Rice Science ›› 2018, Vol. 25 ›› Issue (5): 286-292.DOI: 10.1016/j.rsci.2018.08.003
• Orginal Article • Previous Articles Next Articles
Popice Kenmogne Nuemsi Pierre1, Brice Tonfack Libert1(), Mbogne Taboula Judith1, Ahmad Mir Bilal2, Roger Baleba Mbanga Moise3, Ntsomboh Ntsefong Godswill1,4, Nono Temegne Carine1, Youmbi Emmanuel1
Received:
2017-08-11
Accepted:
2018-03-21
Online:
2018-09-28
Published:
2018-06-11
Popice Kenmogne Nuemsi Pierre, Brice Tonfack Libert, Mbogne Taboula Judith, Ahmad Mir Bilal, Roger Baleba Mbanga Moise, Ntsomboh Ntsefong Godswill, Nono Temegne Carine, Youmbi Emmanuel. Cultivation Systems Using Vegetation Cover Improves Sustainable Production and Nutritional Quality of New Rice for Africa in the Tropics[J]. Rice Science, 2018, 25(5): 286-292.
Add to citation manager EndNote|Ris|BibTeX
Fig. 1. Different sowing patterns in the experimental design.Control, Plowed soil without vegetation cover; DVC, Unplowed soil with dead vegetation cover; LVC, Unplowed soil with live vegetation cover; MVC, Unplowed soil with mixed vegetation cover.
Variety | Treatment | Time (week) | Regression equation for plant height (cm) | R2 | Time (week) | Regression equation for number of leaves per plant | R2 |
---|---|---|---|---|---|---|---|
NERICA 3 | Control | - | Y = 5.01e^0.32x | 0.98 | - | Y' = 3.3x - 1.24 | 0.99 |
DVC | - | Y = 5.17e^0.31x | 0.99 | - | Y' = 3.3x - 1.24 | 0.99 | |
LVC | - | Y = 5.25e^0.31x | 0.98 | 4-7 | Y' = 2.73e^0.23x (*) | 0.98 | |
MVC | - | Y = 5.71e^0.23x | 0.98 | 4-7 | Y' = 2.06e^0.24x (*) | 0.94 | |
NERICA 8 | Control | - | Y = 5.41e^0.31x | 0.98 | - | Y' = 5x - 5.04 | 0.97 |
DVC | 10 | Y = 5.49e^0.32x (**) | 0.98 | 4-10 | Y' = 4.02x - 2.31 (*) | 0.97 | |
LVC | - | Y = 5.95e^0.27x | 0.99 | 4-7 | Y' = 2.3e^0.24x (**) | 0.96 | |
MVC | - | Y = 6.61e^0.27x | 0.98 | 4-7 | Y' = 2.38e^0.24x (**) | 0.99 |
Table 1 Relationship between plant height (Y) or number of leaves per plant (Y′) and time after sowing of rice.
Variety | Treatment | Time (week) | Regression equation for plant height (cm) | R2 | Time (week) | Regression equation for number of leaves per plant | R2 |
---|---|---|---|---|---|---|---|
NERICA 3 | Control | - | Y = 5.01e^0.32x | 0.98 | - | Y' = 3.3x - 1.24 | 0.99 |
DVC | - | Y = 5.17e^0.31x | 0.99 | - | Y' = 3.3x - 1.24 | 0.99 | |
LVC | - | Y = 5.25e^0.31x | 0.98 | 4-7 | Y' = 2.73e^0.23x (*) | 0.98 | |
MVC | - | Y = 5.71e^0.23x | 0.98 | 4-7 | Y' = 2.06e^0.24x (*) | 0.94 | |
NERICA 8 | Control | - | Y = 5.41e^0.31x | 0.98 | - | Y' = 5x - 5.04 | 0.97 |
DVC | 10 | Y = 5.49e^0.32x (**) | 0.98 | 4-10 | Y' = 4.02x - 2.31 (*) | 0.97 | |
LVC | - | Y = 5.95e^0.27x | 0.99 | 4-7 | Y' = 2.3e^0.24x (**) | 0.96 | |
MVC | - | Y = 6.61e^0.27x | 0.98 | 4-7 | Y' = 2.38e^0.24x (**) | 0.99 |
Variety | Treatment | No. of panicles per hill | No. of spikelets per panicle | 1000-grain weight (g) | Dry matter content (%) | Yield (t/hm2) |
---|---|---|---|---|---|---|
NERICA3 | Control | 16 ± 5 | 143.7 ± 54.6 | 32.08 ± 0.02 | 50.44 ± 19.27 | 3.05 ± 0.82 |
DVC | 17 ± 4 | 89.3 ± 23.0 | 31.65 ± 0.01 | 40.43 ± 4.78 | 2.62 ± 0.88 | |
LVC | 15 ± 2 | 88.7 ± 42.4 | 29.74 ± 0.03 | 53.87 ± 9.42 | 2.42 ± 1.42 | |
MVC | 15 ± 7 | 50.2 ± 43.8 | 30.28 ± 0.03 | 42.88 ± 3.88 | 2.16 ± 1.50 | |
Mean | 16 ± 5 a | 93.0 ± 40.9 a | 30.94 ± 0.02 a | 46.91 ± 9.33 a | 2.50 ± 1.40 a | |
NERICA8 | Control | 20 ± 5 | 43.4 ± 14.7 | 27.83 ± 0.01 | 33.51 ± 6.04 | 1.21 ± 0.95 |
DVC | 14 ± 2 | 44.1 ± 10.9 | 28.52 ± 0.01 | 33.88 ± 8.12 | 1.02 ± 0.40 | |
LVC | 16 ± 7 | 25.2 ± 14.5 | 24.65 ± 0.06 | 32.61 ± 2.04 | 0.71 ± 0.21 | |
MVC | 19 ± 3 | 30.5 ± 1.8 | 30.31 ± 0.03 | 37.26 ± 3.85 | 0.93 ± 0.34 | |
Mean | 17 ± 4 a | 35.8 ± 10.4 b | 27.83 ± 0.03 b | 34.32 ± 5.01 b | 0.97 ± 0.59 b | |
Cultivation system | ns | ns | ns | ns | ns | |
Variety | ns | *** | * | ** | * | |
Cultivation system × variety | ns | ns | ns | ns | ns |
Table 2 Yield traits of NERICA 3 and NERICA 8.
Variety | Treatment | No. of panicles per hill | No. of spikelets per panicle | 1000-grain weight (g) | Dry matter content (%) | Yield (t/hm2) |
---|---|---|---|---|---|---|
NERICA3 | Control | 16 ± 5 | 143.7 ± 54.6 | 32.08 ± 0.02 | 50.44 ± 19.27 | 3.05 ± 0.82 |
DVC | 17 ± 4 | 89.3 ± 23.0 | 31.65 ± 0.01 | 40.43 ± 4.78 | 2.62 ± 0.88 | |
LVC | 15 ± 2 | 88.7 ± 42.4 | 29.74 ± 0.03 | 53.87 ± 9.42 | 2.42 ± 1.42 | |
MVC | 15 ± 7 | 50.2 ± 43.8 | 30.28 ± 0.03 | 42.88 ± 3.88 | 2.16 ± 1.50 | |
Mean | 16 ± 5 a | 93.0 ± 40.9 a | 30.94 ± 0.02 a | 46.91 ± 9.33 a | 2.50 ± 1.40 a | |
NERICA8 | Control | 20 ± 5 | 43.4 ± 14.7 | 27.83 ± 0.01 | 33.51 ± 6.04 | 1.21 ± 0.95 |
DVC | 14 ± 2 | 44.1 ± 10.9 | 28.52 ± 0.01 | 33.88 ± 8.12 | 1.02 ± 0.40 | |
LVC | 16 ± 7 | 25.2 ± 14.5 | 24.65 ± 0.06 | 32.61 ± 2.04 | 0.71 ± 0.21 | |
MVC | 19 ± 3 | 30.5 ± 1.8 | 30.31 ± 0.03 | 37.26 ± 3.85 | 0.93 ± 0.34 | |
Mean | 17 ± 4 a | 35.8 ± 10.4 b | 27.83 ± 0.03 b | 34.32 ± 5.01 b | 0.97 ± 0.59 b | |
Cultivation system | ns | ns | ns | ns | ns | |
Variety | ns | *** | * | ** | * | |
Cultivation system × variety | ns | ns | ns | ns | ns |
Variety | Treatment | Total protein content (%) | Total soluble carbohydrate (%) |
---|---|---|---|
NERICA 3 | Control | 4.28 ± 0.16 D | 3.58 ± 0.03 C |
DVC | 7.91 ± 0.19 A | 3.55 ± 0.04 C | |
LVC | 7.05 ± 0.12 C | 5.55 ± 0.25 AB | |
MVC | 7.49 ± 0.24 B | 3.22 ± 0.05 C | |
Mean | 6.68 ± 1.49 a | 3.97 ± 0.97 b | |
NERICA 8 | Control | 2.31 ± 0.15 F | 3.96 ± 0.07 C |
DVC | 4.52 ± 0.17 D | 5.09 ± 0.03 B | |
LVC | 3.54 ± 0.17 E | 6.86 ± 0.84 A | |
MVC | 3.68 ± 0.03 F | 6.23 ± 0.31 A | |
Mean | 3.52 ± 0.84 b | 5.53 ± 2.38 a | |
Cultivation system | *** | *** | |
Variety | *** | *** | |
Cultivation system × variety | *** | *** |
Table 3 Total protein and soluble carbohydrates of NERICA 3 and NERICA 8.
Variety | Treatment | Total protein content (%) | Total soluble carbohydrate (%) |
---|---|---|---|
NERICA 3 | Control | 4.28 ± 0.16 D | 3.58 ± 0.03 C |
DVC | 7.91 ± 0.19 A | 3.55 ± 0.04 C | |
LVC | 7.05 ± 0.12 C | 5.55 ± 0.25 AB | |
MVC | 7.49 ± 0.24 B | 3.22 ± 0.05 C | |
Mean | 6.68 ± 1.49 a | 3.97 ± 0.97 b | |
NERICA 8 | Control | 2.31 ± 0.15 F | 3.96 ± 0.07 C |
DVC | 4.52 ± 0.17 D | 5.09 ± 0.03 B | |
LVC | 3.54 ± 0.17 E | 6.86 ± 0.84 A | |
MVC | 3.68 ± 0.03 F | 6.23 ± 0.31 A | |
Mean | 3.52 ± 0.84 b | 5.53 ± 2.38 a | |
Cultivation system | *** | *** | |
Variety | *** | *** | |
Cultivation system × variety | *** | *** |
PH | NL | DMC | Yield | TSC | |
---|---|---|---|---|---|
NL | 0.53** | ||||
DMC | -0.01 | -0.37 | |||
Yield | 0.40 | 0.02 | 0.71*** | ||
TSC | -0.29 | -0.42* | 0.16 | -0.03 | |
Protein | 0.12 | -0.36 | 0.37 | 0.33 | -0.019 |
Table 4 Correlation matrix of the measured variables on NERICA.
PH | NL | DMC | Yield | TSC | |
---|---|---|---|---|---|
NL | 0.53** | ||||
DMC | -0.01 | -0.37 | |||
Yield | 0.40 | 0.02 | 0.71*** | ||
TSC | -0.29 | -0.42* | 0.16 | -0.03 | |
Protein | 0.12 | -0.36 | 0.37 | 0.33 | -0.019 |
1 | Abdellaoui Z, Teskrat H, Belhadj A, Zaghouane O.2006. Comparative study of the effect of conventional tillage, direct seeding and minimum tillage on the behavior of a durum wheat crop in the subhumid zone. In: Bouzerzour H, Irekti H, Vadon B. Third Mediterranean Meetings of Direct Seeding. Ciheam Zaragoza-Spain: 71-87. |
2 | Adjahossou B S, Adjahossou V N, Adjahossou D F, Edorh P, Sinsin B, Boko M.2009. Nutritional aspects of optimizing a cropping system combining maize and groundnuts in South Benin.Int J Biol Chem Sci, 3(5): 1141-1150. |
3 | AFD.2006. Direct seeding on permanent vegetation cover, an alternative solution to conventional farming systems in Southern countries. France: 68. |
4 | Corbeels M, Scopel E, Cardoso A, Bernoux M, Douzet J M, Siqueira Neto M.2006. Soil carbon storage potential of direct seeding mulch-based cropping systems in the Cerrados of Brazil.Global Change Biol, 12(9): 1773-1787. |
5 | Davidson E A, Suddick E C, Rice C W, Prokopy L S.2015. More food, low pollution (Mo Fo Lo Po): A grand challenge for the 21st century.J Environ Qual, 44(2): 305-311. |
6 | de Vita P, di Paolo E, Fecondo G, di Fonzo N, Pisante M.2007. No-tillage and conventional tillage effects on durum wheat yield, grain quality and soil moisture content in southern Italy. Soil Till Res, 92: 69-78. |
7 | Dorel M, Lakhia S, Pététin C, Bouamer S, Risède J M.2010. Banana planting without tillage on a mulch of crop residues: Effect on soil quality and crop functioning.Fruits, 65(2): 55-68. |
8 | Dubois O. 2011. The state of the world’s land and water resources for food and agriculture: Managing systems at risk. Rome: FAO. 2011. |
9 | Fortas B, Mekhlouf A, Hamsi K, Boudiar R, Laouar A M, Djaïdjaa Z.2013. Impacts of cultivation techniques on the physical behavior of the soil and the cultivation of durum wheat (Triticum durum Desf.) under the semi-arid conditions of the Sétif region.Rev Agric, 6: 12-20. |
10 | Hornick S B.1992. Factors affecting the nutritional quality of crops.Am J Altern Agric, 7: 63-68. |
11 | Kaur A, Brar A S.2016. Influence of mulching and irrigation scheduling on productivity and water use of turmeric (Curcuma longa L.) in north-western India.Irrig Sci, 34(4): 261-269. |
12 | Mbaye M S, Kane A, Gueye M, Bassene C, Ba N, Diop D, Sylla S N, Noba K.2014. Optimum date and density of cowpea seed [Vigna unguiculata(L.) Walp.] in association with millet [Pennisetum glaucum (L.) R. Br.].J Appl Biosci, 76: 6305-6315. |
13 | MʼBiandoun M, Dongmo A L, Balarabe O, Nchoutnji I.2009. Crop cover systems in Central Africa: Technical and socio- economic conditions for its development. In: Seiny-Boukar L, Boumard P. African Savannahs in Development: Innovate to Last. Cirad, Garoua: 1-10. |
14 | Mekhlouf A, Makhlouf M, Achiri A, Ait-Ouali A, Kourougli S.2011. Comparative study of the effect of tillage systems and previous crops on the soil and the behavior of common wheat (Triticum aestivum L.) under semi-arid conditions.Agriculture, 2: 52-65. |
15 | Mohammed B, Rachid M, Rachid M, Oumaima I, Mohamed B, Mohamed G, Bouchaib B.2013. Impact of agricultural practices on structural stability and soil organic matter in semi-arid Moroccan areas.Int J Inno Appl Stud, 4(2): 322-333. |
16 | Muthayya S, Sugimoto J D, Montgomery S, Maberly G F.2014. An overview of global rice production, supply, trade, and consumption.Ann New York Acad Sci, 1324: 7-14. |
17 | Pimentel D, Michael B.2013. Soil erosion threatens food production.Agriculture, 3(3): 443-463. |
18 | Rakotoarisoa J, Oliver R, Dusserre J, Muller B, Douzet J M, Michellon R, Moussa N, Razafinjara L A, Rajeriarison C, Scopel E.2010. Assessment of mineral nitrogen during the rainfed rice cycle under-cropping subsystems under vegetal cover in ferralitic clay soil in Madagascar.Etud Gest Sols, 2(17): 169-186. |
19 | Rodenburg J, Cissoko M, Kayeke J, Dieng I, Khan Z R,., Midega C A O, Onyuka E A, Scholes J D.2015. Do NERICA rice cultivars express resistance toStriga hermonthica(Del.) Benth. and Striga asiatica (L.) Kuntze under field conditions?Field Crops Res, 170: 83-94. |
20 | SAS.2004. SAS Base 9.3.1: Procedures Guide. Cary, NC: SAS Institute Inc., USA. |
21 | Sihi D, Dari B, Sharma D K, Pathak H, Nain L, Sharma O P.2017. Evaluation of soil health in organic vs. conventional farming of basmati rice in North India.J Plant Nutr Soil Sci, 180: 389-406. |
22 | Shaon K D.2014. Role of micronutrient in rice cultivation and management strategy in organic agriculture: A reappraisal.Agric Sci, 5: 765-769. |
23 | Smogyi M.1952. Notes on sugar determination.J Biol Chem, 195(1): 19-23. |
24 | Sokei Y, Shinya Y, Kosaka M M, Inoue K M, Koimaru T.2011. NERICA Culture Guide. Cotonou, Benin: Rice Center for Africa, JICA: 43. |
25 | Thirze H.2016. Modelling Grain Surplus/Deficit in Cameroon for 2030. Master degree thesis INES 393. Lund University, Sweden: 59. |
26 | Tonfack L B, Bernadac A, Youmbi E, Mbouapouognigni V P, Ngueguim M, Akoa A.2009. Impact of organic and inorganic fertilizers on tomato vigour, yield and fruit composition under tropical andosol soil conditions.Fruits, 64: 167-177. |
27 | Tonfack L B, Youmbi E, Amougou A, Bernadac A.2013. Effect of organic/inorganic-cation balanced fertilizers on yield and temporal nutrient allocation of tomato fruits under andosol soil conditions in sub-Saharan Africa.Int J Agric Food Res, 2(2): 27-37. |
28 | van Ittersum M K, van Bussel L G J, Wolf J, Grassini P, van Wart J, Guilpart N, Claessens L, de Groot H, Wiebe K, Mason- D’Croz D, Yang H S, Boogaard H, van Oort P A J, van Loon M P, Saito K, Adimo O, Adjei-Nsiah S, Agali A, Bala A, Chikowo R, Kaizzi K, Kouressy M, Makoi J H J R, Ouattara K, Tesfaye K, Cassman K G.2016. Can sub-Saharan Africa feed itself?Proc Natl Acad Sci USA, 113(52): 14964-14969. |
29 | Yengoh G T, Ardö J.2014. Crop yield gaps in Cameroon.Ambio, 43(2): 175-190. |
30 | Wang Z H, Li S X, Malhi S.2008. Effects of fertilization and other agronomic measures on nutritional quality of crops.J Sci Food Agric, 88(1): 7-23. |
31 | Williams S W.1980. Official Methods of Analysis, Association of Official Analytical Chemists. Washington, AOAC: 5-9. |
32 | Zhou W, Lv T F, Chen Y, Westby A P, Ren W J.2014. Soil physicochemical and biological properties of paddy-upland rotation: A review.Sci World J, 2014: 1-8. |
[1] | Prathap V, Suresh KUMAR, Nand Lal MEENA, Chirag MAHESHWARI, Monika DALAL, Aruna TYAGI. Phosphorus Starvation Tolerance in Rice Through a Combined Physiological, Biochemical and Proteome Analysis [J]. Rice Science, 2023, 30(6): 8-. |
[2] | Serena REGGI, Elisabetta ONELLI, Alessandra MOSCATELLI, Nadia STROPPA, Matteo Dell’ANNO, Kiril PERFANOV, Luciana ROSSI. Seed-Specific Expression of Apolipoprotein A-IMilano Dimer in Rice Engineered Lines [J]. Rice Science, 2023, 30(6): 6-. |
[3] | Sundus ZAFAR, XU Jianlong. Recent Advances to Enhance Nutritional Quality of Rice [J]. Rice Science, 2023, 30(6): 4-. |
[4] | Kankunlanach KHAMPUANG, Nanthana CHAIWONG, Atilla YAZICI, Baris DEMIRER, Ismail CAKMAK, Chanakan PROM-U-THAI. Effect of Sulfur Fertilization on Productivity and Grain Zinc Yield of Rice Grown under Low and Adequate Soil Zinc Applications [J]. Rice Science, 2023, 30(6): 9-. |
[5] | FAN Fengfeng, CAI Meng, LUO Xiong, LIU Manman, YUAN Huanran, CHENG Mingxing, Ayaz AHMAD, LI Nengwu, LI Shaoqing. Novel QTLs from Wild Rice Oryza longistaminata Confer Rice Strong Tolerance to High Temperature at Seedling Stage [J]. Rice Science, 2023, 30(6): 14-. |
[6] | LIN Shaodan, YAO Yue, LI Jiayi, LI Xiaobin, MA Jie, WENG Haiyong, CHENG Zuxin, YE Dapeng. Application of UAV-Based Imaging and Deep Learning in Assessment of Rice Blast Resistance [J]. Rice Science, 2023, 30(6): 10-. |
[7] | Md. Forshed DEWAN, Md. AHIDUZZAMAN, Md. Nahidul ISLAM, Habibul Bari SHOZIB. Potential Benefits of Bioactive Compounds of Traditional Rice Grown in South and South-East Asia: A Review [J]. Rice Science, 2023, 30(6): 5-. |
[8] | Raja CHAKRABORTY, Pratap KALITA, Saikat SEN. Phenolic Profile, Antioxidant, Antihyperlipidemic and Cardiac Risk Preventive Effect of Chakhao Poireiton (A Pigmented Black Rice) in High-Fat High-Sugar induced Rats [J]. Rice Science, 2023, 30(6): 11-. |
[9] | LI Qianlong, FENG Qi, WANG Heqin, KANG Yunhai, ZHANG Conghe, DU Ming, ZHANG Yunhu, WANG Hui, CHEN Jinjie, HAN Bin, FANG Yu, WANG Ahong. Genome-Wide Dissection of Quan 9311A Breeding Process and Application Advantages [J]. Rice Science, 2023, 30(6): 7-. |
[10] | JI Dongling, XIAO Wenhui, SUN Zhiwei, LIU Lijun, GU Junfei, ZHANG Hao, Tom Matthew HARRISON, LIU Ke, WANG Zhiqin, WANG Weilu, YANG Jianchang. Translocation and Distribution of Carbon-Nitrogen in Relation to Rice Yield and Grain Quality as Affected by High Temperature at Early Panicle Initiation Stage [J]. Rice Science, 2023, 30(6): 12-. |
[11] | Nazaratul Ashifa Abdullah Salim, Norlida Mat Daud, Julieta Griboff, Abdul Rahim Harun. Elemental Assessments in Paddy Soil for Geographical Traceability of Rice from Peninsular Malaysia [J]. Rice Science, 2023, 30(5): 486-498. |
[12] | Monica Ruffini Castiglione, Stefania Bottega, Carlo Sorce, Carmelina SpanÒ. Effects of Zinc Oxide Particles with Different Sizes on Root Development in Oryza sativa [J]. Rice Science, 2023, 30(5): 449-458. |
[13] | Tan Jingyi, Zhang Xiaobo, Shang Huihui, Li Panpan, Wang Zhonghao, Liao Xinwei, Xu Xia, Yang Shihua, Gong Junyi, Wu Jianli. ORYZA SATIVA SPOTTED-LEAF 41 (OsSPL41) Negatively Regulates Plant Immunity in Rice [J]. Rice Science, 2023, 30(5): 426-436. |
[14] | Ammara Latif, Sun Ying, Pu Cuixia, Noman Ali. Rice Curled Its Leaves Either Adaxially or Abaxially to Combat Drought Stress [J]. Rice Science, 2023, 30(5): 405-416. |
[15] | Liu Qiao, Qiu Linlin, Hua Yangguang, Li Jing, Pang Bo, Zhai Yufeng, Wang Dekai. LHD3 Encoding a J-Domain Protein Controls Heading Date in Rice [J]. Rice Science, 2023, 30(5): 437-448. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||