Rice Science ›› 2025, Vol. 32 ›› Issue (5): 649-657.DOI: 10.1016/j.rsci.2025.06.005
• Reviews • Previous Articles Next Articles
Received:
2025-04-10
Accepted:
2025-06-04
Online:
2025-09-28
Published:
2025-10-11
Contact:
Li Haifeng (Li Haifeng, Fan Jiayi. Functions of Rice E3 Ubiquitin Ligases in Response to Environmental Stress and in Regulating Grain Size[J]. Rice Science, 2025, 32(5): 649-657.
Add to citation manager EndNote|Ris|BibTeX
[1] | Alfatih A, Wu J, Jan S U, et al. 2020. Loss of rice PARAQUAT TOLERANCE 3 confers enhanced resistance to abiotic stresses and increases grain yield in field. Plant Cell Environ, 43(11): 2743-2754. |
[2] | Amerik A Y, Hochstrasser M. 2004. Mechanism and function of deubiquitinating enzymes. Biochim Biophys Acta, 1695(1/3): 189-207. |
[3] | Bai C, Wang G J, Feng X H, et al. 2024. OsMAPK6 phosphorylation and CLG1 ubiquitylation of GW6a non-additively enhance rice grain size through stabilization of the substrate. Nat Commun, 15: 4300. |
[4] | Bessho-Uehara K, Masuda K, Wang D R, et al. 2023. Regulator of Awn Elongation 3, an E3 ubiquitin ligase, is responsible for loss of awns during African rice domestication. Proc Natl Acad Sci USA, 120(4): e2207105120. |
[5] | Bi Y, Wang H, Yuan X, et al. 2023. The NAC transcription factor ONAC083 negatively regulates rice immunity against Magnaporthe oryzae by directly activating transcription of the RING-H2 gene OsRFPH2-6. J Integr Plant Biol, 65(3): 854-875. |
[6] | Borah P, Khurana J P. 2018. The OsFBK1 E3 ligase subunit affects anther and root secondary cell wall thickenings by mediating turnover of a cinnamoyl-CoA reductase. Plant Physiol, 176(3): 2148-2165. |
[7] | Borah P, Sharma A, Sharma A K, et al. 2023. SCFOsFBK1 E3 ligase mediates jasmonic acid-induced turnover of OsATL53 and OsCCR14 to regulate lignification of rice anthers and roots. J Exp Bot, 74(19): 6188-6204. |
[8] | Borna R S, Murchie E H, Pyke K A, et al. 2022. The rice EP3 and OsFBK1 E3 ligases alter plant architecture and flower development, and affect transcript accumulation of microRNA pathway genes and their targets. Plant Biotechnol J, 20(2): 297-309. |
[9] | Chen S J, Xu K, Kong D Y, et al. 2022. Ubiquitin ligase OsRINGzf1 regulates drought resistance by controlling the turnover of OsPIP2;1. Plant Biotechnol J, 20( 9): 1743-1755. |
[10] | Choi C, Im J H, Lee J, et al. 2022. OsDWD1 E3 ligase-mediated OsNPR1 degradation suppresses basal defense in rice. Plant J, 112(4): 966-981. |
[11] | Cui L H, Min H J, Yu S G, et al. 2022. OsATL38 mediates mono-ubiquitination of the 14-3-3 protein OsGF14d and negatively regulates the cold stress response in rice. J Exp Bot, 73(1): 307-323. |
[12] | Fan J J, Ma X, Zou J, et al. 2024. LATA1, a RING E3 ligase, modulates the tiller angle by affecting auxin asymmetric distribution and content in rice. Plant J, 120(2): 429-444. |
[13] | Fu S, Wang K, Ma T T, et al. 2022. An evolutionarily conserved C4HC3-type E3 ligase regulates plant broad-spectrum resistance against pathogens. Plant Cell, 34(5): 1822-1843. |
[14] | Gao M J, He Y, Yin X, et al. 2021. Ca2+ sensor-mediated ROS scavenging suppresses rice immunity and is exploited by a fungal effector. Cell, 184(21): 5391-5404.e17. |
[15] | Gu P Y, Tao W Q, Tao J Y, et al. 2023. The D14-SDEL1-SPX4 cascade integrates the strigolactone and phosphate signalling networks in rice. New Phytol, 239(2): 673-686. |
[16] | Guo L N, Chen W L, Tao L, et al. 2020. GWC1 is essential for high grain quality in rice. Plant Sci, 296: 110497. |
[17] | Hao J Q, Wang D K, Wu Y B, et al. 2021. The GW2-WG1-OsbZIP47 pathway controls grain size and weight in rice. Mol Plant, 14(8): 1266-1280. |
[18] | Hao Q X, Zhu X J, Huang Y S, et al. 2024. E3 ligase DECREASED GRAIN SIZE 1 promotes degradation of a G-protein subunit and positively regulates grain size in rice. Plant Physiol, 196(2): 948-960. |
[19] | Hoeller D, Crosetto N, Blagoev B, et al. 2006. Regulation of ubiquitin-binding proteins by monoubiquitination. Nat Cell Biol, 8(2): 163-169. |
[20] | Hsu K H, Liu C C, Wu S J, et al. 2014. Expression of a gene encoding a rice RING zinc-finger protein, OsRZFP34, enhances stomata opening. Plant Mol Biol, 86(1/2): 125-137. |
[21] | Hua Z H, Vierstra R D. 2011. The cullin-RING ubiquitin-protein ligases. Annu Rev Plant Biol, 62: 299-334. |
[22] | Huang K, Wang D K, Duan P G, et al. 2017. WIDE AND THICK GRAIN 1, which encodes an otubain-like protease with deubiquitination activity, influences grain size and shape in rice. Plant J, 91(5): 849-860. |
[23] | Huang L J, Hua K, Xu R, et al. 2021. The LARGE2-APO1/APO2 regulatory module controls panicle size and grain number in rice. Plant Cell, 33(4): 1212-1228. |
[24] | Huang X E, Chen X H, Vergish S, et al. 2025. Over-expression of XA21 binding protein 3 enhances rice survival under water-deficit stress. Plant Sci, 354: 112454. |
[25] | Ishikawa K, Yamaguchi K, Sakamoto K, et al. 2014. Bacterial effector modulation of host E3 ligase activity suppresses PAMP-triggered immunity in rice. Nat Commun, 5: 5430. |
[26] | Jamil A, Riaz S, Ashraf M, et al. 2011. Gene expression profiling of plants under salt stress. Crit Rev Plant Sci, 30(5): 435-458. |
[27] | Kachewar N R, Gupta V, Ranjan A, et al. 2019. Overexpression of OsPUB41, a rice E3 ubiquitin ligase induced by cell wall degrading enzymes, enhances immune responses in rice and Arabidopsis. BMC Plant Biol, 19(1): 530. |
[28] | Kim B, Piao R, Lee G, et al. 2021. OsCOP1 regulates embryo development and flavonoid biosynthesis in rice (Oryza sativa L.). Theor Appl Genet, 134(8): 2587-2601. |
[29] | Kim J H, Jang C S. 2021. E3 ligase, the Oryza sativa salt-induced RING finger protein 4 (OsSIRP4), negatively regulates salt stress responses via degradation of the OsPEX11-1 protein. Plant Mol Biol, 105(3): 231-245. |
[30] | Kim J H, Lim S D, Jang C S. 2019. Oryza sativa heat-induced RING finger protein 1 (OsHIRP1) positively regulates plant response to heat stress. Plant Mol Biol, 99(6): 545-559. |
[31] | Kim J H, Lim S D, Jang C S. 2021. Oryza sativa, C4HC3-type really interesting new gene (RING), OsRFPv6, is a positive regulator in response to salt stress by regulating Na+ absorption. Physiol Plant, 173(3): 883-895. |
[32] | Kim J H, Lim S D, Jung K H, et al. 2023. Overexpression of a C3HC4-type E3-ubiquitin ligase contributes to salinity tolerance by modulating Na+ homeostasis in rice. Physiol Plant, 175(6): e14075. |
[33] | Kim M S, Ko S R, Jung Y J, et al. 2023. Knockout mutants of OsPUB7 generated using CRISPR/Cas9 revealed abiotic stress tolerance in rice. Int J Mol Sci, 24(6): 5338. |
[34] | Leitner J, Petrášek J, Tomanov K, et al. 2012. Lysine63-linked ubiquitylation of PIN2 auxin carrier protein governs hormonally controlled adaptation of Arabidopsis root growth. Proc Natl Acad Sci USA, 109(21): 8322-8327. |
[35] | Li H, Wang Y P, Qiao W H, et al. 2024. Identification of a novel locus qGW12/OsPUB23 regulating grain shape and weight in rice (Oryza sativa L.). Theor Appl Genet, 137(12): 267. |
[36] | Li J, Zhang B L, Duan P G, et al. 2023. An endoplasmic reticulum-associated degradation-related E2-E3 enzyme pair controls grain size and weight through the brassinosteroid signaling pathway in rice. Plant Cell, 35(3): 1076-1091. |
[37] | Li X X, Yu B, Wu Q, et al. 2021. OsMADS23 phosphorylated by SAPK9 confers drought and salt tolerance by regulating ABA biosynthesis in rice. PLoS Genet, 17(8): e1009699. |
[38] | Li Y, Ren M Y, Wu Y R, et al. 2025. A root system architecture regulator modulates OsPIN2 polar localization in rice. Nat Commun, 16: 15. |
[39] | Liu D P, Zhang X X, Li Q L, et al. 2023. The U-box ubiquitin ligase TUD1 promotes brassinosteroid-induced GSK2 degradation in rice. Plant Commun, 4(2): 100450. |
[40] | Liu J P, Zhang C C, Wei C C, et al. 2016. The RING finger ubiquitin E3 ligase OsHTAS enhances heat tolerance by promoting H2O2-induced stomatal closure in rice. Plant Physiol, 170(1): 429-443. |
[41] | Liu J P, Nie B, Yu B L, et al. 2023. Rice ubiquitin-conjugating enzyme OsUbc13 negatively regulates immunity against pathogens by enhancing the activity of OsSnRK1a. Plant Biotechnol J, 21(8): 1590-1610. |
[42] | Liu W, Li J, Sun J, et al. 2025. The E3 ligase OsHel2 impedes readthrough of stalled mRNAs to regulate male fertility in thermo-sensitive genic male sterile rice. Plant Commun, 6(2): 101192. |
[43] | Liu Y, Jackson E, Liu X, et al. 2024. Proteolysis in plant immunity. Plant Cell, 36(9): 3099-3115. |
[44] | Liu Z Q, Qiu J H, Shen Z N, et al. 2023. The E3 ubiquitin ligase OsRGLG5 targeted by the Magnaporthe oryzae effector AvrPi9 confers basal resistance against rice blast. Plant Commun, 4(5): 100626. |
[45] | Luo M, Zhu S T, Dang H, et al. 2025. Genetically-encoded targeted protein degradation technology to remove endogenous condensation-prone proteins and improve crop performance. Nat Commun, 16(1): 1159. |
[46] | Lv Q L, Li X X, Jin X K, et al. 2022. Rice OsPUB16 modulates the ‘SAPK9-OsMADS23-OsAOC’ pathway to reduce plant water-deficit tolerance by repressing ABA and JA biosynthesis. PLoS Genet, 18(11): e1010520. |
[47] | Ly L K, Ho T M, Bui T P, et al. 2024. CRISPR/Cas9 targeted mutations of OsDSG1 gene enhanced salt tolerance in rice. Funct Integr Genomics, 24(2): 70. |
[48] | Ma N N, Li N, Yu Z M, et al. 2023. The F-box protein SHORT PRIMARY ROOT modulates primary root meristem activity by targeting SEUSS-LIKE protein for degradation in rice. J Integr Plant Biol, 65(8): 1937-1949. |
[49] | Ma S Q, Tang N, Li X, et al. 2019. Reversible histone H2B monoubiquitination fine-tunes abscisic acid signaling and drought response in rice. Mol Plant, 12(2): 263-277. |
[50] | Ma X Y, Claus L A N, Leslie M E, et al. 2020. Ligand-induced monoubiquitination of BIK1 regulates plant immunity. Nature, 581: 199-203. |
[51] | Ning Y S, Jantasuriyarat C, Zhao Q Z, et al. 2011. The SINA E3 ligase OsDIS1 negatively regulates drought response in rice. Plant Physiol, 157(1): 242-255. |
[52] | Park G G, Park J J, Yoon J, et al. 2010. A RING finger E3 ligase gene, Oryza sativa Delayed Seed Germination 1 (OsDSG1), controls seed germination and stress responses in rice. Plant Mol Biol, 74(4/5): 467-478. |
[53] | Park Y C, Lim S D, Moon J C, et al. 2019. A rice really interesting new gene H2-type E3 ligase, OsSIRH2-14, enhances salinity tolerance via ubiquitin/26S proteasome-mediated degradation of salt-related proteins. Plant Cell Environ, 42(11): 3061-3076. |
[54] | Peng G Q, Liu M L, Luo Z L, et al. 2024. An E3 ubiquitin ligase CSIT2 controls critical sterility-inducing temperature of thermo-sensitive genic male sterile rice. New Phytol, 241(5): 2059-2074. |
[55] | Pickart C M, Fushman D. 2004. Polyubiquitin chains: Polymeric protein signals. Curr Opin Chem Biol, 8(6): 610-616. |
[56] | Qin Q, Wang Y X, Huang L Y, et al. 2020. A U-box E3 ubiquitin ligase OsPUB67 is positively involved in drought tolerance in rice. Plant Mol Biol, 102(1/2): 89-107. |
[57] | Ren L J, Zhao T T, Zhao Y Z, et al. 2021. The E3 ubiquitin ligase DESYNAPSIS1 regulates synapsis and recombination in rice meiosis. Cell Rep, 37(5): 109941. |
[58] | Seo D H, Lee A, Yu S G, et al. 2021. OsPUB41, a U-box E3 ubiquitin ligase, acts as a negative regulator of drought stress response in rice (Oryza sativa L.). Plant Mol Biol, 106(4/5): 463-477. |
[59] | Shi C L, Ren Y L, Liu L L, et al. 2019. Ubiquitin specific protease 15 has an important role in regulating grain width and size in rice. Plant Physiol, 180(1): 381-391. |
[60] | Shi H, Yin J J, Zhao Z J, et al. 2024. Fine-tuning of IPA1 transactivation activity by E3 ligase IPI7-mediated non-proteolytic K29-ubiquitination during Magnaporthe oryzae infection. Nat Commun, 15(1): 7608. |
[61] | Song X G, Meng X B, Guo H Y, et al. 2022. Targeting a gene regulatory element enhances rice grain yield by decoupling panicle number and size. Nat Biotechnol, 40(9): 1403-1411. |
[62] | Song X J, Huang W, Shi M, et al. 2007. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat Genet, 39(5): 623-630. |
[63] | Sun J, Song W, Chang Y, et al. 2022. OsLMP1, encoding a deubiquitinase, regulates the immune response in rice. Front Plant Sci, 12: 814465. |
[64] | Sun J Y, Zhou Z R, Wang Y Q, et al. 2024. OsHRZ1 negatively regulates rice resistant to Magnaporthe oryzae infection by targeting OsVOZ2. Transgenic Res, 33(5): 489-501. |
[65] | Sun X X, Xie Y H, Xu K Z, et al. 2024. Regulatory networks of the F-box protein FBX206 and OVATE family proteins modulate brassinosteroid biosynthesis to regulate grain size and yield in rice. J Exp Bot, 75(3): 789-801. |
[66] | Sun Y, Gu X Y, Qu C F, et al. 2024. OsPUB75-OsHDA716 mediates deactivation and degradation of OsbZIP46 to negatively regulate drought tolerance in rice. Plant Physiol, 197(1): kiae545. |
[67] | Tan Q, Zhang X, Luo Q, et al. 2024. The RING domain of rice HEI10 is essential for male, but not female fertility. Rice, 17(1): 3. |
[68] | Tang N, Zhang H, Li X H, et al. 2012. Constitutive activation of transcription factor OsbZIP46 improves drought tolerance in rice. Plant Physiol, 158(4): 1755-1768. |
[69] | Tang N, Ma S Q, Zong W, et al. 2016. MODD mediates deactivation and degradation of OsbZIP46 to negatively regulate ABA signaling and drought resistance in rice. Plant Cell, 28(9): 2161-2177. |
[70] | Tang S, Zhao Z Y, Liu X T, et al. 2023. An E2-E3 pair contributes to seed size control in grain crops. Nat Commun, 14(1): 3091. |
[71] | Tao H, Xiao N, Wang R Y, et al. 2025. Development of elite rice with broad-spectrum resistance through pyramiding of key resistance gene and simultaneously editing multiple susceptibility genes. J Integr Plant Biol, 67(7): 1691-1693. |
[72] | Wang G, Chen X, Yu C Z, et al. 2024. Release of a ubiquitin brake activates OsCERK1-triggered immunity in rice. Nature, 629: 1158-1164. |
[73] | Wang K, Fu S, Wu L, et al. 2023a. Rice stripe virus nonstructural protein 3 suppresses plant defence responses mediated by the MEL-SHMT1 module. Mol Plant Pathol, 24(11): 1359-1369. |
[74] | Wang K, Li S, Chen L X, et al. 2023b. E3 ubiquitin ligase OsPIE3 destabilises the B-lectin receptor-like kinase PID2 to control blast disease resistance in rice. New Phytol, 237(5): 1826-1842. |
[75] | Wang K J, Wang M, Tang D, et al. 2012. The role of rice HEI10 in the formation of meiotic crossovers. PLoS Genet, 8(7): e1002809. |
[76] | Wang R Y, You X M, Zhang C Y, et al. 2022. An ORFeome of rice E3 ubiquitin ligases for global analysis of the ubiquitination interactome. Genome Biol, 23(1): 154. |
[77] | Wang S, Han S Y, Zhou X G, et al. 2023. Phosphorylation and ubiquitination of OsWRKY31 are integral to OsMKK10-2-mediated defense responses in rice. Plant Cell, 35(6): 2391-2412. |
[78] | Wang S L, Zhang Z H, Fan Y Y, et al. 2022. Control of grain weight and size in rice (Oryza sativa L.) by OsPUB3 encoding a U-box E3 ubiquitin ligase. Rice, 15(1): 58. |
[79] | Wang Y, Zheng C, Peng Y L, et al. 2024. DGS1 improves rice disease resistance by elevating pathogen-associated molecular pattern-triggered immunity. aBIOTECH, 5(1): 46-51. |
[80] | Wang Y S, Pi L Y, Chen X H, et al. 2006. Rice XA21 binding protein 3 is a ubiquitin ligase required for full Xa21-mediated disease resistance. Plant Cell, 18(12): 3635-3646. |
[81] | Wang Z Y, Tian X J, Zhao Q Z, et al. 2018. The E3 ligase DROUGHT HYPERSENSITIVE negatively regulates cuticular wax biosynthesis by promoting the degradation of transcription factor ROC4 in rice. Plant Cell, 30(1): 228-244. |
[82] | Wen Y, Hu P, Fang Y X, et al. 2024. GW9 determines grain size and floral organ identity in rice. Plant Biotechnol J, 22(4): 915-928. |
[83] | Wu Q, Liu Y F, Huang J L. 2022. CRISPR-Cas9 mediated mutation in OsPUB43 improves grain length and weight in rice by promoting cell proliferation in spikelet hull. Int J Mol Sci, 23(4): 2347. |
[84] | Xiao L Y, Shi Y Y, Wang R, et al. 2022. The transcription factor OsMYBc and an E3 ligase regulate expression of a K+ transporter during salt stress. Plant Physiol, 190(1): 843-859. |
[85] | Xie Y H, Fan Z P, Liang X Y, et al. 2025. OsPUB9 modulates leaf angle and grain size through the brassinosteroid signaling pathway in rice. Plant J, 121(3): e17230. |
[86] | Xie Z Z, Sun Y, Zhan C H, et al. 2024. The E3 ligase OsPUB33 controls rice grain size and weight by regulating the OsNAC120-BG1 module. Plant Cell, 37(1): koae297. |
[87] | Xu X, Shi X T, You X M, et al. 2024. A pair of E3 ubiquitin ligases control immunity and flowering by targeting different ELF3 proteins in rice. Dev Cell, 59(20): 2731-2744.e4. |
[88] | Yan Y Q, Wang H, Bi Y, et al. 2024. OsATL32 ubiquitinates the reactive oxygen species-producing OsRac5-OsRbohB module to suppress rice immunity. J Integr Plant Biol, 66(7): 1459-1480. |
[89] | Yang W S, Wu K, Wang B, et al. 2021. The RING E3 ligase CLG1 targets GS3 for degradation via the endosome pathway to determine grain size in rice. Mol Plant, 14(10): 1699-1713. |
[90] | Yi H, Shi H, Mao W, et al. 2024. E3 ubiquitin ligase IPI1 controls rice immunity and flowering via both E3 ligase-dependent and -independent pathways. Dev Cell, 59(20): 2719-2730.e4. |
[91] | You Q Y, Zhai K R, Yang D L, et al. 2016. An E3 ubiquitin ligase-BAG protein module controls plant innate immunity and broad-spectrum disease resistance. Cell Host Microbe, 20(6): 758-769. |
[92] | You X M, Zhang F, Liu Z, et al. 2022. Rice catalase OsCATC is degraded by E3 ligase APIP6 to negatively regulate immunity. Plant Physiol, 190(2): 1095-1099. |
[93] | Yue Z C, Wang Z P, Yao Y L, et al. 2024. Variation in WIDTH OF LEAF AND GRAIN contributes to grain and leaf size by controlling LARGE2 stability in rice. Plant Cell, 36(9): 3201-3218. |
[94] | Zhai K R, Liang D, Li H L, et al. 2022. NLRs guard metabolism to coordinate pattern- and effector-triggered immunity. Nature, 601: 245-251. |
[95] | Zhang C Y, Fang H, Wang J S, et al. 2024. The rice E3 ubiquitin ligase-transcription factor module targets two trypsin inhibitors to enhance broad-spectrum disease resistance. Dev Cell, 59(15): 2017-2033.e5. |
[96] | Zhang C Y, Fang L, He F, et al. 2025. Ubiquitination of OsCSN5 by OsPUB45 activates immunity by modulating the OsCUL3a-OsNPR1 module. Sci Adv, 11(1): eadr2441. |
[97] | Zhang H, Zhou J F, Kan Y, et al. 2022. A genetic module at one locus in rice protects chloroplasts to enhance thermotolerance. Science, 376: 1293-1300. |
[98] | Zhang H, Huang D R, Shen Y, et al. 2024. GL5.2, a quantitative trait locus for rice grain shape, encodes a RING-type E3 ubiquitin ligase. Plants, 13(17): 2521. |
[99] | Zhang J, Du Q, Wu Y G, et al. 2025. Ubiquitin ligase gene OsPUB57 negatively regulates rice blast resistance. Plants, 14(5): 758. |
[100] | Zhao W J, Wen J L, Zhao J, et al. 2025. E3 ubiquitin ligase OsRFI2 regulates salinity tolerance by targeting ascorbate peroxidase OsAPX8 for its degradation in rice. Rice, 18(1): 12. |
[101] | Zhao Y D, Zhong X H, Xu G J, et al. 2024. The F-box protein OsFBX156 positively regulates rice defence against the blast fungus Magnaporthe oryzae by mediating ubiquitination-dependent degradation of OsHSP71.1. Mol Plant Pathol, 25(6): e13459. |
[102] | Zheng Y Y, Zhang S S, Luo Y Q, et al. 2022. Rice OsUBR7 modulates plant height by regulating histone H2B monoubiquitination and cell proliferation. Plant Commun, 3(6): 100412. |
[1] | Daisy Wilson, Valeria Gonzalez, Hamidreza Sharifan. Evaluating Efficacy of ZnO and MgO Nanoparticles on Post-Harvested Rice to Enhance Food Security Against Agroterrorism [J]. Rice Science, 2025, 32(5): 717-726. |
[2] | Mareyam Mukhtar, Amresh Kumar, Ashfak S. Mujawar, Bhuvnesh Sareen, Suhas G. Karkute, Rohini Sreevathsa, Amitha Mithra Sevanthi, Amolkumar U. Solanke. Genome-Wide Identification of Dopamine β-Monooxygenase N-Terminal Gene Family in Rice and Its Role in Response to Blast Disease and Abiotic Stress [J]. Rice Science, 2025, 32(5): 685-703. |
[3] | Wu Zhaozhong, Zhong Zhengzheng, Xu Peng, Liu Ling, Wang Beifang, Yang Qinqin, Wen Xiaoxia, Ma Guifang, Luo Mili, Zhang Yingxin, Liu Qun’en, Peng Zequn, Zhan Xiaodeng, Cao Liyong, Cheng Shihua, Wu Weixun. OsELF3.1-OsCATA-Ghd7 Pathway Regulates Rice Heading [J]. Rice Science, 2025, 32(5): 658-672. |
[4] | Pan Pan, Guo Wenlong, Li Hengbo, Shao Yifan, Guo Zhihao, Jin Ye, Cheng Yanrong, Yu Guoping, Fu Zhenshi, Hu Lin, Zheng Xiaoming, Zhou Guomin, Zhang Jianhua. Accelerating Wild Rice Disease-Resistant Germplasm Exploration: Artificial Intelligence (AI)-Powered Wild Rice Blast Disease Level Evaluation and Disease-Resistance Identification [J]. Rice Science, 2025, 32(5): 727-746. |
[5] | Sabarinathan Selvaraj, Parameswaran Chidambaranathan, Goutam Kumar Dash, Priyadarsini Sanghamitra, Kishor Pundlik Jeughale, Cayalvizhi Balasubramaniasai, Devraj Lenka, Basavantraya Navadagi Devanna, Seenichamy Rathinam Prabhukarthikeyan, Sanghamitra Samantaray, Amaresh Kumar Nayak. Long-Range Admixture Linkage Disequilibrium and Allelic Responses of Sub1 and TPP7 under Consecutive Stress in Rice Validated Through Mendelian Randomization [J]. Rice Science, 2025, 32(5): 704-716. |
[6] | Yong Jin Choi, Sun-Hwa Ha. Metabolic Engineering in Rice for Functional Metabolite Production [J]. Rice Science, 2025, 32(4): 475-498. |
[7] | Dinuka Nuwan Tharaka, Nadeeka D. Tissera, Gayan Priyadarshana, Damayanthi Dahanayake. A Comprehensive Review of Hierarchical Porous Carbon Synthesis from Rice Husk [J]. Rice Science, 2025, 32(4): 499-511. |
[8] | Li Xinyan, Weng Lüshui, Xiao Youlun, Li Jinjiang, Deng Lihua, Liu Qing, Kang Weiwei, Duan Yaping, Yang Daji, Xiao Guoying. Characteristic Analysis of Penta-Resistance Restorer Line for Hybrid Rice [J]. Rice Science, 2025, 32(4): 512-524. |
[9] | Zhou Lin, Jiang Hong, Huang Long, Li Ziang, Yao Zhonghao, Li Linhan, Ji Kangwei, Li Yijie, Tang Haijuan, Cheng Jinping, Bao Yongmei, Huang Ji, Zhang Hongsheng, Chen Sunlu. Genome-Wide Association Study of Brown Rice Weight Identifies an RNA-Binding Protein Antagonistically Regulating Grain Weight and Panicle Number [J]. Rice Science, 2025, 32(4): 525-536. |
[10] | Ratan Kumar Ganapati, Chen Kai, Zhao Xiuqin, Zheng Tianqing, Zhang Fan, Zhai Laiyuan, Xu Jianlong. Genome-Wide Association Study and Haplotype Analysis Jointly Identify New Candidate Genes for Alkaline Tolerance at Seedling Stage in Rice [J]. Rice Science, 2025, 32(4): 537-548. |
[11] | Hou Yuxuan, Zhu Jie, Lu Chenglong, Fan Libo, Liang Mengqi, Zhang Xiaobo, Cheng Benyi, Xu Xia, Gong Junyi. A Recombinase-Aided Amplification-Lateral Flow Dipstick Detection Technique for Early On-Site Diagnosis of Bacterial Blight Caused by Xanthomonas oryzae pv. oryzae in Rice [J]. Rice Science, 2025, 32(4): 575-584. |
[12] | Chen Su, Ma Feilong, Chen Jiaoyang, Qi Man, Wei Qianshu, Tao Zhihuan, Sun Bo. Function of R2R3-Type Myeloblastosis Transcription Factors in Plants [J]. Rice Science, 2025, 32(3): 307-321. |
[13] | Yang Yajun, Lu Yanhui, Tian Junce, Zheng Xusong, Guo Jiawen, Liu Xiaowei, Lü Zhongxian, Xu Hongxing. Sustainable Management Strategies for Rice Leaffolder, Cnaphalocrocis medinalis (Guenée): Progress and Prospects [J]. Rice Science, 2025, 32(3): 322-338. |
[14] | Xie Yuhao, Xie Wenya, Zhao Jianhua, Xue Xiang, Cao Wenlei, Shi Xiaopin, Wang Zhou, Wang Yiwen, Wang Guangda, Feng Zhiming, Hu Keming, Chen Xijun, Chen Zongxiang, Zuo Shimin. OsERF7 Negatively Regulates Resistance to Sheath Blight Disease by Inhibiting Phytoalexin Biosynthesis [J]. Rice Science, 2025, 32(3): 367-379. |
[15] | Chaemyeong Lim, Sae Hyun Lee, Haeun Lee, So-Yon Park, Kiyoon Kang, Hyeryung Yoon, Tae-Jin Yang, Gary Stacey, Nam-Chon Paek, Sung-Hwan Cho. Global Transcriptome Analysis of Rice Seedlings in Response to Extracellular ATP [J]. Rice Science, 2025, 32(3): 380-399. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||