Rice Science ›› 2022, Vol. 29 ›› Issue (3): 277-287.DOI: 10.1016/j.rsci.2021.11.002
• Research Paper • Previous Articles Next Articles
Nie Yuanyuan1,2,3, Xia Hui2, Ma Xiaosong2, Lou Qiaojun2, Liu Yi1,2, Zhang Anling1,2, Cheng Liang2, Yan Longan3(), Luo Lijun1,2(
)
Received:
2021-08-02
Accepted:
2021-11-10
Online:
2022-05-28
Published:
2022-03-10
Contact:
Yan Longan, Luo Lijun
Nie Yuanyuan, Xia Hui, Ma Xiaosong, Lou Qiaojun, Liu Yi, Zhang Anling, Cheng Liang, Yan Longan, Luo Lijun. Dissecting Genetic Basis of Deep Rooting in Dongxiang Wild Rice[J]. Rice Science, 2022, 29(3): 277-287.
Add to citation manager EndNote|Ris|BibTeX
Trait | Environment | Year | R974 | Dongye 80 | Backcross introgression line | ||||
---|---|---|---|---|---|---|---|---|---|
Minimum | Maximum | Average | SD | CV (%) | |||||
DR | Shanghai | 2020 | 63.2 ± 39.7 | 113.0 ± 68.7 | 19.8 | 227.8 | 67.5 | 36.1 | 53.6 |
Hainan | 2021 | 79.5 ± 43.7 | 129.3 ± 32.8* | 27.8 | 194.8 | 104.6 | 32.4 | 31.0 | |
SR | Shanghai | 2020 | 270.5 ± 105.0 | 156.3 ± 44.5 | 55.5 | 595.8 | 233.1 | 77.4 | 33.2 |
Hainan | 2021 | 224.0 ± 83.4 | 95.0 ± 27.1* | 23.0 | 335.7 | 183.0 | 49.7 | 27.2 | |
TR | Shanghai | 2020 | 333.7 ± 135.2 | 269.3 ± 110.8 | 77.8 | 734.0 | 298.9 | 100.6 | 33.7 |
Hainan | 2021 | 303.5 ± 105.1 | 224.3 ± 38.8 | 67.3 | 519.0 | 287.6 | 73.5 | 25.6 | |
RDR | Shanghai | 2020 | 0.19 ± 0.07 | 0.40 ± 0.08** | 0.07 | 0.52 | 0.22 | 0.08 | 36.6 |
Hainan | 2021 | 0.26 ± 0.11 | 0.58 ± 0.10** | 0.17 | 0.66 | 0.36 | 0.07 | 19.2 |
Table 1. Performances of DR, SR, TR and RDR in parents and backcross introgression lines in 2020 and 2021.
Trait | Environment | Year | R974 | Dongye 80 | Backcross introgression line | ||||
---|---|---|---|---|---|---|---|---|---|
Minimum | Maximum | Average | SD | CV (%) | |||||
DR | Shanghai | 2020 | 63.2 ± 39.7 | 113.0 ± 68.7 | 19.8 | 227.8 | 67.5 | 36.1 | 53.6 |
Hainan | 2021 | 79.5 ± 43.7 | 129.3 ± 32.8* | 27.8 | 194.8 | 104.6 | 32.4 | 31.0 | |
SR | Shanghai | 2020 | 270.5 ± 105.0 | 156.3 ± 44.5 | 55.5 | 595.8 | 233.1 | 77.4 | 33.2 |
Hainan | 2021 | 224.0 ± 83.4 | 95.0 ± 27.1* | 23.0 | 335.7 | 183.0 | 49.7 | 27.2 | |
TR | Shanghai | 2020 | 333.7 ± 135.2 | 269.3 ± 110.8 | 77.8 | 734.0 | 298.9 | 100.6 | 33.7 |
Hainan | 2021 | 303.5 ± 105.1 | 224.3 ± 38.8 | 67.3 | 519.0 | 287.6 | 73.5 | 25.6 | |
RDR | Shanghai | 2020 | 0.19 ± 0.07 | 0.40 ± 0.08** | 0.07 | 0.52 | 0.22 | 0.08 | 36.6 |
Hainan | 2021 | 0.26 ± 0.11 | 0.58 ± 0.10** | 0.17 | 0.66 | 0.36 | 0.07 | 19.2 |
Fig. 1. Distribution frequencies of four root-related traits in 234 Dongye 80/R974 backcross introgression lines under two environments. A?D, Distribution frequencies of the number of deep roots (A), the number of shallow roots (B), the total number of roots (C) and the ratio of deep roots (D).
Parameter | 20DR | 20SR | 20TR | 20RDR | 21DR | 21SR | 21TR |
---|---|---|---|---|---|---|---|
20SR | 0.501** | ||||||
20TR | 0.749** | 0.941** | |||||
20RDR | 0.713** | -0.175** | 0.133* | ||||
21DR | 0.358** | 0.157* | 0.253** | 0.269** | |||
21SR | 0.211** | 0.396** | 0.388** | -0.110 | 0.585** | ||
21TR | 0.300** | 0.337** | 0.374** | 0.044 | 0.836** | 0.934** | |
21RDR | 0.175* | -0.255** | -0.137 | 0.466** | 0.491** | -0.348** | -0.019 |
Table 2. Correlations among DR, SR, TR and RDR in backcross introgression lines measured in 2020 and 2021.
Parameter | 20DR | 20SR | 20TR | 20RDR | 21DR | 21SR | 21TR |
---|---|---|---|---|---|---|---|
20SR | 0.501** | ||||||
20TR | 0.749** | 0.941** | |||||
20RDR | 0.713** | -0.175** | 0.133* | ||||
21DR | 0.358** | 0.157* | 0.253** | 0.269** | |||
21SR | 0.211** | 0.396** | 0.388** | -0.110 | 0.585** | ||
21TR | 0.300** | 0.337** | 0.374** | 0.044 | 0.836** | 0.934** | |
21RDR | 0.175* | -0.255** | -0.137 | 0.466** | 0.491** | -0.348** | -0.019 |
Fig 2. Distribution of QTLs related to DR, SR, TR and RDR derived from Dongxiang wild rice (Dongye 80). The black shapes show QTLs that were detected in Shanghai (SH), and the white shapes represent QTLs that were identified in Hainan (HN). The red shapes represent QTLs mapped in both environments. DR, The number of deep roots; SR, The number of shallow roots; TR, The total number of roots; RDR, Ratio of deep roots.
Fig. 3. Confirmation of QTLs qRDR2.2 (A) and qDR5.1 (B). Data are Mean ± SD (n = 6). **, Significant differences between backcross introgression lines (BILs) and recurrent parent R974 at P < 0.01.
Fig. 4. Validation of QTLs for ratio of deep roots (RDR) (A) and number of deep roots (DR) (B), and their pyramiding effects. SD, Standard deviation. **, Significant difference between the lines pyramided with different QTLs at P < 0.01.
QTL | Chromosome | Interval | Putative gene | Cloned symbol |
---|---|---|---|---|
qRDR2.2 | 2 | c02b009‒c02b015 | LOC_Os02g01355 | |
LOC_Os02g03410 | OsCPK4 | |||
LOC_Os02g03710 | ||||
LOC_Os02g03900 | Nrat1 | |||
LOC_Os02g04160 | OsTEF1 | |||
LOC_Os02g04270 | ||||
LOC_Os02g04520 | RGG2 | |||
LOC_Os02g04640 | OsPHR3 | |||
LOC_Os02g04680 | OsSPL3 | |||
qDR5.1 | 5 | c05b004‒c05b005 | LOC_Os05g01030 | |
LOC_Os05g01040 | ||||
LOC_Os05g02070 | OsMT2b | |||
LOC_Os05g02140 |
Table 4. Putative genes at two QTL regions under hormone treatment and association analysis in rice.
QTL | Chromosome | Interval | Putative gene | Cloned symbol |
---|---|---|---|---|
qRDR2.2 | 2 | c02b009‒c02b015 | LOC_Os02g01355 | |
LOC_Os02g03410 | OsCPK4 | |||
LOC_Os02g03710 | ||||
LOC_Os02g03900 | Nrat1 | |||
LOC_Os02g04160 | OsTEF1 | |||
LOC_Os02g04270 | ||||
LOC_Os02g04520 | RGG2 | |||
LOC_Os02g04640 | OsPHR3 | |||
LOC_Os02g04680 | OsSPL3 | |||
qDR5.1 | 5 | c05b004‒c05b005 | LOC_Os05g01030 | |
LOC_Os05g01040 | ||||
LOC_Os05g02070 | OsMT2b | |||
LOC_Os05g02140 |
[1] | Abe J, Morita S. 1994. Growth direction of nodal roots in rice: Its variation and contribution to root system formation. Plant Soil, 165: 333-337. |
[2] | Aloni R, Aloni E, Langhans M, Ullrich C I. 2006. Role of cytokinin and auxin in shaping root architecture: Regulating vascular differentiation, lateral root initiation, root apical dominance and root gravitropism. Ann Bot, 97: 883-893. |
[3] | Araki H, Morita S, Tatsumi J, Iijima M. 2002. Physiol-morphological analysis on axile root growth in upland rice. Plant Prod Sci, 5: 286-293. |
[4] | Blum A. 2005. Drought resistance, water-use efficiency, and yield potential: Are they compatible, dissonant, or mutually exclusive? Aust J Agric Res, 56: 1159-1168. |
[5] |
Bradbury-Jones C, Sambrook S, Irvine F. 2007. The meaning of empowerment for nursing students: A critical incident study. J Adv Nurs, 59(4): 342-351.
PMID |
[6] | Campo S, Baldrich P, Messeguer J, Lalanne E, Coca M, San Segundo B. 2014. Overexpression of a calcium-dependent protein kinase confers salt and drought tolerance in rice by preventing membrane lipid peroxidation. Plant Physiol, 165(2): 688-704. |
[7] | Fukai S, Cooper M. 1995. Development of drought-resistant cultivars using physiomorphological traits in rice. Field Crops Res, 40: 67-86. |
[8] | Gowda V R P, Henry A, Yamauchi A, Shashidhar H E, Serraj R. 2011. Root biology and genetic improvement for drought avoidance in rice. Field Crops Res, 122: 1-13. |
[9] | Kato Y, Abe J, Kamoshita A, Yamagishi J. 2006. Genotypic variation in root growth angle in rice (Oryza sativa L.) and its association with deep root development in upland fields with different water regimes. Plant Soil, 287: 117-129. |
[10] |
Kitomi Y, Kanno N, Kawai S, Mizubayashi T, Fukuoka S, Uga Y. 2015. QTLs underlying natural variation of root growth angle among rice cultivars with the same functional allele of DEEPER ROOTING 1. Rice, 8: 16.
PMID |
[11] | Kondo M, Murty M V R, Aragones D V. 2000. Characteristics of root growth and water uptake from soil in upland rice and maize under water stress. Soil Sci Plant Nutr, 46: 721-732. |
[12] | Kondo M, Pablico P P, Aragones D V, Agbisit R, Abe J, Morita S, Courtois B. 2003. Genotypic and environmental variations in root morphology in rice genotypes under upland field conditions. Plant Soil, 255: 189-200. |
[13] | Liang Y S, Zheng J, Yan C, Li X X, Liu S F, Zhou J J, Qin X J, Nan W B, Yang Y Q, Zhang H M. 2018. Locating QTLs controlling overwintering trait in Chinese perennial Dongxiang wild rice. Mol Genet Genomics, 293(1): 81-93. |
[14] | Löfke C, Zwiewka M, Heilmann I, van Montagu M C E, Thomas Teichmann T, Friml J. 2013. Asymmetric gibberellin signaling regulates vacuolar trafficking of PIN auxin transporters during root gravitropism. Proc Natl Acad Sci USA, 110(9): 3627-3632. |
[15] | Lou Q J, Chen L, Mei H W, Wei H B, Feng F J, Wang P, Xia H, Li T M, Luo L J. 2015. Quantitative trait locus mapping of deep rooting by linkage and association analysis in rice. J Exp Bot, 66: 4749-4757. |
[16] |
Luo L J. 2010. Breeding for water-saving and drought-resistance rice (WDR) in China. J Exp Bot, 61: 3509-3517.
PMID |
[17] | Luo L J, Zhang Q F. 2001. The status and strategy on drought resistance of rice (Oryza sativa L.). Chin J Rice Sci, 15(3): 209-214. (in Chinese with English abstract) |
[18] | McCouch S R, CGSNL(Committee on Gene Symbolization, Nomenclature and Linkage, Rice Genetics Cooperative). 2008. Gene nomenclature system for rice. Rice, 1(1): 72-84. |
[19] | Pandit E, Panda R K, Sahoo A, Pani D R, Pradhan S K. 2020. Genetic relationship and structure analysis of root growth angle for improvement of drought avoidance in early and mid-early maturing rice genotypes. Rice Sci, 27(2): 124-132. |
[20] |
Price A H, Cairns J E, Horton P, Jones H G, Griffiths H. 2002. Linking drought-resistance mechanisms to drought avoidance in upland rice using a QTL approach: Progress and new opportunities to integrate stomatal and mesophyll responses. J Exp Bot, 53: 989-1004.
PMID |
[21] | Qi W D, Chen H P, Yang Z Z, Hu B L, Luo X D, Ai B, Luo Y, Huang Y, Xie J K, Zhang F T. 2020. Systematic characterization of long non-coding RNAs and their responses to drought stress in Dongxiang wild rice. Rice Sci, 27(1): 21-31. |
[22] | Singh M, Gupta A, Laxmi A. 2014. Glucose and phytohormone interplay in controlling root directional growth in Arabidopsis. Plant Signal Behav, 9: e29219. |
[23] | Turner N C. 1996. Further progress in crop water relations. Adv Agron, 58(8): 293-338. |
[24] | Uga Y. 2012. Quantitative measurement of root growth angle by using the basket method. In: Shashidhar H E, Henry A, Hardy B. Methodologies for Root Drought Studies in Rice. Manila, the Philippines: International Rice Research Institute: 22-26. |
[25] | Uga Y, Okuno K, Yano M. 2011. Dro1, a major QTL involved in deep rooting of rice under upland field conditions. J Exp Bot, 62: 2485-2494. |
[26] | Uga Y, Hanzawa E, Nagai S, Sasaki K, Yano M, Sato T. 2012. Identification of qSOR1, a major rice QTL involved in soil- surface rooting in paddy fields. Theor Appl Genet, 124: 75-86. |
[27] | Uga Y, Yamamoto E, Kanno N, Kawai S, Mizubayashi T, Fukuoka S. 2013a. A major QTL controlling deep rooting on rice chromosome 4. Sci Rep, 3: 3040. |
[28] | Uga Y, Sugimoto K, Ogawa S, Rane J, Ishitani M, Hara N, Kitomi Y, Inukai Y, Ono K, Kanno N, Inoue H, Takehisa H, Motoyama R, Nagamura Y, Wu J Z, Matsumoto T, Takai T, Okuno K, Yano M. 2013b. Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions. Nat Genet, 45: 1097-1102. |
[29] | Uga Y, Kitomi Y, Yamamoto E, Kanno N, Kawai S, Mizubayashi T, Fukuoka S. 2015. A QTL for root growth angle on rice chromosome 7 is involved in the genetic pathway of DEEPER ROOTING 1. Rice, 8: 8. |
[30] | Xia H, Luo Z, Xiong J, Ma X S, Lou Q J, Wei H B, Qiu J, Yang H, Liu G L, Fan L J, Chen L, Luo L J. 2019. Bi-directional selection in upland rice leads to its adaptive differentiation from lowland rice in drought resistance and productivity. Mol Plant, 12: 170-184. |
[31] | Xie W B, Feng Q, Yu H H, Huang H H, Zhao Q, Xing Y Z, Yu S B, Han B, Zhang Q F. 2010. Parent-independent genotyping for constructing an ultrahigh-density linkage map based on population sequencing. Proc Natl Acad Sci USA, 107(23): 10578-10583. |
[32] | Yoshida S, Hasegawa S. 1982. The rice root system: Its development and function. In: The Rice Root System: Its Development and Function in Drought Resistance in Crops with Emphasis on Rice. Manila, the Philippines: International Rice Research Institute: 97-114. |
[33] | Yuan J, Chen D, Ren Y J, Zhang X L, Zhao J. 2008. Characteristic and expression analysis of a metallothionein gene, OsMT2b, down-regulated by cytokinin suggests functions in root development and seed embryo germination of rice. Plant Physiol, 146(4): 1637-1650. |
[34] | Zhang F T, Luo X D, Zhou Y, Xie J K. 2016. Genome-wide identification of conserved microRNA and their response to drought stress in Dongxiang wild rice (Oryza rufipogon Griff.). Biotechnol Lett, 38(4): 711-721. |
[35] | Zhang Q F. 2007. Strategies for developing green super rice. Proc Natl Acad Sci USA, 104: 16402-16409. |
[36] |
Zhang X, Zhou S X, Fu Y C, Su Z, Wang X K, Sun C Q. 2006. Identification of a drought tolerant introgression line derived from Dongxiang common wild rice (O. rufipogon Griff.). Plant Mol Biol, 62: 247-259.
PMID |
[1] | Prathap V, Suresh KUMAR, Nand Lal MEENA, Chirag MAHESHWARI, Monika DALAL, Aruna TYAGI. Phosphorus Starvation Tolerance in Rice Through a Combined Physiological, Biochemical and Proteome Analysis [J]. Rice Science, 2023, 30(6): 8-. |
[2] | FAN Fengfeng, CAI Meng, LUO Xiong, LIU Manman, YUAN Huanran, CHENG Mingxing, Ayaz AHMAD, LI Nengwu, LI Shaoqing. Novel QTLs from Wild Rice Oryza longistaminata Confer Rice Strong Tolerance to High Temperature at Seedling Stage [J]. Rice Science, 2023, 30(6): 14-. |
[3] | Si Fengfeng, Fan Fengfeng, Wei Xiao, He Shihao, Li Xianlong, Peng Xiaojue, Li Shaoqing. Quantitative Trait Locus Mapping of High Photosynthetic Efficiency and Biomass in Oryza longistaminata [J]. Rice Science, 2022, 29(6): 569-576. |
[4] | Kossi Lorimpo Adjah, Maxwell Darko Asante, Aboubacar Toure, Mawuli Aziadekey, Francis Osei Amoako-Andoh, Michael Frei, Yacouba Diallo, Komi Agboka. Improvement of Rice Production under Drought Conditions in West Africa: Application of QTLs in Breeding for Drought Resistance [J]. Rice Science, 2022, 29(6): 512-521. |
[5] | Tan Quanya, Zhu Haitao, Liu Hui, Ni Yuerong, Wu Shengze, Luan Xin, Liu Junwei, Yang Weifeng, Yang Zifeng, Zeng Ruizhen, Liu Guifu, Wang Shaokui, Zhang Guiquan. Fine Mapping of QTLs for Stigma Exsertion Rate from Oryza glaberrima by Chromosome Segment Substitution [J]. Rice Science, 2022, 29(1): 55-66. |
[6] | Weidong Qi, Hongping Chen, Zuozhen Yang, Biaolin Hu, Xiangdong Luo, Bing Ai, Yuan Luo, Yu Huang, Jiankun Xie, Fantao Zhang. Systematic Characterization of Long Non-Coding RNAs and Their Responses to Drought Stress in Dongxiang Wild Rice [J]. Rice Science, 2020, 27(1): 21-31. |
[7] | Fantao Zhang, Yuan Luo, Meng Zhang, Yi Zhou, Hongping Chen, Biaolin Hu, Jiankun Xie. Identification and Characterization of Drought Stress- Responsive Novel microRNAs in Dongxiang Wild Rice [J]. Rice Science, 2018, 25(4): 175-184. |
[8] | Yaobin Qin, Peng Cheng, Yichen Cheng, Yue Feng, Derun Huang, Tingxu Huang, Xianjun Song, Jiezheng Ying. QTL-Seq Identified a Major QTL for Grain Length and Weight in Rice Using Near Isogenic F2 Population [J]. Rice Science, 2018, 25(3): 121-131. |
[9] | Vivitha P., Raveendran M., Vijayalakshmi D.. Introgression of QTLs Controlling Spikelet Fertility Maintains Membrane Integrity and Grain Yield in Improved White Ponni Derived Progenies Exposed to Heat Stress [J]. Rice Science, 2017, 24(1): 32-40. |
[10] | Chuan Tong, Lei Liu, L. E. Waters Daniel, Jin-song Bao. Association Mapping and Marker Development of Genes for Starch Lysophospholipid Synthesis in Rice [J]. Rice Science, 2016, 23(6): 287-296. |
[11] | ZUO Shi-min, ZHANG Ya-fang, CHEN Zong-xiang, JIANG Wei, FENG Ming-hui, PAN Xue-biao. Improvement of Rice Resistance to Sheath Blight by Pyramiding QTLs Conditioning Disease Resistance and Tiller Angle [J]. RICE SCIENCE, 2014, 21(6): 318-326. |
[12] | ZHANG Hong-jun, QU Li-jun, XIANG Chao, WANG Hui, XIA Jia-fa, LI Ze-fu, GAO Yong-ming, SHI Ying-yao. Dissection of Genetic Mechanism of Abnormal Heading in Hybrid Rice [J]. RICE SCIENCE, 2014, 21(4): 201-209. |
[13] | LUO Li-li1, 2, #, ZHANG Ying-xin1, #, CHEN Dai-bo1, ZHAN Xiao-deng1, SHEN Xi-hong1, CHENG Shi-hua1, CAO Li-yong1. QTL Mapping for Hull Thickness and Related Traits in Hybrid Rice Xieyou 9308 [J]. RICE SCIENCE, 2014, 21(1): 29-38. |
[14] | SHENG Zhong-hua, WEI Xiang-jin, SHAO Gao-neng, SONG Jian, LUO Ju, HU Pei-song, TANG Shao-qing2, CHEN Li-yun . Genetic Analysis and Molecular Mapping of Novel White Striped Leaf Mutant Gene in Rice [J]. RICE SCIENCE, 2013, 20(5): 336-342. |
[15] | SHEN Xian-hua, YAN Song, HUANG Ren-liang, ZHU Shan, XIONG Hong-liang, SHEN Lin-jun. Development of Novel Cytoplasmic Male Sterile Source from Dongxiang Wild Rice (Oryza rufipogon) [J]. RICE SCIENCE, 2013, 20(5): 379-382. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||