
RICE SCIENCE ›› 2006, Vol. 13 ›› Issue (1): 9-14 .
• Research Paper • Previous Articles Next Articles
ZENG Rui-zhen, ZHANG Ze-min, HE Feng-hua, XI Zhang-ying, Akshay TALUKDAR, SHI Jun-qiong, QIN Li-jun, HUANG Chao-feng, ZHANG Gui-quan
Received:2005-11-09
Online:2006-03-28
Published:2006-03-28
Contact:
ZHANG Gui-quan
Supported by:ZENG Rui-zhen, ZHANG Ze-min, HE Feng-hua, XI Zhang-ying, Akshay TALUKDAR, SHI Jun-qiong, QIN Li-jun, HUANG Chao-feng, ZHANG Gui-quan. Identification of Multiple Alleles at the Wx Locus and Development of Single Segment Substitution Lines for the Alleles in Rice[J]. RICE SCIENCE, 2006, 13(1): 9-14 .
| 1 Sano Y. Differential regulation of waxy gene expression in rice endosperm. Theor Appl Genet, 1984, 68: 467-473.2 Sano Y, Katsamata M, Okuno K. Genetic studies of speciation in cultivated rice: 5. Inter- and intraspecific differentiation in the waxy gene expression in rice. Euphytica, 1986, 35: 1-9.3 Wang Z Y, Wu Z L, Xing Y Y, Zheng F G, Guo X L, Zhang W G, Hong M M. Nucleotide sequence of rice waxy gene. Nucl Acids Res, 1990, 18 (19): 5898.4 Bligh H F J, Till R I, Jones C A. A microsatellite sequence closely linked to the waxy gene of Oryza sativa. Euphytica, 1995, 86: 83-85.5 Ayres N M, McClung A M, Larkin P D, Bligh H F J, Jones C A, Park W D. Microsatellites and a single-nucleotide polymorphism differentiate apparent amylose classes in an extended pedigree of US rice germplasm. Theor Appl Genet, 1997, 94: 773-781.6 Shu Q Y, Wu D X, Xia Y W, Gao M W, Ayres N M, Larkin P D, Park W D. Microsatellites polymorphism on the waxy gene locus and their relationship to amylose content in indica and japonica rice, Oryza sativa L. Acta Genet Sin, 1999, 26 (4): 350-358. (in Chinese with English abstract)7 Tan Y F, Zhang Q F. Correlation of simple sequence repeat (SSR) variants in the leader sequence of the waxy gene with amylose content of the grain in rice. Acta Bot Sin, 2001, 43 (2): 146-150. 8 Wang Z Y, Zheng F Q, Shen G Z, Gao J P, Snustad D P, Li M G, Zhang J L, Hong M M. The amylose content in rice endosperm is related to the post-transcriptional regulation of the waxy gene. Plant J, 1995, 7: 613-622.9 Cai X L, Wang Z Y, Xing Y Y, Zhang J L, Hong M M. Aberrant splicing of intron 1 leads to the heterogeneous 5’ UTR and decreased expression of waxy gene in rice cultivars of intermediate amylose content. Plant J, 1998, 14(4): 459-465.10 Hirano H Y, Eiguchi M, Sano Y. A single base change altered the regulation of the waxy gene at the posttranscriptional level during the domestrication of rice. Mol Biol Evol, 1998, 15: 978-987.11 Isshiki M, Morino K, Nakajima M, Okagaki R O, Wessler S R, Izawa T, Shimamoto K. A naturally occurring functional allele of the rice waxy locus has a GT to TT mutation at the 5’ splice site of the first. Plant J, 1998, 15(1): 133-138.12 Cai X L, Liu Q Q, Tang S Z, Gu M H, Wang Z Y. Development of a molecular marker for screening the rice cultivars with intermediate amylose content in Oryza sativa subsp. indica. J Plant Physiol & Mol Biol, 2002, 28(2): 137-144. (in Chinese with English abstract)13 Shu Q Y, Wu D X, Xia Y W, Gao M W, McClung A, Ayress N M, Park W D. Correlation between mass fraction of apparent amylose and (CT)n microsatellite polymorphisms of waxy gene in rice progenies. Chinese J Appl Environ Biol, 1999, 5 (5): 464-467. (in Chinese with English abstract)14 Eshed Y, Abu-Abied M, Saranga Y, Zamir D. Lycopersicon esculentum lines containing small overlapping introgressions from L. pennellii. Theor Appl Genet, 1992, 83: 1027-1034.15 Aida Y, Tsunematsu H, Doi K, Yoshimura A. Development of a series of introgression lines of japonica in the background of indica rice. Rice Genet Newsl, 1997, 14: 41-43.16 Kubo T, Aida Y, Nakamura K, Tsunematsu H, Doi K, Yoshimura A. Reciprocal chromosome segment substitution series derived from japonica and indica cross of rice (Oryza sativa L.). Breeding Sci, 2002, 52: 319-325.17 Eshed Y, Zamir D. A genomic library of Lycopersicon pennellii in L. esculentum: A tool for fine mapping of genes. Euphytica, 1994, 79: 175-179.18 Howell P M, Marshall D F, Lydiate D J. Towards developing intervarietal substitution lines in Brassica napus using marker-assisted selection. Genome, 1996, 39: 348-358.19 Liu G M, Li W T, Zeng R Z, Zhang G Q. Development of single segment substitution lines (SSSLs) of subspecies in rice. Chinese J Rice Sci, 2003, 17(3): 201-204. (in Chinese with English abstract)20 He F H, Xi Z Y, Zeng R Z, Talukdar A, Zhang G Q. Developing single segment substitution lines (SSSLs) in rice (Oryza sativa L.) using advanced backcrosses and MAS. Acta Genet Sin, 2005, 32(8): 825-831. (in Chinese with English abstract)21 He F H, Zeng R Z, Xi Z Y, Talukdar A, Zhang G Q. Genetic diversity of different waxy genotypes in rice. Mol Plant Breeding, 2003, 1(2): 179-186. (in Chinese with English abstract)22 Murray M G, Thompson W F. Rapid isolation of high molecular weight plant DNA. Nucl Acids Res, 1980, 8(19): 4321-4325.23 Zheng K L, Huang N, Bennett J, Khush G S. PCR-based marker-assisted selection in rice breeding. IRRI Discussion Paper. Series 12. Manila, Philippines: IRRI, 1995.24 Li W T, Zeng R Z, Zhang Z M, Zhang G Q. Mapping of S-b locus for F1 pollen sterility in cultivated rice using PCR based markers. Acta Bot Sin, 2002, 44 (4): 463-467. 25 McCouch S R, Teytelman L, Xu Y B, Lobos K B, Clare K, Walton M, Fu B Y, Maghirang R, Li Z K, Xing Y Z, Zhang Q F, Kono I, Yano M, Fjellstro R, DeClerck G, Schneider D, Cartinhour S, Ware D, Lincoln S. Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.). DNA Res, 2002, 9: 199-207.26 Huang C F. Development of position-specific microsatellite markers and molecular mapping of insect resistant genes in rice (Oryza sativa L.). Dissertation. Guangzhou: South China Agricultural University, 2003. (in Chinese)27 Akagi H, Yokozeki Y, Inagaki A, Fujimura T. Microsatellite DNA markers for rice chromosomes. Theor Appl Genet, 1996, 93: 1071-1077.28 Young N D, Tanksley S D. Restriction fragment length polymorphism maps and the concept of graphical genotypes. Theor Appl Genet, 1989, 77: 95-101. |
| [1] | Prathap V, Suresh KUMAR, Nand Lal MEENA, Chirag MAHESHWARI, Monika DALAL, Aruna TYAGI. Phosphorus Starvation Tolerance in Rice Through a Combined Physiological, Biochemical and Proteome Analysis [J]. Rice Science, 2023, 30(6): 8-. |
| [2] | Serena REGGI, Elisabetta ONELLI, Alessandra MOSCATELLI, Nadia STROPPA, Matteo Dell’ANNO, Kiril PERFANOV, Luciana ROSSI. Seed-Specific Expression of Apolipoprotein A-IMilano Dimer in Rice Engineered Lines [J]. Rice Science, 2023, 30(6): 6-. |
| [3] | Sundus ZAFAR, XU Jianlong. Recent Advances to Enhance Nutritional Quality of Rice [J]. Rice Science, 2023, 30(6): 4-. |
| [4] | Kankunlanach KHAMPUANG, Nanthana CHAIWONG, Atilla YAZICI, Baris DEMIRER, Ismail CAKMAK, Chanakan PROM-U-THAI. Effect of Sulfur Fertilization on Productivity and Grain Zinc Yield of Rice Grown under Low and Adequate Soil Zinc Applications [J]. Rice Science, 2023, 30(6): 9-. |
| [5] | FAN Fengfeng, CAI Meng, LUO Xiong, LIU Manman, YUAN Huanran, CHENG Mingxing, Ayaz AHMAD, LI Nengwu, LI Shaoqing. Novel QTLs from Wild Rice Oryza longistaminata Confer Rice Strong Tolerance to High Temperature at Seedling Stage [J]. Rice Science, 2023, 30(6): 14-. |
| [6] | LIN Shaodan, YAO Yue, LI Jiayi, LI Xiaobin, MA Jie, WENG Haiyong, CHENG Zuxin, YE Dapeng. Application of UAV-Based Imaging and Deep Learning in Assessment of Rice Blast Resistance [J]. Rice Science, 2023, 30(6): 10-. |
| [7] | Md. Forshed DEWAN, Md. AHIDUZZAMAN, Md. Nahidul ISLAM, Habibul Bari SHOZIB. Potential Benefits of Bioactive Compounds of Traditional Rice Grown in South and South-East Asia: A Review [J]. Rice Science, 2023, 30(6): 5-. |
| [8] | Raja CHAKRABORTY, Pratap KALITA, Saikat SEN. Phenolic Profile, Antioxidant, Antihyperlipidemic and Cardiac Risk Preventive Effect of Chakhao Poireiton (A Pigmented Black Rice) in High-Fat High-Sugar induced Rats [J]. Rice Science, 2023, 30(6): 11-. |
| [9] | LI Qianlong, FENG Qi, WANG Heqin, KANG Yunhai, ZHANG Conghe, DU Ming, ZHANG Yunhu, WANG Hui, CHEN Jinjie, HAN Bin, FANG Yu, WANG Ahong. Genome-Wide Dissection of Quan 9311A Breeding Process and Application Advantages [J]. Rice Science, 2023, 30(6): 7-. |
| [10] | JI Dongling, XIAO Wenhui, SUN Zhiwei, LIU Lijun, GU Junfei, ZHANG Hao, Tom Matthew HARRISON, LIU Ke, WANG Zhiqin, WANG Weilu, YANG Jianchang. Translocation and Distribution of Carbon-Nitrogen in Relation to Rice Yield and Grain Quality as Affected by High Temperature at Early Panicle Initiation Stage [J]. Rice Science, 2023, 30(6): 12-. |
| [11] | Nazaratul Ashifa Abdullah Salim, Norlida Mat Daud, Julieta Griboff, Abdul Rahim Harun. Elemental Assessments in Paddy Soil for Geographical Traceability of Rice from Peninsular Malaysia [J]. Rice Science, 2023, 30(5): 486-498. |
| [12] | Monica Ruffini Castiglione, Stefania Bottega, Carlo Sorce, Carmelina SpanÒ. Effects of Zinc Oxide Particles with Different Sizes on Root Development in Oryza sativa [J]. Rice Science, 2023, 30(5): 449-458. |
| [13] | Tan Jingyi, Zhang Xiaobo, Shang Huihui, Li Panpan, Wang Zhonghao, Liao Xinwei, Xu Xia, Yang Shihua, Gong Junyi, Wu Jianli. ORYZA SATIVA SPOTTED-LEAF 41 (OsSPL41) Negatively Regulates Plant Immunity in Rice [J]. Rice Science, 2023, 30(5): 426-436. |
| [14] | Ammara Latif, Sun Ying, Pu Cuixia, Noman Ali. Rice Curled Its Leaves Either Adaxially or Abaxially to Combat Drought Stress [J]. Rice Science, 2023, 30(5): 405-416. |
| [15] | Liu Qiao, Qiu Linlin, Hua Yangguang, Li Jing, Pang Bo, Zhai Yufeng, Wang Dekai. LHD3 Encoding a J-Domain Protein Controls Heading Date in Rice [J]. Rice Science, 2023, 30(5): 437-448. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||