Rice Science ›› 2023, Vol. 30 ›› Issue (3): 222-234.DOI: 10.1016/j.rsci.2023.03.006
• Research Paper • Previous Articles Next Articles
Jiang Hongzhen1,#, Wang Yamei1,#, Lai Liuru1, Liu Xintong1, Miao Changjian1, Liu Ruifang2, Li Xiaoyun1, Tan Jinfang1, Gao Zhenyu3(), Chen Jingguang1(
)
Received:
2022-10-17
Accepted:
2023-01-14
Online:
2023-05-28
Published:
2023-02-21
Contact:
Chen Jingguang (chenjg28@mail.sysu.edu.cn); Gao Zhenyu (gaozhenyu@caas.cn)
About author:
First author contact:#These authors contributed equally to this work
Jiang Hongzhen, Wang Yamei, Lai Liuru, Liu Xintong, Miao Changjian, Liu Ruifang, Li Xiaoyun, Tan Jinfang, Gao Zhenyu, Chen Jingguang. OsAMT1.1 Expression by Nitrate-Inducible Promoter of OsNAR2.1 Increases Nitrogen Use Efficiency and Rice Yield[J]. Rice Science, 2023, 30(3): 222-234.
Add to citation manager EndNote|Ris|BibTeX
Fig. 1. Effects of nitrogen levels on transcriptional expression of OsAMT1.1 and OsNAR2.1 in rice roots. A, Expression of OsAMT1.1. B, Expression of OsNAR2.1.Nipponbare seedlings were cultured in the IRRI solution containing 1.0 mmol/L NH4NO3 for three weeks and shifted to different N supply levels for one additional week. LN, 0.5 mmol/L NO3-; HN, 2.5 mmol/L NO3-; HNLA, 2.0 mmol/L NO3- + 0.5 mmol/L NH4+; LNHA, 0.5 mmol/L NO3- + 2.0 mmol/L NH4+; HA, 2.5 mmol/L NH4+. Actin1 gene of rice was used as an internal control. Data are Mean ± SE (n = 3). Different lowercase letters above the bars indicate significant differences at the 0.05 level.
Fig. 2. Characterization of pOsNAR2.1: OsAMT1.1 and pUbi:OsAMT1.1 transgenic lines (T3 generation). A, Gross morphology of wild type (WT), pOsNAR2.1:OsAMT1.1 (pN2 and pN5) and pUbi:OsAMT1.1 (pU2 and pU4) transgenic lines. Scale bar, 10 cm. B and C, Endogenous OsAMT1.1 expression in root (B) and leaf blade I (C). Actin1 gene of rice was used as an internal control. Data are Mean ± SE (n = 3).D, Grain yield and dry weight per plant. Mean dry weight values referred to all the biomass aboveground, including grain yield. Data are Mean ± SE (n = 4). Different lowercase letters above the bars for the same trait indicate significant differences at the 0.05 level.
Fig. 3. Comparison of agronomic traits in transgenic lines (T3 generation). A, Plant height. B, Total tiller number per plant. C, Effective tiller number per plant. D, Grain weight per panicle. E, Panicle length. F, Seed-setting rate. G, Grain number per panicle. H, 1000-grain weight. WT, Wild type; pN2 and pN5 are pOsNAR2.1:OsAMT1.1 transgenic lines while pU2 and pU4 are pUbi:OsAMT1.1 transgenic lines.Data are Mean ± SE (n = 4). Different lowercase letters above the bars indicate significant differences at the 0.05 level.
Fig. 4. Biomass and nitrogen (N) content in different parts of transgenic lines at flowering and maturity stages in fields. A and B, WT and T4 generation transgenic plants in the field. C-E, Dry weight (C), total N concentration (D) and total N content per plant (E) in different parts of transgenic lines and WT at the flowering stage. F-H, Dry weight (F), total N concentration (G) and total N content (H) in different parts of transgenic lines and WT at the maturity stage. WT, Wild type; pN2 and pN5 are pOsNAR2.1:OsAMT1.1 transgenic lines while pU2 and pU4 are pUbi:OsAMT1.1 transgenic lines.Data are Mean ± SE (n = 4). Different lowercase letters above the bars indicate significant differences at the 0.05 level.
Fig. 5. Biomass and nitrogen (N) accumulation of transgenic lines (T4 generation) in fields. A, Dry matter at the flowering stage. B, Dry matter at the maturity stage. C, Grain yield. D, Total N accumulation at the flowering stage. E, Total N accumulation at the maturity stage. F, Grain N accumulation at the maturity stage. WT, Wild type; pN2 and pN5 are pOsNAR2.1:OsAMT1.1 transgenic lines while pU2 and pU4 are pUbi:OsAMT1.1 transgenic lines.Data are Mean ± SE (n = 4). Different lowercase letters above the bars indicate significant differences at the 0.05 level.
Fig. 6. Comparison of nitrogen (N) use efficiency between WT and transgenic lines (T4 generation). A, Agronomic N use efficiency. B, N recovery efficiency. C, Physiological N use efficiency. D, N harvest index. E, Dry matter translocation efficiency. F, N translocation efficiency. WT, Wild type; pN2 and pN5 are pOsNAR2.1:OsAMT1.1 transgenic lines while pU2 and pU4 are pUbi:OsAMT1.1 transgenic lines.Data are Mean ± SE (n = 4). Different lowercase letters above the bars indicate significant differences at the 0.05 level.
Fig. 7. Comparison of growth and total nitrogen (N) content of transgenic lines at different N supply levels. A-C, Dry weights of seedlings treated with 0.5 mmol/L NO3- (A), 2.0 mmol/L NO3- + 0.5 mmol/L NH4+ (B), and 0.5 mmol/L NO3- + 2.0 mmol/L NH4+ (C).D-F, Total N concentration in roots and shoots in the pN lines, pU lines and WT under 0.5 mmol/L NO3- (D), 2.0 mmol/L NO3- + 0.5 mmol/L NH4+ (E), and 0.5 mmol/L NO3- + 2.0 mmol/L NH4+ (F). G-I, Total N content of roots and shoots, under 0.5 mmol/L NO3- (G), 2.0 mmol/L NO3- + 0.5 mmol/L NH4+ (H), and 0.5 mmol/L NO3- + 2.0 mmol/L NH4+ (I). WT, Wild type; pN2 and pN5 are pOsNAR2.1:OsAMT1.1 transgenic lines while pU2 and pU4 are pUbi:OsAMT1.1 transgenic lines.WT and transgenic rice seedlings were cultured in the IRRI solution containing 1.0 mmol/L NO3- for one week and then in different forms of N for two additional weeks.Data are Mean ± SE (n = 4). Different lowercase letters above the bars indicate significant differences at the 0.05 level.
Fig. 8. NH4+ and NO3- influx rates in transgenic lines using 15N enriched sources. A-C, 15NO3- influx rate (A), 15NH4+ influx rate (B) and ratio of 15NH4+ to 15NO3- influx (C) at 2.0 mmol/L 15NO3- + 0.5 mmol/L NH4+.D-F, 15NO3- influx rate (D), 15NH4+ influx rate (E) and ratio of 15NH4+ to 15NO3- influx (F) at 0.5 mmol/L 15NO3- + 2.0 mmol/L NH4+. Wild type (WT) and transgenic seedlings were grown in 1.0 mmol/L NO3- for three weeks and N starved for 3 d. Data are Mean ± SE (n = 4). Different lowercase letters above the bars indicate significant differences at P ≤ 0.05.
[1] |
Briones A M, Okabe S, Umemiya Y, Ramsing N B, Reichardt W, Okuyama H. 2002. Influence of different cultivars on populations of ammonia-oxidizing bacteria in the root environment of rice. Appl Environ Microbiol, 68(6): 3067-3075.
DOI URL |
[2] |
Britto D T, Kronzucker H J. 2002. NH4+ toxicity in higher plants: A critical review. J Plant Physiol, 159(6): 567-584.
DOI URL |
[3] |
Chen J G, Zhang Y, Tan Y W, Zhang M, Zhu L L, Xu G H, Fan X R. 2016. Agronomic nitrogen-use efficiency of rice can be increased by driving OsNRT2.1 expression with the OsNAR2.1 promoter. Plant Biotechnol J, 14(8): 1705-1715.
DOI URL |
[4] |
Chen J G, Fan X R, Qian K Y, Zhang Y, Song M Q, Liu Y, Xu G H, Fan X R,. 2017. pOsNAR2.1:OsNAR2.1 expression enhances nitrogen uptake efficiency and grain yield in transgenic rice plants. Plant Biotechnol J, 15(10): 1273-1283.
DOI URL |
[5] |
Chen J G, Liu X Q, Liu S H, Fan X R, Zhao L M, Song M Q, Fan X R, Xu G H. 2020. Co-overexpression of OsNAR2.1 and OsNRT2.3a increased agronomic nitrogen use efficiency in transgenic rice plants. Front Plant Sci, 11: 1245.
DOI URL |
[6] |
Coleto I, Bejarano I, Marín-Peña A J, Medina J, Rioja C, Burow M, Marino D. 2021. Arabidopsis thaliana transcription factors MYB28 and MYB29 shape ammonium stress responses by regulating Fe homeostasis. New Phytol, 229(2): 1021-1035.
DOI URL |
[7] |
Crawford N M, Forde B G. 2002. Molecular and developmental biology of inorganic nitrogen nutrition. Arabidopsis Book, 1: e0011.
DOI URL |
[8] |
Esteban R, Ariz I, Cruz C, Moran J F. 2016. Review: Mechanisms of ammonium toxicity and the quest for tolerance. Plant Sci, 248: 92-101.
DOI PMID |
[9] |
Fan X R, Tang Z, Tan Y W, Zhang Y, Luo B B, Yang M, Lian X M, Shen Q R, Miller A J, Xu G H. 2016. Overexpression of a pH-sensitive nitrate transporter in rice increases crop yields. Proc Natl Acad Sci USA, 113(26): 7118-7123.
DOI PMID |
[10] |
Fang G, Yang J, Sun T, Wang X X, Li Y S. 2021. Evidence that synergism between potassium and nitrate enhances the alleviation of ammonium toxicity in rice seedling roots. PLoS One, 16(9): e0248796.
DOI URL |
[11] |
Feng H M, Yan M, Fan X R, Li B Z, Shen Q R, Miller A J, Xu G H. 2011. Spatial expression and regulation of rice high-affinity nitrate transporters by nitrogen and carbon status. J Exp Bot, 62(7): 2319-2332.
DOI PMID |
[12] |
Gao Z Y, Wang Y F, Chen G, Zhang A P, Yang S L, Shang L G, Wang D Y, Ruan B P, Liu C L, Jiang H Z, Dong G J, Zhu L, Hu J, Zhang G H, Zeng D L, Guo L B, Xu G H, Teng S, Harberd N P, Qian Q. 2019. The indica nitrate reductase gene OsNR2 allele enhances rice yield potential and nitrogen use efficiency. Nat Commun, 10(1): 5207.
DOI |
[13] |
Garnett T, Conn V, Kaiser B N. 2009. Root based approaches to improving nitrogen use efficiency in plants. Plant Cell Environ, 32(9): 1272-1283.
DOI URL |
[14] |
Good A G, Shrawat A K, Muench D G. 2004. Can less yield more? Is reducing nutrient input into the environment compatible with maintaining crop production? Trends Plant Sci, 9(12): 597-605.
DOI PMID |
[15] |
Hachiya T, Watanabe C K, Fujimoto M, Ishikawa T, Takahara K, Kawai-Yamada M, Uchimiya H, Uesono Y, Terashima I, Noguchi K. 2012. Nitrate addition alleviates ammonium toxicity without lessening ammonium accumulation, organic acid depletion and inorganic cation depletion in Arabidopsis thaliana shoots. Plant Cell Physiol, 53(3): 577-591.
DOI URL |
[16] |
Hachiya T, Sakakibara H. 2017. Interactions between nitrate and ammonium in their uptake, allocation, assimilation, and signaling in plants. J Exp Bot, 68(10): 2501-2512.
DOI PMID |
[17] |
Hirel B, Tétu T, Lea P J, Dubois F. 2011. Improving nitrogen use efficiency in crops for sustainable agriculture. Sustainability, 3(9): 1452-1485.
DOI URL |
[18] |
Hoque M S, Masle J, Udvardi M K, Ryan P R, Upadhyaya N M. 2006. Over-expression of the rice OsAMT1-1 gene increases ammonium uptake and content, but impairs growth and development of plants under high ammonium nutrition. Funct Plant Biol, 33(2): 153-163.
DOI URL |
[19] |
Hou M M, Yu M, Li Z Q, Ai Z Y, Chen J G. 2021. Molecular regulatory networks for improving nitrogen use efficiency in rice. Int J Mol Sci, 22(16): 9040.
DOI URL |
[20] |
Hu B, Wang W, Ou S J, Tang J Y, Li H, Che R H, Zhang Z H, Chai X Y, Wang H R, Wang Y Q, Liang C Z, Liu L C, Piao Z Z, Deng Q Y, Deng K, Xu C, Liang Y, Zhang L H, Li L G, Chu C C. 2015. Variation in NRT1.1B contributes to nitrate-use divergence between rice subspecies. Nat Genet, 47(7): 834-838.
DOI |
[21] |
Jia L T, Xie Y M, Wang Z, Luo L, Zhang C, Pélissier P M, Parizot B, Qi W C, Zhang J, Hu Z B, Motte H, Luo L, Xu G H, Beeckman T, Xuan W. 2020. Rice plants respond to ammonium stress by adopting a helical root growth pattern. Plant J, 104(4): 1023-1037.
DOI URL |
[22] |
Khademi S, O'Connell J III, Remis J, Robles-Colmenares Y, Miercke L J W, Stroud R M. 2004. Mechanism of ammonia transport by Amt/MEP/Rh: Structure of AmtB at 1.35 Å. Science, 305: 1587-1594.
DOI URL |
[23] |
Kirk G D, Kronzucker H J. 2005. The potential for nitrification and nitrate uptake in the rhizosphere of wetland plants: A modelling study. Ann Bot, 96(4): 639-646.
DOI URL |
[24] |
Konishi N, Ma J F. 2021. Three polarly localized ammonium transporter 1 members are cooperatively responsible for ammonium uptake in rice under low ammonium condition. New Phytol, 232(4): 1778-1792.
DOI PMID |
[25] |
Kronzucker H J, Siddiqi M Y, Glass A D, Kirk G J. 1999. Nitrate-ammonium synergism in rice: A subcellular flux analysis. Plant Physiol, 119(3): 1041-1046.
PMID |
[26] | Kumar A, Kaiser B N, Siddiqi M Y, Glass A D M. 2006. Functional characterisation of OsAMT1.1 overexpression lines of rice, Oryza sativa. Funct Plant Biol, 33(4): 339-346. |
[27] |
Lee S, Marmagne A, Park J, Fabien C, Yim Y, Kim S J, Kim T H, Lim P O, Masclaux-Daubresse C, Nam H G. 2020. Concurrent activation of OsAMT1;2 and OsGOGAT1 in rice leads to enhanced nitrogen use efficiency under nitrogen limitation. Plant J, 103(1): 7-20.
DOI URL |
[28] |
Li B H, Li G J, Kronzucker H J, Baluška F, Shi W M. 2014. Ammonium stress in Arabidopsis: Signaling, genetic loci, and physiological targets. Trends Plant Sci, 19(2): 107-114.
DOI URL |
[29] |
Li L, Zhang Z, Tian H, Ashraf U, Hamoud Y A, Alaa A A, Tang X R, Duan M Y, Wang Z M, Pan S G. 2022. Nitrogen deep placement combined with straw mulch cultivation enhances physiological traits, grain yield and nitrogen use efficiency in mechanical pot-seedling transplanting rice. Rice Sci, 29(1): 89-100.
DOI |
[30] |
Li S, Tian Y H, Wu K, Ye Y F, Yu J P, Zhang J Q, Liu Q, Hu M Y, Li H, Tong Y P, Harberd N P, Fu X D. 2018. Modulating plant growth-metabolism coordination for sustainable agriculture. Nature, 560: 595-600.
DOI |
[31] | Li Y L, Fan X R, Shen Q R. 2008. The relationship between rhizosphere nitrification and nitrogen use efficiency in rice plants. Plant Cell Environ, 31(1): 73-85. |
[32] |
Liu X Q, Feng H M, Huang D M, Song M Q, Fan X R, Xu G H. 2015. Two short sequences in OsNAR2.1 promoter are necessary for fully activating the nitrate induced gene expression in rice roots. Sci Rep, 5(1): 11950.
DOI |
[33] |
Luo L, Zhu M, Jia L T, Xie Y M, Wang Z N, Xuan W. 2022. Ammonium transporters cooperatively regulate rice crown root formation responding to ammonium nitrogen. J Exp Bot, 73(11): 3671-3685.
DOI URL |
[34] |
Miller A J, Fan X R, Orsel M, Smith S J, Wells D M. 2007. Nitrate transport and signalling. J Exp Bot, 58(9): 2297-2306.
DOI PMID |
[35] | Pastor V, Gamir J, Camañes G, Cerezo M, Sánchez-Bel P, Flors V. 2014. Disruption of the ammonium transporter AMT1.1 alters basal defenses generating resistance against Pseudomonas syringae and Plectosphaerella cucumerina. Front Plant Sci, 5: 231. |
[36] |
Ranathunge K, El-Kereamy A, Gidda S, Bi Y M, Rothstein S J. 2014. AMT1;1 transgenic rice plants with enhanced NH4+ permeability show superior growth and higher yield under optimal and suboptimal NH4+ conditions. J Exp Bot, 65(4): 965-979.
DOI PMID |
[37] |
Scheible W R, Morcuende R, Czechowski T, Fritz C, Osuna D, Palacios-Rojas N, Schindelasch D, Thimm O, Udvardi M K, Stitt M. 2004. Genome-wide reprogramming of primary and secondary metabolism, protein synthesis, cellular growth processes, and the regulatory infrastructure of Arabidopsis in response to nitrogen. Plant Physiol, 136(1): 2483-2499.
DOI URL |
[38] | Sonoda Y, Ikeda A, Saiki S, von Wirén N, Yamaya T, Yamaguchi J. 2003. Distinct expression and function of three ammonium transporter genes (OsAMT1;1-1;3) in rice. Plant Cell Physiol, 44(7): 726-734. |
[39] |
Sun L, Di D W, Li G J, Kronzucker H J, Shi W M. 2017. Spatio-temporal dynamics in global rice gene expression (Oryza sativa L.) in response to high ammonium stress. J Plant Physiol, 212: 94-104.
DOI URL |
[40] |
Swarbreck S M, Wang M, Wang Y, Kindred D, Sylvester-Bradley R, Shi W M, Varinderpal-Singh, Bentley A R, Griffiths H. 2019. A roadmap for lowering crop nitrogen requirement. Trends Plant Sci, 24(10): 892-904.
DOI PMID |
[41] |
Tang W J, Ye J, Yao X M, Zhao P Z, Xuan W, Tian Y L, Zhang Y Y, Xu S, An H Z, Chen G M, Yu J, Wu W, Ge Y W, Liu X L, Li J, Zhang H Z, Zhao Y Q, Yang B, Jiang X Z, Peng C, Zhou C, Terzaghi W, Wang C M, Wan J M. 2019. Genome-wide associated study identifies NAC42-activated nitrate transporter conferring high nitrogen use efficiency in rice. Nat Commun, 10(1): 5279.
DOI PMID |
[42] |
Wang W, Hu B, Yuan D Y, Liu Y Q, Che R H, Hu Y C, Ou S J, Liu Y X, Zhang Z H, Wang H R, Li H, Jiang Z M, Zhang Z L, Gao X K, Qiu Y H, Meng X B, Liu Y X, Bai Y, Liang Y, Wang Y Q, Zhang L H, Li L G, Sodmergen, Jing H C, Li J Y, Chu C C. 2018. Expression of the nitrate transporter gene OsNRT1.1A/OsNPF6.3 confers high yield and early maturation in rice. Plant Cell, 30(3): 638-651.
DOI URL |
[43] |
Wu J, Zhang Z S, Xia J Q, Alfatih A, Song Y, Huang Y J, Wan G Y, Sun L Q, Tang H, Liu Y, Wang S M, Zhu Q S, Qin P, Wang Y P, Li S G, Mao C Z, Zhang G Q, Chu C C, Yu L H, Xiang C B. 2021. Rice NIN-LIKE PROTEIN 4 plays a pivotal role in nitrogen use efficiency. Plant Biotechnol J, 19(3): 448-461.
DOI URL |
[44] | Wu K, Wang S S, Song W Z, Zhang J Q, Wang Y, Liu Q, Yu J P, Ye Y F, Li S, Chen J F, Zhao Y, Wang J, Wu X K, Wang M Y, Zhang Y J, Liu B M, Wu Y J, Harberd N P, Fu X D. 2020. Enhanced sustainable green revolution yield via nitrogen-responsive chromatin modulation in rice. Science, 367: eaaz2046. |
[45] |
Wu X X, Yuan D P, Chen H, Kumar V, Kang S M, Jia B L, Xuan Y H. 2022. Ammonium transporter 1 increases rice resistance to sheath blight by promoting nitrogen assimilation and ethylene signalling. Plant Biotechnol J, 20(6): 1085-1097.
DOI PMID |
[46] |
Xu N, Yu B, Chen R R, Li S T, Zhang G C, Huang J L. 2020. OsNAR2.2 plays a vital role in the root growth and development by promoting nitrate uptake and signaling in rice. Plant Physiol Biochem, 149: 159-169.
DOI URL |
[47] |
Xu Y J, Tang S P, Jian C Q, Cai W L, Zhang W Y, Wang Z Q, Yang J C. 2022. Roles of polyamines and ethylene in grain filling, grain weight and quality of rice. Chin J Rice Sci, 36(4): 327-335. (in Chinese with English abstract)
DOI |
[48] |
Xuan W, Beeckman T, Xu G H. 2017. Plant nitrogen nutrition: Sensing and signaling. Curr Opin Plant Biol, 39: 57-65.
DOI PMID |
[49] |
Yan M, Fan X R, Feng H M, Miller A J, Shen Q R, Xu G H. 2011. Rice OsNAR2.1 interacts with OsNRT2.1, OsNRT2.2 and OsNRT2.3a nitrate transporters to provide uptake over high and low concentration ranges. Plant Cell Environ, 34(8): 1360-1372.
DOI URL |
[50] |
Yu J, Xuan W, Tian Y L, Fan L, Sun J, Tang W J, Chen G M, Wang B X, Liu Y, Wu W, Liu X L, Jiang X Z, Zhou C, Dai Z Y, Xu D Y, Wang C M, Wan J M. 2021. Enhanced OsNLP4-OsNiR cascade confers nitrogen use efficiency by promoting tiller number in rice. Plant Biotechnol J, 19(1): 167-176.
DOI URL |
[51] |
Zhang C, Rees R M, Ju X T. 2021. Cropping system design can improve nitrogen use efficiency in intensively managed agriculture. Environ Pollut, 280: 116967.
DOI URL |
[52] |
Zhang Z S, Xia J Q, Alfatih A, Song Y, Huang Y J, Sun L Q, Wan G Y, Wang S M, Wang Y P, Hu B H, Zhang G H, Qin P, Li S G, Yu L H, Wu J, Xiang C B. 2022. Rice NIN-LIKE PROTEIN 3 modulates nitrogen use efficiency and grain yield under nitrate-sufficient conditions. Plant Cell Environ, 45(5): 1520-1536.
DOI URL |
[1] | Veronica VOLPE, Franco MAGURNO, Paola BONFANTE, Stefano GHIGNONE, Erica LUMINI. Diversity of Arbuscular Mycorrhizal Fungi Associated with Six Rice Cultivars in Italian Agricultural Ecosystem Managed with Alternate Wetting and Drying [J]. Rice Science, 2023, 30(4): 348-358. |
[2] | Konan Jean-Yves N’GUESSAN, Botou ADAHI, Arthur-Brice KONAN-WAIDHET, Satoh MASAYOSHI, Nogbou Emmanuel ASSIDJO. Assessment of Climate Change Impact on Water Requirement and Rice Productivity [J]. Rice Science, 2023, 30(4): 276-293. |
[3] | Prafulla Kumar BEHERA, Debabrata PANDA. Germplasm Resources, Genes and Perspective for Aromatic Rice [J]. Rice Science, 2023, 30(4): 294-305. |
[4] | Salar MONAJJEM, Elias SOLTANI, Ebrahim ZAINALI, Masoud ESFAHANI, Farshid GHADERI-FAR, Maryam HOSSEINI CHALESHTORI, Atefeh REZAEI. Seed Priming Improves Enzymatic and Biochemical Performances of Rice During Seed Germination under Low and High Temperatures [J]. Rice Science, 2023, 30(4): 335-347. |
[5] | B. M. LOKESHKUMAR, S. L. KRISHNAMURTHY, Suman RATHOR, Arvinder Singh WARRIACH, N. M. VINAYKUMAR, B. M. DUSHYANTHAKUMAR, Parbodh Chander SHARMA. Morphophysiological Diversity and Haplotype Analysis of Saltol QTL Region in Diverse Rice Landraces for Salinity Tolerance [J]. Rice Science, 2023, 30(4): 306-320. |
[6] | Long Xinkang, Guan Chunmin, Wang Lin, Jia Liting, Fu Xiangjin, Lin Qinlu, Huang Zhengyu, Liu Chun. Rice Storage Proteins: Focus on Composition, Distribution, Genetic Improvement and Effects on Rice Quality [J]. Rice Science, 2023, 30(3): 207-221. |
[7] | Zhou Longfei, Meng Ran, Yu Xing, Liao Yigui, Huang Zehua, Lü Zhengang, Xu Binyuan, Yang Guodong, Peng Shaobing, Xu Le. Improved Yield Prediction of Ratoon Rice Using Unmanned Aerial Vehicle-Based Multi-Temporal Feature Method [J]. Rice Science, 2023, 30(3): 247-256. |
[8] | Julia Checco, Fathin Ayuni Azizan, Jaquie Mitchell, Ammar Abdul Aziz. Adoption of Improved Rice Varieties in the Global South: A Review [J]. Rice Science, 2023, 30(3): 186-206. |
[9] | Qiu Diyang, Hu Rui, Li Ji, Li Ying, Ding Jierong, Xia Kuaifei, Zhong Xuhua, Fang Zhongming, Zhang Mingyong. Peptide Transporter OsNPF8.1 Contributes to Sustainable Growth under Salt and Drought Stresses, and Grain Yield under Nitrogen Deficiency in Rice [J]. Rice Science, 2023, 30(2): 113-126. |
[10] | Jiratchaya Wisetkomolmat, Chaiwat Arjin, Surat Hongsibsong, Warintorn Ruksiriwanich, Chutamat Niwat, Pimsiri Tiyayon, Sansanee Jamjod, Supapohn Yamuangmorn, Chanakan Prom-U-Thai, Korawan Sringarm. Antioxidant Activities and Characterization of Polyphenols from Selected Northern Thai Rice Husks: Relation with Seed Attributes [J]. Rice Science, 2023, 30(2): 148-159. |
[11] | Li Shuyan, Yan Qiling, Wang Jieyu, Jiang Huidan, Li Zuren, Peng Qiong. Root Endophyte Shift and Key Genera Discovery in Rice under Barnyardgrass Stress [J]. Rice Science, 2023, 30(2): 160-170. |
[12] | Van Quoc Giang, Huynh Ky, Nguyen Chau Thanh Tung, Nguyen Loc Hien, Nguyen van Manh, Nguyen Nhut Thanh, Vo Cong Thanh, Swee Keong Yeap. Novel Deletion in Exon 7 of Betaine Aldehyde Dehydrogenase 2 (BADH2) [J]. Rice Science, 2023, 30(2): 104-112. |
[13] | Li Chao, Li He, Zhang Xianduo, Yang Zhimin. A Pleiotropic Drug Resistance Family Protein Gene Is Required for Rice Growth, Seed Development and Zinc Homeostasis [J]. Rice Science, 2023, 30(2): 127-137. |
[14] | M. Iqbal R. Khan, Sarika Kumari, Faroza Nazir, Risheek Rahul Khanna, Ravi Gupta, Himanshu Chhillar. Defensive Role of Plant Hormones in Advancing Abiotic Stress-Resistant Rice Plants [J]. Rice Science, 2023, 30(1): 15-35. |
[15] | Chen Yanhua, Wang Yaliang, Chen Huizhe, Xiang Jing, Zhang Yikai, Wang Zhigang, Zhu Defeng, Zhang Yuping. Brassinosteroids Mediate Endogenous Phytohormone Metabolism to Alleviate High Temperature Injury at Panicle Initiation Stage in Rice [J]. Rice Science, 2023, 30(1): 70-86. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||