.96 ± 0.18 ab | 30.74 ± 3.92 a | 62.31 ± 7.95 a |
Gui A × B2A1920 | 111 | 2 730.8 ± 485.2 a | 74.84 ± 0.62 a | 20.44 ± 1.41 b | 41.74 ± 6.13 a | 84.60 ± 12.42 a | |
Gui A × R43-02 | 111 | 2 041.6 ± 365.7 ab | 69.05 ± 3.27 a | 21.11 ± 2.08 b | 29.46 ± 5.01 a | 59.72 ± 10.15 a | |
Xianglong A × R43-02 | 112 | 1 613.7 ± 225.4 b | 67.05 ± 6.82 a | 28.24 ± 2.33 a | 30.59 ± 3.87 a | 61.45 ± 7.78 a | |
CMb | Tianyouhuazhan (CK) | 114 | 1 997.8 ± 219.7 a | 69.43 ± 1.79 abc | 21.16 ± 0.13 d | 29.31 ± 2.65 a | 57.84 ± 5.22 ab |
Quan 9311A × B2A1920 | 116 | 1 738.3 ± 176.0 a | 67.72 ± 4.26 abc | 27.99 ± 1.91 a | 33.68 ± 6.17 a | 65.33 ± 11.96 ab | |
Quan 9311A × R43-02 | 118 | 1 708.6 ± 345.0 a | 65.13 ± 3.95 bc | 23.68 ± 0.85 bcd | 26.38 ± 6.29 a | 50.30 ± 11.99 ab | |
Yexiang A × B2A1920 | 113 | 1 781.1 ± 321.1 a | 77.09 ± 3.33 a | 23.01 ± 0.45 bcd | 31.77 ± 6.63 a | 63.25 ± 13.20 ab | |
Yexiang A × R43-02 | 120 | 2 093.0 ± 72.1 a | 72.81 ± 1.03 ab | 21.96 ± 0.71 cd | 33.56 ± 0.74 a | 62.92 ± 1.39 ab | |
Tiantai A × B2A1920 | 116 | 1 552.1 ± 41.3 a | 66.44 ± 3.21 abc | 25.28 ± 0.78 abc | 26.19 ± 2.51 a | 50.80 ± 4.87 ab | |
Tiantai A × R43-02 | 122 | 1 536.2 ± 61.1 a | 60.53 ± 3.10 c | 25.24 ± 0.59 abc | 23.18 ± 2.99 a | 42.75 ± 5.51 b | |
Shen 9A × B2A1920 | 116 | 1 647.6 ± 321.8 a | 70.07 ± 4.83 abc | 22.57 ± 1.14 bcd | 25.82 ± 5.17 a | 50.09 ± 10.03 ab | |
Shen 9A × R43-02 | 118 | 2 201.3 ± 253.9 a | 69.49 ± 3.60 abc | 22.71 ± 1.50 bcd | 34.62 ± 3.98 a | 66.02 ± 7.59 ab | |
Xianglong A × B2A1920 | 114 | 1 475.3 ± 88.8 a | 70.09 ± 2.11 abc | 25.78 ± 0.42 ab | 38.62 ± 2.44 a | 76.23 ± 4.81 a | |
IFMb | Tianyouhuazhan (CK) | 114 | 1 896.9 ± 114.6 a | 65.76 ± 4.74 c | 22.16 ± 0.61c | 27.47 ± 2.75 a | 54.21 ± 5.43 a |
Quan 9311A × B2A1920 | 116 | 1 959.7 ± 164.3 a | 78.10 ± 0.82 ab | 26.70 ± 1.54 abc | 40.91 ± 5.06 a | 79.36 ± 9.81 a | |
Quan 9311A × R43-02 | 118 | 1 797.8 ± 208.0 a | 72.84 ± 1.35 bc | 27.61 ± 2.02 abc | 35.92 ± 3.03 a | 68.49 ± 5.78 a | |
Yexiang A × B2A1920 | 113 | 2 107.8 ± 371.9 a | 83.83 ± 2.65 a | 22.56 ± 2.21 bc | 39.67 ± 7.08 a | 79.00 ± 14.10 a | |
Yexiang A × R43-02 | 120 | 2 027.0 ± 341.4 a | 71.93 ± 2.21 bc | 22.66 ± 2.56 bc | 32.80 ± 3.84 a | 61.51 ± 7.20 a | |
Tiantai A × B2A1920 | 116 | 1 773.6 ± 345.2 a | 72.51 ± 1.09 bc | 28.26 ± 1.11 a | 36.14 ± 5.51 a | 70.10 ± 10.69 a | |
Tiantai A × R43-02 | 122 | 1 664.0 ± 202.3 a | 70.28 ± 2.84 bc | 26.43 ± 1.46 abc | 31.09 ± 4.00 a | 57.33 ± 7.37 a | |
Shen 9A × B2A1920 | 116 | 2 202.6 ± 447.1 a | 77.08 ± 3.04 ab | 23.84 ± 1.41 abc | 40.20 ± 7.70 a | 77.97 ± 14.94 a | |
Shen 9A × R43-02 | 118 | 1 884.1 ± 148.3 a | 72.08 ± 2.26 bc | 23.62 ± 0.55 abc | 32.40 ± 2.37 a | 61.78 ± 4.51 a | |
Xianglong A × B2A1920 | 114 | 2 096.4 ± 272.0 a | 72.31 ± 3.81 bc | 27.73 ± 0.75 ab | 41.84 ± 3.79 a | 82.58 ± 7.47 a | |
Lingshui, Hainan Province, China | |||||||
IFMb | Tianyouhuazhan (CK) | 115 | 1 491.9 ± 225.6 a | 77.56 ± 1.01 a | 28.65 ± 0.44 ab | 33.03 ± 5.88 ab | 64.62 ± 11.50 ab |
Yexiang A × R43-02 | 124 | 1 191.2 ± 78.6 a | 78.11 ± 3.78 a | 30.41 ± 1.72 ab | 28.12 ± 0.75 b | 51.02 ± 1.35 bc | |
Yexiang A × B2A1920 | 125 | 1 257.6 ± 132.9 a | 78.33 ± 0.57 a | 29.59 ± 3.45 ab | 28.57 ± 0.60 b | 51.43 ± 1.09 bc | |
Xianglong A × B2A1920 | 121 | 1 518.1 ± 121.2 a | 79.73 ± 1.26 a | 33.97 ± 1.94 a | 40.72 ± 1.94 a | 75.73 ± 3.61 a | |
Xianglong A × R43-02 | 119 | 976.1 ± 92.3 a | 77.63 ± 1.47 a | 33.56 ± 1.67 a | 25.02 ± 1.79 b | 47.30 ± 3.39 bc | |
Tiantai A × B2A1920 | 114 | 1 175.6 ± 75.4 a | 70.50 ± 5.42 a | 28.40 ± 0.75 ab | 23.23 ± 1.94 b | 45.85 ± 3.83 bc | |
Tiantai A × R43-02 | 113 | 1 262.4 ± 121.2 a | 76.84 ± 1.86 a | 31.16 ± 0.95 ab | 29.61 ± 2.91 b | 58.96 ± 5.79 abc | |
Shen 9A × B2A1920 | 126 | 1 371.2 ± 69.1 a | 80.74 ± 6.41 a | 26.65 ± 2.05 b | 29.20 ± 3.82 b | 52.14 ± 6.83 bc | |
Shen 9A × R43-02 | 124 | 1 233.0 ± 83.6 a | 71.54 ± 1.42 a | 28.61 ± 1.61 ab | 24.85 ± 1.10 b | 45.09 ± 1.99 c | |
Gui A × R43-02 | 115 | 1 320.8 ± 62.7 a | 73.24 ± 3.28 a | 29.20 ± 2.40 ab | 27.88 ± 3.02 b | 54.55 ± 5.90 bc | |
IFMc | Fengliangyou 4 (CK) | 140 | 1 270.4 ± 145.5 a | 70.83 ± 4.49 a | 29.57 ± 1.18 ab | 25.97 ± 3.06 a | 41.74 ± 4.92 a |
Quan 9311A × B2A1920 | 130 | 1 193.7 ± 95.7 a | 64.53 ± 2.89 a | 30.71 ± 2.57 a | 23.29 ± 1.09 a | 40.30 ± 1.88 a | |
Quan 9311A × R43-02 | 129 | 1 290.6 ± 55.4 a | 73.42 ± 6.80 a | 28.41 ± 0.63 ab | 26.63 ± 1.06 a | 46.45 ± 1.85 a | |
Gui A × B2A1920 | 131 | 1 421.9 ± 87.2 a | 75.73 ± 4.62 a | 24.27 ± 2.06 b | 25.52 ± 0.93 a | 43.83 ± 1.60 a |
[1] | Cha Y S, Ji H, Yun D W, et al. 2008. Fine mapping of the rice Bph1 gene, which confers resistance to the brown planthopper (Nilaparvata lugens stal), and development of STS markers for marker-assisted selection. Mol Cells, 26(2): 146-151. |
[2] | Chen H, Tang W, Xu C G, et al. 2005. Transgenic indica rice plants harboring a synthetic cry2A* gene of Bacillus thuringiensis exhibit enhanced resistance against lepidopteran rice pests. Theor Appl Genet, 111(7): 1330-1337. |
[3] | Chen L, Zhu W, Li W H, et al. 2024. Advances in research and application of rice bacterial blight resistance genes. Crops, 3: 1-7. (in Chinese with English abstract) |
[4] | Cheng J A, Zhu Z R, 2017. Development of rice pest management in the past 60 years in China: Problems and strategies. Acta Phytophy Sin, 44(6): 885-895. (in Chinese with English abstract) |
[5] | Datta K, Baisakh N, Maung Thet K, et al. 2002. Pyramiding transgenes for multiple resistance in rice against bacterial blight, yellow stem borer and sheath blight. Theor Appl Genet, 106(1): 1-8. |
[6] | Dean R, van Kan J A L, Pretorius Z A, et al. 2012. The Top 10 fungal pathogens in molecular plant pathology. Mol Plant Pathol, 13(4): 414-430. |
[7] | Deng L H. 2014. Optimizing of expressing of epsps, gox and cry1ca genes in rice. Changsha, Hunan, China: Institute of Subtropical Agriculture, Chinese Academy of Sciences. (in Chinese with English abstract) |
[8] | Deng L H, Weng L S, Xiao G Y. 2014a. Optimization of Epsps gene and development of double herbicide tolerant transgenic PGMS rice. J Agric Sci Technol, 16(1): 217-228. |
[9] | Deng L H, Deng X X, Wei S J, et al. 2014b. Development and identification of herbicide and insect resistant transgenic plant B1C893 in rice. Hybrid Rice, 29(1): 67-71/75. (in Chinese with English abstract) |
[10] | Derbyshire M C, Newman T E, Thomas W J W, et al. 2024. The complex relationship between disease resistance and yield in crops. Plant Biotechnol J, 22(9): 2612-2623. |
[11] | Dixit S, Singh U M, Singh A K, et al. 2020. Marker assisted forward breeding to combine multiple biotic-abiotic stress resistance/ tolerance in rice. Rice, 13(1): 29. |
[12] | Ellur R K, Khanna A, Yadav A, et al. 2016. Improvement of Basmati rice varieties for resistance to blast and bacterial blight diseases using marker assisted backcross breeding. Plant Sci, 242: 330-341. |
[13] | Fan F F, Qiu Y B, Liu X D, et al. 2014. Research progress on the research and use of brown planthopper resistance genes in rice. Chin Sci Bull, 30(6): 13-19. (in Chinese with English abstract) |
[14] | Fjellstrom R, Conaway‐Bormans C A, McClung A M, et al. 2004. Development of DNA markers suitable for marker assisted selection of three pi genes conferring resistance to multiple Pyricularia grisea pathotypes. Crop Sci, 44(5): 1790-1798. |
[15] | Gu H Y, Wang F J, Chen G R, et al. 2023. Breeding and application of high-quality CMS line Gui A in rice. Hybrid Rice, 38(3): 61-64. (in Chinese with English abstract) |
[16] | Hou H J, Zhou H, Zeng X, et al. 2009. A report on high-yielding cultivation technique of new transgenic herbicide-resistant two-line early season hybrid rice combination. Hunan Agric Sci, (3): 21-23. (in Chinese with English abstract) |
[17] | Hu J, Li X, Wu C J, et al. 2012. Pyramiding and evaluation of the brown planthopper resistance genes Bph14 and Bph15 in hybrid rice. Mol Breed, 29(1): 61-69. |
[18] | Hu J, Cheng M X, Gao G J, et al. 2013. Pyramiding and evaluation of three dominant brown planthopper resistance genes in the elite indica rice 9311 and its hybrids. Pest Manag Sci, 69(7): 802-808. |
[19] | Hu W B, Deng X Y, Deng X X, et al. 2018. Characteristic analysis of tetra-resistant genetically modified rice. J Integr Agric, 17(3): 493-506. |
[20] | Huang B, Xu J Y, Hou M S, et al. 2012. Introgression of bacterial blight resistance genes Xa7, Xa21, Xa22 and Xa23 into hybrid rice restorer lines by molecular marker-assisted selection. Euphytica, 187(3): 449-459. |
[21] | Huang Z, He G, Shu L, et al. 2001. Identification and mapping of two brown planthopper resistance genes in rice. Theor Appl Genet, 102(6): 929-934. |
[22] | Ito S. 2019. Contemporary global rice economies: Structural changes of rice production/consumption and trade. J Nutr Sci Vitaminol, 65(Supplement): S23-S25. |
[23] | Jena K K, Kim S M. 2010. Current status of brown planthopper (BPH) resistance and genetics. Rice, 3(2): 161-171. |
[24] | Jiang H C, Li Z, Liu J, et al. 2019. Development and evaluation of improved lines with broad-spectrum resistance to rice blast using nine resistance genes. Rice, 12(1): 29. |
[25] | Jiang J W, Jiang X P, Xie X Y, et al. 2005. Breeding of new hybrid rice combination Yueyou 9113 with good quality. Hunan Agric Sci, (2): 9-11. (in Chinese) |
[26] | Jin M, Chen L, Deng X W, et al. 2022. Development of herbicide resistance genes and their application in rice. Crop J, 10(1): 26-35. |
[27] | Khush G S. 1977. Breeding for resistance in rice. Ann N Y Acad Sci, 287(1): 296-308. |
[28] | Li B, Chen Z K, Chen H Z, et al. 2023. Stacking multiple genes improves resistance to Chilo suppressalis, Magnaporthe oryzae, and Nilaparvata lugens in transgenic rice. Genes, 14( 5): 1070. |
[29] | Li C X. 2021. Development of multiresistant transgenic rice and evaluation of resistance to different diseases and insect pests after polymerization of resistance genes. Wuhan, Hubei, China: Huazhong Agricultural University. (in Chinese with English abstract) |
[30] | Li C Y, Zhou Z H, Xiong X Z, et al. 2024. Development of a multi-resistance and high-yield rice variety using multigene transformation and gene editing. Plant Biotechnol J, 22(11): 3118-3120. |
[31] | Li H, Deng L H, Weng L S, et al. 2024. Cell wall-localized Bt protein endows rice high resistance to Lepidoptera pests. Pest Manag Sci, 80(4): 1728-1739. |
[32] | Li Y H, Hallerman E M, Liu Q S, et al. 2016. The development and status of Bt rice in China. Plant Biotechnol J, 14(3): 839-848. |
[33] | Liang Y G, Li J Y, Zhou J, et al. 2022. Evolution and prospect of rice cultivation technology in China. Crop Res, 36(2): 180-188. (in Chinese with English abstract) |
[34] | Liu H, Zhu X M, Zhuo F Y, et al. 2024. Evaluation of the contribution of pest control to three major grain crops in China in 2023. China Plant Prot, 44(1): 62-66/103. (in Chinese with English abstract) |
[35] | Liu M M, Kuang Y L, Peng S, et al. 2023. Breeding of new late-maturing three-line indica hybrid rice combination Tiantaiyou 808. Hybrid Rice, 38(6): 96-98. (in Chinese with English abstract) |
[36] | Liu W Q, Zhou H, Meng Q C, et al. 2016. Effect of non-selective herbicide glufosinate on cultivation of herbicide-resistant transgenic early season rice. Chin Agric Sci Bull, 32(12): 200-204. (in Chinese with English abstract) |
[37] | Mo H L, Tang M, Sun F, et al. 2015. Breeding and application of aromatic CMS line Yexiang A with fine grain quality in rice. Hybrid Rice, 30(4): 11-12/64. (in Chinese with English abstract) |
[38] | Nemoto H, Ikeda R, Kaneda C. 1989. New genes for resistance to brown planthopper, Nilaparvata lugens Stal, in rice. Jpn J Breed, 39(1): 23-28. |
[39] | Pan Z Y, Qiu F L, Lü G L, et al. 2019. Analysis of rice blast resistance genes in japonica rice varieties in Liaoning Province. Chin J Rice Sci, 33(3): 241-248. (in Chinese with English abstract) |
[40] | Peng M F, Lin X M, Xiang X L, et al. 2021. Characterization and evaluation of transgenic rice pyramided with the Pi genes Pib, Pi25 and Pi54. Rice, 14( 1): 78. |
[41] | Qi L, Zhang T, Zeng J, et al. 2021. Analysis of the occurrence and control of diseases in five major rice-producing areas in China in recent years. China Plant Prot, 41(4): 37-42/65. (in Chinese with English abstract) |
[42] | Reinke R, Kim S M, Kim B K. 2018. Developing japonica rice introgression lines with multiple resistance genes for brown planthopper, bacterial blight, rice blast, and rice stripe virus using molecular breeding. Mol Genet Genomics, 293(6): 1565-1575. |
[43] | Shi S J, Wang H Y, Nie L Y, et al. 2021. Bph30 confers resistance to brown planthopper by fortifying sclerenchyma in rice leaf sheaths. Mol Plant, 14(10): 1714-1732. |
[44] | Singh A, Singh V K, Singh S P, et al. 2012. Molecular breeding for the development of multiple disease resistance in Basmati rice. AoB Plants, 2012: pls029. |
[45] | Wang C L, Zhang X P, Fan Y L, et al. 2015. XA23 is an executor R protein and confers broad-spectrum disease resistance in rice. Mol Plant, 8(2): 290-302. |
[46] | Wang C T, Li X Y, He Y X, et al. 2019. Breeding and application of CMS line Shen 9A with ability to germinate under conditions of low-temperature and flooding in rice. Hybrid Rice, 34(1): 22-24. (in Chinese with English abstract) |
[47] | Wang H Q, Chen J J, Zhang Y H, et al. 2013. Breeding of new quality indica CMS line Quan 9311A in rice. Hybrid Rice, 28(6): 10-12. (in Chinese with English abstract) |
[48] | Wang S G, Liu W, Lu D B, et al. 2020. Distribution of bacterial blight resistance genes in the main cultivars and application of Xa23 in rice breeding. Front Plant Sci, 11: 555228. |
[49] | Wang X, Teng Y R, Liu B, et al. 2007. High-quality and high-yielding seed production techniques for two-line hybrid rice Fengliangyou 4. Hybrid Rice, 22(2): 39-40. (in Chinese with English abstract) |
[50] | Wang Y M, Gu S H, Song Y, et al. 2023. Identification and analysis of blast resistance genes of rice landraces in northern China. Mol Plant Breed, http://link.cnki.net/urlid/46.1068.S.20230913.2314.010. |
[51] | Wang Y N, Zhang L, Li Y H, et al. 2014. Expression of Cry1Ab protein in a marker-free transgenic Bt rice line and its efficacy in controlling a target pest, Chilo suppressalis (Lepidoptera: Crambidae). Environ Entomol, 43(2): 528-536. |
[52] | Weng L S, Jiang L P, Xiao G Y. 2013. Development of an insect-resistant and herbicide-resistant transgenic restorer line B2A68 in rice. Hybrid Rice, 28(1): 63-67. (in Chinese with English abstract) |
[53] | Weng L S, Wang Z P, Xiao G Y. 2018. Expression profile of insecticidal protein Cry2Aa and lepidopteran resistance in transgenic rice (Oryza sativa) B2A68. Chin J Agric Biotechnol, 26(5): 756-763. (in Chinese with English abstract) |
[54] | Wu Y Y, Xiao N, Chen Y, et al. 2019. Comprehensive evaluation of resistance effects of pyramiding lines with different broad-spectrum resistance genes against Magnaporthe oryzae in rice (Oryza sativa L.). Rice, 12(1): 11. |
[55] | Xiao G Y. 2009. Recent advances in development of herbicide resistant transgenic hybrid rice in China. Rice Sci, 16(3): 235-239. |
[56] | Xiao G Y, Xiao Y L, Li J J, et al. 2019. High efficiency is a dominant target for current rice breeding. Chin J Rice Sci, 33(4): 287-292. (in Chinese with English abstract) |
[57] | Xiao N, Wu Y Y, Pan C H, et al. 2017. Improving of rice blast resistances in japonica by pyramiding major R genes. Front Plant Sci, 7: 1918. |
[58] | Xiao Y L, Li J J, Yu J H, et al. 2016. Improvement of bacterial blight and brown planthopper resistance in an elite restorer line Huazhan of Oryza. Field Crops Res, 186: 47-57. |
[59] | Xu J L, Zhang F, Dong N N, et al. 2023. Application of qGRB1 protein in enhancing resistance of rice stem borer in plants: CN116253780A. (2023-06-13)[2024-11-20]. |
[60] | Yan L H, Luo T P, Huang D H, et al. 2023. Recent advances in molecular mechanism and breeding utilization of brown planthopper resistance genes in rice: An integrated review. Int J Mol Sci, 24(15): 12061. |
[61] | Yang D B, Xiong L Z, Mou T M, et al. 2022. Improving the resistance of the rice PTGMS line Feng 39S by pyramiding blast, bacterial blight, and brown planthopper resistance genes. Crop J, 10(4): 1187-1197. |
[62] | Yu S M, Zhu L F, Ouyang Y N, et al. 2009. Characteristics and high-yielding cultivation techniques of new hybrid rice combination Tianyouhuazhan. Hybrid Rice, 24(6): 42-44. (in Chinese with English abstract) |
[63] | Zhang Q. 2005. Highlights in identification and application of resistance genes to bacterial blight. Chin J Rice Sci, 19(5): 453-459. (in Chinese with English abstract) |
[64] | Zhao H J, Wang X Y, Jia Y L, et al. 2018. The rice blast resistance gene Ptr encodes an atypical protein required for broad-spectrum disease resistance. Nat Commun, 9(1): 2039. |
[65] | Zhou H, Yang Y, Wang P, et al. 2023. Breeding and utilization of high-quality aromatic CMS line Xianglong A in rice. Hybrid Rice, 38(2): 46-50. (in Chinese with English abstract) |
[1] | Lakshmi V. G. Ishwarya, S. Vanisri, P. S. Basavaraj, M. Sreedhar, Lakshmi V. Jhansi, M. Muntazir, C. Gireesh, S. N. C. V. L. Pushpavalli. Harnessing Advanced Genomic Approaches to Unveil and Enhance Brown Planthopper Resistance in Rice [J]. Rice Science, 2025, 32(3): 339-352. |
[2] | Chen Ya, Liu Zhiquan, Yang Linyin, Wu Fujie, Cao Zijian, Shi Huanbin, Qiu Jiehua, Kou Yanjun. OsCERK1 Interacts with OsHPP08 to Regulate Copper Uptake and Blast Resistance in Rice [J]. Rice Science, 2025, 32(2): 203-216. |
[3] | Jiang Nan, Qiu Jiehua, Tian Dagang, Shi Huanbin, Liu Zhiquan, Wen Hui, Xie Shuwei, Chen Huizhe, Wu Meng, Kou Yanjun. Mixture of Bacillus Amyloliquefaciens and Bacillus Pumilus Modulates Community Structures of Rice Rhizosphere Soil to Suppress Rice Seedling Blight [J]. Rice Science, 2025, 32(1): 118-130. |
[4] | Xu Liting, He Kaiwei, Guo Chunyu, Quan Cantao, Ma Yahuan, Zhang Wei, Ren Lifen, Wang Long, Song Li, Ouyang Qing, Yin Junjie, Zhu Xiaobo, Tang Yongyan, He Min, Chen Xuewei, Li Weitao. Spireoside Controls Blast Disease by Disrupting Membrane Integrity of Magnaporthe oryzae [J]. Rice Science, 2025, 32(1): 107-117. |
[5] | Durga Prasad Mullangie, Kalaimagal Thiyagarajan, Manonmani Swaminathan, Jagadeesan Ramalingam, Sritharan Natarajan, Senthilkumar Govindan. Breeding Resilience: Exploring Lodging Resistance Mechanisms in Rice [J]. Rice Science, 2024, 31(6): 659-672. |
[6] | Li Wei, Zhang Mengchen, Yang Yaolong, Weng Lin, Hu Peisong, Wei Xinghua. Molecular Evolution of Rice Blast Resistance Gene bsr-d1 [J]. Rice Science, 2024, 31(6): 700-711. |
[7] | Hou Xinyue, Wang Yuping, Qian Qian, Ren Deyong. Molecular Mechanism of Rice Necrotic Lesion for Optimized Yield and Disease Resistance [J]. Rice Science, 2024, 31(3): 285-299. |
[8] | Li Dian, Duan Wenjing, Liu Qun’en, Wu Weixun, Zhan Xiaodeng, Sun Lianping, Zhang Yingxin, Cheng Shihua. Gapless Genome Assembly of ZH8015 and Preliminary Multi-Omics Analysis to Investigate ZH8015’s Responses Against Brown Planthopper Infestation [J]. Rice Science, 2024, 31(3): 317-327. |
[9] | Gao Ningning, Ye Shuifeng, Zhang Yu, Zhou Liguo, Ma Xiaosong, Yu Hanxi, Li Tianfei, Han Jing, Liu Zaochang, Luo Lijun. A β-Carotene Ketolase Gene NfcrtO from Subaerial Cyanobacteria Confers Drought Tolerance in Rice [J]. Rice Science, 2024, 31(1): 62-76. |
[10] | Li Qianlong, Feng Qi, Wang Heqin, Kang Yunhai, Zhang Conghe, Du Ming, Zhang Yunhu, Wang Hui, Chen Jinjie, Han Bin, Fang Yu, Wang Ahong. Genome-Wide Dissection of Quan 9311A Breeding Process and Application Advantages [J]. Rice Science, 2023, 30(6): 552-565. |
[11] | Lin Shaodan, Yao Yue, Li Jiayi, Li Xiaobin, Ma Jie, Weng Haiyong, Cheng Zuxin, Ye Dapeng. Application of UAV-Based Imaging and Deep Learning in Assessment of Rice Blast Resistance [J]. Rice Science, 2023, 30(6): 652-660. |
[12] | Tan Jingyi, Zhang Xiaobo, Shang Huihui, Li Panpan, Wang Zhonghao, Liao Xinwei, Xu Xia, Yang Shihua, Gong Junyi, Wu Jianli. ORYZA SATIVA SPOTTED-LEAF 41 (OsSPL41) Negatively Regulates Plant Immunity in Rice [J]. Rice Science, 2023, 30(5): 426-436. |
[13] | Lu Xuedan, Li Fan, Xiao Yunhua, Wang Feng, Zhang Guilian, Deng Huabing, Tang Wenbang. Grain Shape Genes: Shaping the Future of Rice Breeding [J]. Rice Science, 2023, 30(5): 379-404. |
[14] | Li Chao, Li He, Zhang Xianduo, Yang Zhimin. A Pleiotropic Drug Resistance Family Protein Gene Is Required for Rice Growth, Seed Development and Zinc Homeostasis [J]. Rice Science, 2023, 30(2): 127-137. |
[15] | Liu Yantong, Li Ting, Jiang Zhishu, Zeng Chuihai, He Rong, Qiu Jiao, Lin Xiaoli, Peng Limei, Song Yongping, Zhou Dahu, Cai Yicong, Zhu Changlan, Fu Junru, He Haohua, Xu Jie. Characterization of a Novel Weak Allele of RGA1/D1 and Its Potential Application in Rice Breeding [J]. Rice Science, 2022, 29(6): 522-534. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||