Rice Science ›› 2024, Vol. 31 ›› Issue (3): 343-360.DOI: 10.1016/j.rsci.2024.02.003
• Research Papers • Previous Articles
Supranee Santanoo1,2, Wichian Sangwongchai3, Maysaya Thitisaksakul4, Suphatta Phothiset5, Paweena Pongdontri4, Noppawan Nounjan6, Piyada Theerakulpisut1,2()
Received:
2023-11-04
Accepted:
2024-02-05
Online:
2024-05-28
Published:
2024-06-04
Contact:
Piyada Theerakulpisut
Supranee Santanoo, Wichian Sangwongchai, Maysaya Thitisaksakul, Suphatta Phothiset, Paweena Pongdontri, Noppawan Nounjan, Piyada Theerakulpisut. Rice Grains from Slightly Saline Field Exhibited Unchanged Starch Physicochemical Properties but Enhanced Nutritional Values[J]. Rice Science, 2024, 31(3): 343-360.
Add to citation manager EndNote|Ris|BibTeX
Parameter | Non-saline | Slightly saline | |||||
---|---|---|---|---|---|---|---|
Pokkali | RD73 | KDML105 | Pokkali | RD73 | KDML105 | ||
Length (mm) | 6.27 ± 0.02 c | 7.58 ± 0.06 a | 7.60 ± 0.06 a | 6.14 ± 0.03 c | 7.47 ± 0.05 ab | 7.36 ± 0.06 b | |
Width (mm) | 3.06 ± 0.03 a | 2.23 ± 0.01 c | 2.15 ± 0.01 d | 2.94 ± 0.02 b | 2.13 ± 0.01 de | 2.08 ± 0.01 e | |
Length-to-width ratio | 2.05 ± 0.02 c | 3.40 ± 0.03 b | 3.54 ± 0.02 a | 2.09 ± 0.01 c | 3.51 ± 0.04 a | 3.55 ± 0.03 a | |
Perimeter (mm) | 14.65 ± 0.04 c | 15.40 ± 0.11 a | 15.32 ± 0.11 a | 14.26 ± 0.07 d | 15.09 ± 0.07 ab | 14.82 ± 0.11 bc | |
Volume (mm3) | 30.77 ± 0.48 a | 19.73 ± 0.30 c | 18.43 ± 0.32 d | 27.79 ± 0.43 b | 17.82 ± 0.22 de | 16.65 ± 0.33 e |
Table 1. Grain morphological characters of three rice cultivars under non-saline and slightly saline field conditions.
Parameter | Non-saline | Slightly saline | |||||
---|---|---|---|---|---|---|---|
Pokkali | RD73 | KDML105 | Pokkali | RD73 | KDML105 | ||
Length (mm) | 6.27 ± 0.02 c | 7.58 ± 0.06 a | 7.60 ± 0.06 a | 6.14 ± 0.03 c | 7.47 ± 0.05 ab | 7.36 ± 0.06 b | |
Width (mm) | 3.06 ± 0.03 a | 2.23 ± 0.01 c | 2.15 ± 0.01 d | 2.94 ± 0.02 b | 2.13 ± 0.01 de | 2.08 ± 0.01 e | |
Length-to-width ratio | 2.05 ± 0.02 c | 3.40 ± 0.03 b | 3.54 ± 0.02 a | 2.09 ± 0.01 c | 3.51 ± 0.04 a | 3.55 ± 0.03 a | |
Perimeter (mm) | 14.65 ± 0.04 c | 15.40 ± 0.11 a | 15.32 ± 0.11 a | 14.26 ± 0.07 d | 15.09 ± 0.07 ab | 14.82 ± 0.11 bc | |
Volume (mm3) | 30.77 ± 0.48 a | 19.73 ± 0.30 c | 18.43 ± 0.32 d | 27.79 ± 0.43 b | 17.82 ± 0.22 de | 16.65 ± 0.33 e |
Parameter | Non-saline | Slightly saline | |||||
---|---|---|---|---|---|---|---|
Pokkali | RD73 | KDML105 | Pokkali | RD73 | KDML105 | ||
Reducing sugar content (mg/g) | 0.46 ± 0.02 b | 0.29 ± 0.01 c | 0.43 ± 0.02 b | 0.60 ± 0.03 a | 0.58 ± 0.02 a | 0.58 ± 0.03 a | |
Starch content (mg/g) | 845 ± 2 ab | 873 ± 7 a | 866 ± 6 ab | 857 ± 11 ab | 840 ± 4 b | 845 ± 7 ab | |
Amylose content (%) | 19.18 ± 0.22 a | 16.49 ± 0.45 b | 7.83 ± 0.28 c | 16.99 ± 0.45 ab | 16.44 ± 0.51 b | 8.22 ± 0.61 c |
Table 2. Reducing sugar, starch, and amylose contents of three rice cultivars under non-saline and slightly saline field conditions.
Parameter | Non-saline | Slightly saline | |||||
---|---|---|---|---|---|---|---|
Pokkali | RD73 | KDML105 | Pokkali | RD73 | KDML105 | ||
Reducing sugar content (mg/g) | 0.46 ± 0.02 b | 0.29 ± 0.01 c | 0.43 ± 0.02 b | 0.60 ± 0.03 a | 0.58 ± 0.02 a | 0.58 ± 0.03 a | |
Starch content (mg/g) | 845 ± 2 ab | 873 ± 7 a | 866 ± 6 ab | 857 ± 11 ab | 840 ± 4 b | 845 ± 7 ab | |
Amylose content (%) | 19.18 ± 0.22 a | 16.49 ± 0.45 b | 7.83 ± 0.28 c | 16.99 ± 0.45 ab | 16.44 ± 0.51 b | 8.22 ± 0.61 c |
Size distribution of starch granules | Non-saline | Slightly saline | |||||
---|---|---|---|---|---|---|---|
Pokkali | RD73 | KDML105 | Pokkali | RD73 | KDML105 | ||
A-type (> 15 µm, %) | 12.20 ± 1.50 a | 11.09 ± 1.29 ab | 3.53 ± 0.21 c | 10.91 ± 0.29 ab | 8.58 ± 0.79 ab | 7.07 ± 0.67 bc | |
B-type (5−15 µm, %) | 63.76 ± 2.82 a | 59.82 ± 1.03 a | 61.76 ± 0.87 a | 62.29 ± 1.18 a | 60.27 ± 0.30 a | 61.54 ± 0.36 a | |
C-type (< 5 µm, %) | 24.02 ± 1.45 b | 29.07 ± 1.83 ab | 34.70 ± 0.91 a | 26.78 ± 1.23 b | 31.14 ± 1.09 ab | 31.38 ± 0.48 ab | |
d(0.5) (%) | 6.85 ± 0.08 a | 6.44 ± 0.26 ab | 5.47 ± 0.09 c | 6.52 ± 0.13 ab | 6.04 ± 0.17 bc | 5.88 ± 0.09 bc |
Table 3. Starch granule size distribution and median particle size (d(0.5)) of starch granules in the grains of three rice cultivars under non-saline and slightly saline field conditions.
Size distribution of starch granules | Non-saline | Slightly saline | |||||
---|---|---|---|---|---|---|---|
Pokkali | RD73 | KDML105 | Pokkali | RD73 | KDML105 | ||
A-type (> 15 µm, %) | 12.20 ± 1.50 a | 11.09 ± 1.29 ab | 3.53 ± 0.21 c | 10.91 ± 0.29 ab | 8.58 ± 0.79 ab | 7.07 ± 0.67 bc | |
B-type (5−15 µm, %) | 63.76 ± 2.82 a | 59.82 ± 1.03 a | 61.76 ± 0.87 a | 62.29 ± 1.18 a | 60.27 ± 0.30 a | 61.54 ± 0.36 a | |
C-type (< 5 µm, %) | 24.02 ± 1.45 b | 29.07 ± 1.83 ab | 34.70 ± 0.91 a | 26.78 ± 1.23 b | 31.14 ± 1.09 ab | 31.38 ± 0.48 ab | |
d(0.5) (%) | 6.85 ± 0.08 a | 6.44 ± 0.26 ab | 5.47 ± 0.09 c | 6.52 ± 0.13 ab | 6.04 ± 0.17 bc | 5.88 ± 0.09 bc |
Parametera | Non-saline | Slightly saline | ||||||
---|---|---|---|---|---|---|---|---|
Pokkali | RD73 | KDML105 | Pokkali | RD73 | KDML105 | |||
Gelatinization | To(g) (ºC) | 70.76 ± 0.23 a | 62.16 ± 0.37 b | 62.56 ± 0.03 b | 71.11 ± 0.03 a | 61.89 ± 0.33 b | 62.98 ± 0.24 b | |
Tp(g) (ºC) | 74.60 ± 0.15 a | 66.08 ± 0.35 c | 68.52 ± 0.12 b | 75.01 ± 0.06 a | 66.35 ± 0.20 c | 69.01 ± 0.11 b | ||
Tc(g) (ºC) | 78.65 ± 0.14 a | 70.53 ± 0.25 d | 73.13 ± 1.00 bc | 79.17 ± 0.19 a | 70.70 ± 0.10 cd | 74.17 ± 0.16 b | ||
ΔT(g) (ºC) | 7.89 ± 0.15 b | 8.37 ± 0.19 ab | 10.57 ± 1.01 ab | 8.06 ± 0.23 ab | 8.81 ± 0.24 ab | 11.19 ± 0.39 a | ||
ΔH(g) (J/g) | 14.58 ± 0.09 a | 10.53 ± 0.25 bc | 11.15 ± 0.40 bc | 11.58 ± 0.67 bc | 10.25 ± 0.37 c | 12.61± 0.47 ab | ||
Retrogradation | To(r) (ºC) | 41.49 ± 0.33 a | 41.02 ± 0.29 a | 41.51 ± 0.53 a | 42.08 ± 0.17 a | 41.72 ± 0.23 a | 42.53 ± 0.56 a | |
Tp(r) (ºC) | 53.42 ± 0.84 a | 49.96 ± 0.01 b | 52.41 ± 0.14 a | 53.18 ± 0.22 a | 51.35 ± 0.05 ab | 53.01 ± 0.12 a | ||
Tc(r) (ºC) | 64.94 ± 1.96 a | 59.22 ± 0.11 b | 59.55 ± 0.39 b | 62.66 ± 0.21 ab | 59.88 ± 0.09 ab | 59.50 ± 0.24 b | ||
ΔT(r) (ºC) | 23.45 ± 2.27 a | 18.20 ± 0.35 b | 18.04 ± 0.89 b | 20.59 ± 0.08 ab | 18.16 ± 0.18 b | 16.98 ± 0.58 b | ||
ΔH(r) (J/g) | 4.68 ± 0.17 ab | 2.12 ± 0.11 c | 2.96 ± 0.46 bc | 5.73 ± 0.56 a | 2.76 ± 0.15 bc | 3.19 ± 0.22 bc | ||
R (%) | 32.15 ± 1.30 b | 20.18 ± 1.09 b | 26.33 ± 3.13 b | 49.44 ± 3.43 a | 27.07 ± 2.26 b | 25.29 ± 1.05 b |
Table 4. Starch gelatinization and retrogradation properties of three rice cultivars under non-saline and slightly saline conditions.
Parametera | Non-saline | Slightly saline | ||||||
---|---|---|---|---|---|---|---|---|
Pokkali | RD73 | KDML105 | Pokkali | RD73 | KDML105 | |||
Gelatinization | To(g) (ºC) | 70.76 ± 0.23 a | 62.16 ± 0.37 b | 62.56 ± 0.03 b | 71.11 ± 0.03 a | 61.89 ± 0.33 b | 62.98 ± 0.24 b | |
Tp(g) (ºC) | 74.60 ± 0.15 a | 66.08 ± 0.35 c | 68.52 ± 0.12 b | 75.01 ± 0.06 a | 66.35 ± 0.20 c | 69.01 ± 0.11 b | ||
Tc(g) (ºC) | 78.65 ± 0.14 a | 70.53 ± 0.25 d | 73.13 ± 1.00 bc | 79.17 ± 0.19 a | 70.70 ± 0.10 cd | 74.17 ± 0.16 b | ||
ΔT(g) (ºC) | 7.89 ± 0.15 b | 8.37 ± 0.19 ab | 10.57 ± 1.01 ab | 8.06 ± 0.23 ab | 8.81 ± 0.24 ab | 11.19 ± 0.39 a | ||
ΔH(g) (J/g) | 14.58 ± 0.09 a | 10.53 ± 0.25 bc | 11.15 ± 0.40 bc | 11.58 ± 0.67 bc | 10.25 ± 0.37 c | 12.61± 0.47 ab | ||
Retrogradation | To(r) (ºC) | 41.49 ± 0.33 a | 41.02 ± 0.29 a | 41.51 ± 0.53 a | 42.08 ± 0.17 a | 41.72 ± 0.23 a | 42.53 ± 0.56 a | |
Tp(r) (ºC) | 53.42 ± 0.84 a | 49.96 ± 0.01 b | 52.41 ± 0.14 a | 53.18 ± 0.22 a | 51.35 ± 0.05 ab | 53.01 ± 0.12 a | ||
Tc(r) (ºC) | 64.94 ± 1.96 a | 59.22 ± 0.11 b | 59.55 ± 0.39 b | 62.66 ± 0.21 ab | 59.88 ± 0.09 ab | 59.50 ± 0.24 b | ||
ΔT(r) (ºC) | 23.45 ± 2.27 a | 18.20 ± 0.35 b | 18.04 ± 0.89 b | 20.59 ± 0.08 ab | 18.16 ± 0.18 b | 16.98 ± 0.58 b | ||
ΔH(r) (J/g) | 4.68 ± 0.17 ab | 2.12 ± 0.11 c | 2.96 ± 0.46 bc | 5.73 ± 0.56 a | 2.76 ± 0.15 bc | 3.19 ± 0.22 bc | ||
R (%) | 32.15 ± 1.30 b | 20.18 ± 1.09 b | 26.33 ± 3.13 b | 49.44 ± 3.43 a | 27.07 ± 2.26 b | 25.29 ± 1.05 b |
Parameter | Non-saline | Slightly saline | |||||
---|---|---|---|---|---|---|---|
Pokkali | RD73 | KDML105 | Pokkali | RD73 | KDML105 | ||
PTemp (ºC) | 75.71 ± 0.98 a | 68.75 ± 0.41 b | 69.16 ± 0.40 b | 75.86 ± 0.69 a | 69.30 ± 0.52 b | 70.07 ± 0.48 b | |
PTime (min) | 5.70 ± 0.06 ab | 6.47 ± 0.47 a | 4.53 ± 0.03 b | 5.13 ± 0.24 ab | 5.77 ± 0.07 ab | 4.80 ± 0.10 b | |
HS (cP) | 1803 ± 14 a | 1622 ± 59 ab | 1151 ± 20 d | 1832 ± 56 a | 1489 ± 42 bc | 1222 ± 16 cd | |
PV (cP) | 2953 ± 78 bc | 2174 ± 35 c | 4801 ± 27 a | 3620 ± 401 b | 2349 ± 54 c | 5048 ± 156 a | |
BD (cP) | 1150 ± 74 bc | 552 ± 43 c | 3650 ± 44 a | 1788 ± 450 b | 859 ± 18 bc | 3826 ± 157 a | |
FV (cP) | 4138 ± 87 abc | 3764 ± 68 bc | 2875 ± 223 bc | 5189 ± 480 a | 4244 ± 34 ab | 2790 ± 231 c | |
SB (cP) | 2335 ± 80 ab | 2142 ± 127 ab | 1724 ± 242 b | 3356 ± 537 a | 2755 ± 28 ab | 1568 ± 220 b |
Table 5. Starch pasting properties of three rice cultivars under non-saline and slightly saline conditions.
Parameter | Non-saline | Slightly saline | |||||
---|---|---|---|---|---|---|---|
Pokkali | RD73 | KDML105 | Pokkali | RD73 | KDML105 | ||
PTemp (ºC) | 75.71 ± 0.98 a | 68.75 ± 0.41 b | 69.16 ± 0.40 b | 75.86 ± 0.69 a | 69.30 ± 0.52 b | 70.07 ± 0.48 b | |
PTime (min) | 5.70 ± 0.06 ab | 6.47 ± 0.47 a | 4.53 ± 0.03 b | 5.13 ± 0.24 ab | 5.77 ± 0.07 ab | 4.80 ± 0.10 b | |
HS (cP) | 1803 ± 14 a | 1622 ± 59 ab | 1151 ± 20 d | 1832 ± 56 a | 1489 ± 42 bc | 1222 ± 16 cd | |
PV (cP) | 2953 ± 78 bc | 2174 ± 35 c | 4801 ± 27 a | 3620 ± 401 b | 2349 ± 54 c | 5048 ± 156 a | |
BD (cP) | 1150 ± 74 bc | 552 ± 43 c | 3650 ± 44 a | 1788 ± 450 b | 859 ± 18 bc | 3826 ± 157 a | |
FV (cP) | 4138 ± 87 abc | 3764 ± 68 bc | 2875 ± 223 bc | 5189 ± 480 a | 4244 ± 34 ab | 2790 ± 231 c | |
SB (cP) | 2335 ± 80 ab | 2142 ± 127 ab | 1724 ± 242 b | 3356 ± 537 a | 2755 ± 28 ab | 1568 ± 220 b |
Fig. 1. Total protein content (A), sodium dodecyl sulfate polyacrylamide gel electrophoresis protein profiles (B), intensity of glutelin large subunit (LS, C), glutelin small subunit (SS, D), and prolamin (E) in the grains of Pokkali, RD73, and KDML105 rice growing under the non-saline and slightly saline conditions. Data represent Mean ± SE (n = 4) with different lowercase letters representing the significant difference at the 0.05 level among rice cultivars in each field.
Fig. 2. Total phenolic content (TPC, A), 2,2-diphenyl-1-picrylhydrazyl free radicle scavenging activity (DPPH-RSA, B), 2,2′-azino-bis(3- ethylbenzothiazoline-6-sulfonic acid) (ABTS) free radicle scavenging activity (ABTS-RSA, C), and ferric reducing antioxidant power (FRAP, D) in mature grains of three rice cultivars under non-saline and slightly saline conditions. Data represent Mean ± SE (n = 4) with different lowercase letters representing the significant difference at the 0.05 level among rice cultivars in each field.
Parameter | Non-saline | Slightly saline | |||||||
---|---|---|---|---|---|---|---|---|---|
Pokkali | RD73 | KDML105 | Mean | Pokkali | RD73 | KDML105 | Mean | ||
Total N (%) | 1.314 a | 1.231 a | 1.245 a | 1.263 | 1.582 a | 1.798 a | 1.648 a | 1.676* | |
Total P (%) | 0.079 b | 0.102 ab | 0.115 ab | 0.099 | 0.114 ab | 0.139 a | 0.142 a | 0.132* | |
Total K (%) | 0.100 c | 0.096 c | 0.116 bc | 0.104 | 0.121 bc | 0.163 a | 0.130 b | 0.138* | |
Total Ca (%) | 0.025 ab | 0.031 ab | 0.031 ab | 0.029 | 0.023 b | 0.035 ab | 0.037 a | 0.032 | |
Total Mg (%) | 0.028 b | 0.035 ab | 0.041 ab | 0.035 | 0.039 ab | 0.044 ab | 0.045 a | 0.043* | |
Total Na (%) | 0.026 a | 0.027 a | 0.023 a | 0.026 | 0.028 a | 0.032 a | 0.024 a | 0.028 | |
Total Fe (mg/kg) | 44.10 ab | 37.00 b | 27.10 b | 0.036 | 21.60 b | 21.60 b | 78.00 a | 0.04 | |
Total Cu (mg/kg) | 85.60 a | 29.30 b | 124.50 a | 79.80* | 21.80 b | 24.10 b | 32.70 b | 26.20 | |
Total Zn (mg/kg) | 22.20 ab | 18.70 b | 23.60 ab | 21.50 | 27.60 a | 24.40 ab | 25.90 ab | 26.00* |
Table 6. Grain elemental compositions including total nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), iron (Fe), copper (Cu), and zinc (Zn) of three rice cultivars under non-saline and slightly saline conditions.
Parameter | Non-saline | Slightly saline | |||||||
---|---|---|---|---|---|---|---|---|---|
Pokkali | RD73 | KDML105 | Mean | Pokkali | RD73 | KDML105 | Mean | ||
Total N (%) | 1.314 a | 1.231 a | 1.245 a | 1.263 | 1.582 a | 1.798 a | 1.648 a | 1.676* | |
Total P (%) | 0.079 b | 0.102 ab | 0.115 ab | 0.099 | 0.114 ab | 0.139 a | 0.142 a | 0.132* | |
Total K (%) | 0.100 c | 0.096 c | 0.116 bc | 0.104 | 0.121 bc | 0.163 a | 0.130 b | 0.138* | |
Total Ca (%) | 0.025 ab | 0.031 ab | 0.031 ab | 0.029 | 0.023 b | 0.035 ab | 0.037 a | 0.032 | |
Total Mg (%) | 0.028 b | 0.035 ab | 0.041 ab | 0.035 | 0.039 ab | 0.044 ab | 0.045 a | 0.043* | |
Total Na (%) | 0.026 a | 0.027 a | 0.023 a | 0.026 | 0.028 a | 0.032 a | 0.024 a | 0.028 | |
Total Fe (mg/kg) | 44.10 ab | 37.00 b | 27.10 b | 0.036 | 21.60 b | 21.60 b | 78.00 a | 0.04 | |
Total Cu (mg/kg) | 85.60 a | 29.30 b | 124.50 a | 79.80* | 21.80 b | 24.10 b | 32.70 b | 26.20 | |
Total Zn (mg/kg) | 22.20 ab | 18.70 b | 23.60 ab | 21.50 | 27.60 a | 24.40 ab | 25.90 ab | 26.00* |
[1] | Ahmed I M, Cao F B, Zhang M, Chen X H, Zhang G P, Wu F B. 2013. Difference in yield and physiological features in response to drought and salinity combined stress during anthesis in Tibetan wild and cultivated barleys. PLoS One, 8(10): e77869. |
[2] | Ahn D J, Won J G, Rico C M, Lee S C. 2010. Influence of variety, location, growing year, and storage on the total phosphorus, phytate-phosphorus, and phytate-phosphorus to total phosphorus ratio in rice. J Agric Food Chem, 58(5): 3008-3011. |
[3] | Arunin S, Pongwichian P. 2015. Salt-affected soils and management in Thailand. Bull Soc Sea Water Sci Jpn, 69: 319-325. |
[4] | Azeem M, Pirjan K, Qasim M, Mahmood A, Javed T, Muhammad H, Yang S J, Dong R J, Ali B, Rahimi M. 2023. Salinity stress improves antioxidant potential by modulating physio-biochemical responses in Moringa oleifera Lam. Sci Rep, 13(1): 2895. |
[5] | Balindong J L, Liu L, Ward R M, Barkla B J, Waters D L E. 2016. Optimisation and standardisation of extraction and HPLC analysis of rice grain protein. J Cereal Sci, 72: 124-130. |
[6] | Baxter G, Zhao J, Blanchard C. 2011. Salinity alters the protein composition of rice endosperm and the physicochemical properties of rice flour. J Sci Food Agric, 91(12): 2292-2297. |
[7] | Bhat F M, Riar C S. 2019. Effect of composition, granular morphology and crystalline structure on the pasting, textural, thermal and sensory characteristics of traditional rice cultivars. Food Chem, 280: 303-309. |
[8] | Bistgani Z E, Hashemi M, DaCosta M, Craker L, Maggi F, Morshedloo M R. 2019. Effect of salinity stress on the physiological characteristics, phenolic compounds and antioxidant activity of Thymus vulgaris L. and Thymus daenensis Celak. Ind Crops Prod, 135: 311-320. |
[9] | Brown J W, Hayward H E, Richards A, Bernstein L, Hatcher, J T, Reeve R C, Richards L A. 1954. Diagnosis and improvement of saline and alkali soils. Soil Sci, 78(2): 154. |
[10] | Calingacion M, Laborte A, Nelson A, Resurreccion A, Concepcion J C, Daygon V D, Mumm R, Reinke R, Dipti S, Bassinello P Z, Manful J, Sophany S, Lara K C, Bao J S, Xie L H, Loaiza K, El-hissewy A, Gayin J, Sharma N, Rajeswari S, Manonmani S, Rani N S, Kota S, Indrasari S D, Habibi F, Hosseini M, Tavasoli F, Suzuki K, Umemoto T, Boualaphanh C, Lee H H, Hung Y P, Ramli A, Aung P P, Ahmad R, Wattoo J I, Bandonill E, Romero M, Brites C M, Hafeel R, Lur H S, Cheaupun K, Jongdee S, Blanco P, Bryant R, Lang N T, Hall R D, Fitzgerald M. 2014. Diversity of global rice markets and the science required for consumer-targeted rice breeding. PLoS One, 9(1): e85106. |
[11] | Chen H J, Chen J Y, Wang S J. 2008. Molecular regulation of starch accumulation in rice seedling leaves in response to salt stress. Acta Physiol Plant, 30(2): 135-142. |
[12] | Chunthaburee S, Sanitchon J, Pattanagul W, Theerakulpisut P. 2015. Effects of salt stress after late booting stage on yield and antioxidant capacity in pigmented rice grains and alleviation of the salt-induced yield reduction by exogenous spermidine. Plant Prod Sci, 18(1): 32-42. |
[13] | Coca L I R, ía González M T G, Unday Z G, Hernández J J, Jáuregui M M R, Cancio Y F. 2023. Effects of sodium salinity on rice (Oryza sativa L.) cultivation: A review. Sustainability, 15(3): 1804. |
[14] | Cuevas R P, Daygon V D, Corpuz H M, Nora L, Reinke R F, Waters D L E, Fitzgerald M A. 2010. Melting the secrets of gelatinisation temperature in rice. Funct Plant Biol, 37(5): 439-447. |
[15] | Das P, Adak S, Lahiri Majumder A. 2020. Genetic manipulation for improved nutritional quality in rice. Front Genet, 11:776. |
[16] | Delcour J A, Vansteelandt J, Hythier M, Abécassis J, Sindic M, Deroanne C. 2000. Fractionation and reconstitution experiments provide insight into the role of gluten and starch interactions in pasta quality. J Agric Food Chem, 48(9): 3767-3773. |
[17] | Ellis R P, Cochrane M P, Dale M F B, Duffus C M, Lynn A, Morrison I M, Prentice R D M, Swanston J S, Tiller S A. 1998. Starch production and industrial use. J Sci Food Agric, 77(3): 289-311. |
[18] | Eynard A, Lal R, Wiebe K. 2005. Crop response in salt-affected soils. J Sustain Agric, 27(1): 5-50. |
[19] | Farooq M, Asif S, Jang Y H, Park J R, Zhao D D, Kim E G, Kim K M. 2022. Effect of different salts on nutrients uptake, gene expression, antioxidant, and growth pattern of selected rice genotypes. Front Plant Sci, 13: 895282. |
[20] | Ghasemzadeh A, Karbalaii M T, Jaafar H Z E, Rahmat A. 2018. Phytochemical constituents, antioxidant activity, and antiproliferative properties of black, red, and brown rice bran. Chem Cent J, 12(1): 17. |
[21] | Goufo P, Trindade H. 2014. Rice antioxidants: Phenolic acids, flavonoids, anthocyanins, proanthocyanidins, tocopherols, tocotrienols, γ-oryzanol, and phytic acid. Food Sci Nutr, 2(2): 75-104. |
[22] | Grattan S R, Grieve C M. 1992. Mineral element acquisition and growth response of plants grown in saline environments. Agric Ecosyst Environ, 38(4): 275-300. |
[23] | Gu Y J, Li J P, Yang F, Zhang X. 2019. Effects of saline-alkaline stress on mineral element contents in rice husk and grain. Soils Crops, 8(1): 50-59. (in Chinese with English abstract) |
[24] | Hanin M, Ebel C, Ngom M, Laplaze L, Masmoudi K. 2016. New insights on plant salt tolerance mechanisms and their potential use for breeding. Front Plant Sci, 7: 1787. |
[25] | Hasanuzzaman M, Fujita M, Islam M N, Ahamed K U, Nahar K. 2009. Performance of four irrigated rice varieties under different levels of salinity stress. Int J Integr Biol, 6: 85-90. |
[26] | Hayakawa T, Seo S W, Igaue I. 1980. Electron microscopic observation of rice grain: Part I. Morphology of rice starch. J Jpn Soc Starch Sci, 27(3): 173-179. |
[27] | Hermansson A M, Svegmark K. 1996. Developments in the understanding of starch functionality. Trends Food Sci Technol, 7(11): 345-353. |
[28] | Hoang T M L, Tran T N, Nguyen T K T, Williams B, Wurm P, Bellairs S, Mundree S. 2016. Improvement of salinity stress tolerance in rice: Challenges and opportunities. Agronomy, 6(4): 54. |
[29] | Hussain S, Zhang J H, Zhong C, Zhu L F, Cao X C, Yu S M, Allen Bohr J, Hu J J, Jin Q Y. 2017. Effects of salt stress on rice growth, development characteristics, and the regulating ways: A review. J Integr Agric, 16(11): 2357-2374. |
[30] | Hussain M, Ahmad S, Hussain S, Lal R, Ul-Allah S, Nawaz A. 2018. Rice in saline soils: Physiology, biochemistry, genetics, and management. Adv Agron, 148: 231-287. |
[31] | Iqbal S, Bhanger M I, Anwar F. 2005. Antioxidant properties and components of some commercially available varieties of rice bran in Pakistan. Food Chem, 93(2): 265-272. |
[32] | Jayaprakash G, Bains A, Chawla P, Fogarasi M, Fogarasi S. 2022. A narrative review on rice proteins: Current scenario and food industrial application. Polymers, 14(15): 3003. |
[33] | Juliano B O, Perez C M, Kaosa-ard M. 1992. Gran quality charecteristics of export rices in selected markets. In: Unnevehr L, Duff B, Juliano B O. Consumer Demand for Rice Grain Quality. Manila, the Phillippines: International Rice Research Institute: 221-234. |
[34] | Karim A A, Norziah M H, Seow C C. 2000. Methods for the study of starch retrogradation. Food Chem, 71(1): 9-36. |
[35] | Khan M S, Akther T, Mubarak Ali D, Hemalatha S. 2019. An investigation on the role of salicylic acid alleviate the saline stress in rice crop (Oryza sativa (L)). Biocatal Agric Biotechnol, 18: 101027. |
[36] | Khatun S, Rizzo C A, Flowers T J. 1995. Genotypic variation in the effect of salinity on fertility in rice. Plant Soil, 173(2): 239-250. |
[37] | Kumari M, Asthir B. 2016. Transformation of sucrose to starch and protein in rice leaves and grains under two establishment methods. Rice Sci, 23(5): 255-265. |
[38] | Lee C, Chung C T, Hong W J, Lee Y S, Lee J H, Koh H J, Jung K H. 2021. Transcriptional changes in the developing rice seeds under salt stress suggest targets for manipulating seed quality. Front Plant Sci, 12: 748273. |
[39] | Li L N, Shi S J, Cheng B, Zhao D, Pan K Q, Cao C G, Jiang Y. 2023. Association between rice protein components and eating quality traits of different rice varieties under different nitrogen levels. J Cereal Sci, 113: 103760. |
[40] | Li Z K, Zhou T Y, Zhu K Y, Wang W L, Zhang W Y, Zhang H, Liu L J, Zhang Z J, Wang Z Q, Wang B X, Xu D Y, Gu J F, Yang J C. 2023. Effects of salt stress on grain yield and quality parameters in rice cultivars with differing salt tolerance. Plants, 12(18): 3243. |
[41] | Lin Q L, Liu Z H, Xiao H X, Li L H, Yu F X, Tian W. 2010. Studies on the pasting and rheology of rice starch with different protein residual. In: Rannenberg K. IFIP Advances in Information and Communication Technology. Berlin, Germany: Springer Berlin Heidelberg: 407-419. |
[42] | Liu R H. 2007. Whole grain phytochemicals and health. J Cereal Sci, 46(3): 207-219. |
[43] | Liu X W, Feike T, Chen S Y, Shao L W, Sun H Y, Zhang X Y. 2016. Effects of saline irrigation on soil salt accumulation and grain yield in the winter wheat-summer maize double cropping system in the low plain of North China. J Integr Agric, 15(12): 2886-2898. |
[44] | Lu X D, Li F, Xiao Y H, Wang F, Zhang G L, Deng H B, Tang W B. 2023. Grain shape genes: Shaping the future of rice breeding. Rice Sci, 30(5): 379-404. |
[45] | Mahender A, Anandan A, Pradhan S K, Pandit E. 2016. Rice grain nutritional traits and their enhancement using relevant genes and QTLs through advanced approaches. SpringerPlus, 5(1): 2086. |
[46] | Majumder S, Datta K, Datta S K. 2019. Rice Biofortification: High iron, zinc, and vitamin-A to fight against “Hidden Hunger”. Agronomy, 9(12): 803. |
[47] | Mariotti F, Tomé D, Mirand P P. 2008. Converting nitrogen into protein: Beyond 6.25 and Jones’ factors. Crit Rev Food Sci Nutr, 48(2): 177-184. |
[48] | Martin C, Smith A M. 1995. Starch biosynthesis. Plant Cell, 7(7): 971-985. |
[49] | Munns R, James R A, Läuchli A. 2006. Approaches to increasing the salt tolerance of wheat and other cereals. J Exp Bot, 57(5): 1025-1043. |
[50] | Pang Y H, Ahmed S, Xu Y J, Beta T, Zhu Z W, Shao Y F, Bao J S. 2018. Bound phenolic compounds and antioxidant properties of whole grain and bran of white, red and black rice. Food Chem, 240: 212-221. |
[51] | Patindol J A, Siebenmorgen T J, Wang Y J. 2015. Impact of environmental factors on rice starch structure: A review. Starch Stärke, 67(1/2): 42-54. |
[52] | Putseys J A, Lamberts L, Delcour J A. 2010. Amylose-inclusion complexes: Formation, identity and physico-chemical properties. J Cereal Sci, 51(3): 238-247. |
[53] | Rao P S, Mishra B, Gupta S R. 2013. Effects of soil salinity and alkalinity on grain quality of tolerant, semi-tolerant and sensitive rice genotypes. Rice Sci, 20(4): 284-291. |
[54] | Razzaq A, Ali A, Safdar L B, Zafar M M, Rui Y, Shakeel A, Shaukat A, Ashraf M, Gong W K, Yuan Y L. 2020. Salt stress induces physiochemical alterations in rice grain composition and quality. J Food Sci, 85(1): 14-20. |
[55] | Razzaque S, Haque T, Elias S M, Rahman M S, Biswas S, Schwartz S, Ismail A M, Walia H, Juenger T E, Seraj Z I. 2017. Reproductive stage physiological and transcriptional responses to salinity stress in reciprocal populations derived from tolerant (Horkuch) and susceptible (IR29) rice. Sci Rep, 7: 46138. |
[56] | Sáez-Plaza P, Navas M J, Wybraniec S, Michałowski T, Asuero A G. 2013. An overview of the Kjeldahl method of nitrogen determination: Part II. Sample preparation, working scale, instrumental finish, and quality control. Crit Rev Anal Chem, 43(4): 224-272. |
[57] | Saleethong P, Sanitchon J, Kong-ngern K, Theerakulpisut P. 2013. Effects of exogenous spermidine (Spd) on yield, yield-related parameters and mineral composition of rice (Oryza sativa L. ssp. indica) grains under salt stress. Aust J Crop Sci, 7(9): 1293-1301. |
[58] | Saleh A S M, Wang P, Wang N, Yang L, Xiao Z G. 2019. Brown rice versus white rice: Nutritional quality, potential health benefits, development of food products, and preservation technologies. Compr Rev Food Sci Food Saf, 18(4): 1070-1096. |
[59] | Sangwongchai W, Tananuwong K, Krusong K, Thitisaksakul M. 2021. Yield, grain quality, and starch physicochemical properties of 2 elite Thai rice cultivars grown under varying production systems and soil characteristics. Foods, 10(11): 2601. |
[60] | Sangwongchai W, Krusong K, Thitisaksakul M. 2022. Salt tolerance at vegetative stage is partially associated with changes in grain quality and starch physicochemical properties of rice exposed to salinity stress at reproductive stage. J Sci Food Agric, 102(1): 370-382. |
[61] | Sangwongchai W, Tananuwong K, Krusong K, Natee S, Thitisaksakul M. 2023. Starch chemical composition and molecular structure in relation to physicochemical characteristics and resistant starch content of four Thai commercial rice cultivars differing in pasting properties. Polymers, 15(3): 574. |
[62] | Santanoo S, Lontom W, Dongsansuk A, Vongcharoen K, Theerakulpisut P. 2023. Photosynthesis performance at different growth stages, growth, and yield of rice in saline fields. Plants, 12(9): 1903. |
[63] | Senguttuvel P, Padmavathi G, Jasmine C, Sanjeeva Rao D, Neeraja C N, Jaldhani V, Beulah P, Gobinath R, Aravind Kumar J, Sai Prasad S V, Subba Rao L V, Hariprasad A S, Sruthi K, Shivani D, Sundaram R M, Govindaraj M. 2023. Rice biofortification: Breeding and genomic approaches for genetic enhancement of grain zinc and iron contents. Front Plant Sci, 14: 1138408. |
[64] | Sharma A, Shahzad B, Rehman A, Bhardwaj R, Landi M, Zheng B S. 2019. Response of phenylpropanoid pathway and the role of polyphenols in plants under abiotic stress. Molecules, 24(13): 2452. |
[65] | Shen Y, Jin L, Xiao P, Lu Y, Bao J S. 2009. Total phenolics, flavonoids, antioxidant capacity in rice grain and their relations to grain color, size and weight. J Cereal Sci, 49(1): 106-111. |
[66] | Sirivongpaisal P, Hill S E, Pradipasena P, Mitchell J R. 2005. Amylose content and amylopectin fine structure of Thai rice starches. In: Proceedings of the the 3rd Conference on Starch Technology, National Center for Genetic Engineering and Biotechnology (BIOTEC). 4 November 2005. Bangkok, Thailand: 221-226. |
[67] | Siscar-Lee J J H, Juliano B O, Qureshi R H, Akbar M. 1990. Effect of saline soil on grain quality of rices differing in salinity tolerance. Plant Foods Hum Nutr, 40(1): 31-36. |
[68] | Suebpongsang P, Ekasingh B, Cramb R. 2020. Chapter 2:Commercialisation of rice farming in Northeast Thailand. In: Cramb R. White Gold: The Commercialisation of Rice Farming in the Lower Mekong Basin. Springer Nature, Singapore: Palgrave Macmillan Publishing: 39-68. |
[69] | Theerawitaya C, Boriboonkaset T, Cha-Um S, Supaibulwatana K, Kirdmanee C. 2012. Transcriptional regulations of the genes of starch metabolism and physiological changes in response to salt stress rice (Oryza sativa L.) seedlings. Physiol Mol Biol Plants, 18(3): 197-208. |
[70] | Thitisaksakul M, Tananuwong K, Shoemaker C F, Chun A, Tanadul O U M, Labavitch J M, Beckles D M. 2015. Effects of timing and severity of salinity stress on rice (Oryza sativa L.) yield, grain composition, and starch functionality. J Agric Food Chem, 63(8): 2296-2304. |
[71] | Thitisaksakul M, Sangwongchai W, Mungmonsin U, Promrit P, Krusong K, Wanichthanarak K, Tananuwong K. 2021. Granule morphological and structural variability of Thai certified glutinous rice starches in relation to thermal, pasting, and digestible properties. Cereal Chem, 98(3): 492-506. |
[72] | Tian S, Nakamura K, Kayahara H. 2004. Analysis of phenolic compounds in white rice, brown rice, and germinated brown rice. J Agric Food Chem, 52(15): 4808-4813. |
[73] | Tisarum R, Theerawitaya C, Samphumphuang T, Polispitak K, Thongpoem P, Singh H P, Cha-Um S. 2020. Alleviation of salt stress in upland rice (Oryza sativa L. ssp. indica cv. leum Pua) using arbuscular mycorrhizal fungi inoculation. Front Plant Sci, 11: 348. |
[74] | Toyosawa Y, Kawagoe Y, Matsushima R, Crofts N, Ogawa M, Fukuda M, Kumamaru T, Okazaki Y, Kusano M, Saito K, Toyooka K, Sato M, Ai Y F, Jane J L, Nakamura Y, Fujita N. 2016. Deficiency of starch synthase IIIa and IVb alters starch granule morphology from polyhedral to spherical in rice endosperm. Plant Physiol, 170(3): 1255-1270. |
[75] | Trijatmiko K R, Dueñas C, Tsakirpaloglou N, Torrizo L, Arines F M, Adeva C, Balindong J, Oliva N, Sapasap M V, Borrero J, Rey J, Francisco P, Nelson A, Nakanishi H, Lombi E, Tako E, Glahn R P, Stangoulis J, Chadha-Mohanty P, Johnson A A T, Tohme J, Barry G, Slamet-Loedin I H. 2016. Biofortified indica rice attains iron and zinc nutrition dietary targets in the field. Sci Rep, 6: 19792. |
[76] | Tukey J W. 1949. Comparing individual means in the analysis of variance. Biometrics, 5(2): 99-114. |
[77] | Turan S, Tripathy B C. 2013. Salt and genotype impact on antioxidative enzymes and lipid peroxidation in two rice cultivars during de-etiolation. Protoplasma, 250(1): 209-222. |
[78] | Tyagi A, Shabbir U, Chelliah R, Daliri E B M, Chen X Q, Oh D H. 2021. Limosilactobacillus reuteri fermented brown rice: A product with enhanced bioactive compounds and antioxidant potential. Antioxidants, 10(7): 1077. |
[79] | Ubwa S T, Abah J, Asemave K, Shambe T. 2012. Studies on the gelatinization temperature of some cereal starches. Int J Chem, 4(6): 22-28. |
[80] | Uddin A H, Khalid R S, Alaama M, Abdualkader A M, Kasmuri A, Abbas S A. 2016. Comparative study of three digestion methods for elemental analysis in traditional medicine products using atomic absorption spectrometry. J Anal Sci Technol, 7: 6. |
[81] | US Department of Agriculture. 2023. Principal Rice Exporting Countries Worldwide in 2022/2023. [2023-10-27]. https://www.statista.com/statistics/255947/top-rice-exporting-countries-worldwide-2011/. |
[82] | Verma T S, Neue H U. 1984. Effect of soil salinity level and zinc application on growth, yield, and nutrient composition of rice. Plant Soil, 82(1): 3-14. |
[83] | Wairich A, Ricachenevsky F K, Lee S. 2022. A tale of two metals: Biofortification of rice grains with iron and zinc. Front Plant Sci, 13: 944624. |
[84] | Walter M, Marchesan E. 2011. Phenolic compounds and antioxidant activity of rice. Braz Arch Biol Technol, 54(2): 371-377. |
[85] | Wang W, Guo J, Zhang J N, Peng J, Liu T X, Xin Z H. 2015. Isolation, identification and antioxidant activity of bound phenolic compounds present in rice bran. Food Chem, 171: 40-49. |
[86] | Wani A A, Singh P, Ahmad Shah M, Schweiggert-Weisz U, Gul K, Wani I A. 2012. Rice starch diversity: Effects on structural, morphological, thermal, and physicochemical properties: A review. Comp Rev Food Sci Food Safe, 11(5): 417-436. |
[87] | Watanabe K. 2017. Improvement in rainfed rice production during an era of rapid national economic growth: A case study of a village in Northeast Thailand. Southeast Asian Stud, 6(2): 293-306. |
[88] | White P J, Broadley M R. 2005. Biofortifying crops with essential mineral elements. Trends Plant Sci, 10(12): 586-593. |
[89] | Xiang J L, Apea-Bah F B, Ndolo V U, Katundu M C, Beta T. 2019. Profile of phenolic compounds and antioxidant activity of finger millet varieties. Food Chem, 275: 361-368. |
[90] | Yan L, Luo T, Huang D, Wei M, Ma Z, Liu C, Qin Y, Zhou X, Lu Y, Li R, Qin G, Zhang Y. 2023. Recent advances in molecular mechanism and breeding utilization of brown planthopper resistance genes in rice: An integrated review. Int J Mol Sci, 24(15): 12061. |
[91] | Yao D P, Wu J, Luo Q H, Zhang D M, Zhuang W, Xiao G, Deng Q Y, Bai B. 2022. Effects of salinity stress at reproductive growth stage on rice (Oryza sativa L.) composition, starch structure, and physicochemical properties. Front Nutr, 9: 926217. |
[92] | Yawadio R, Tanimori S, Morita N. 2007. Identification of phenolic compounds isolated from pigmented rices and their aldose reductase inhibitory activities. Food Chem, 101(4): 1616-1625. |
[93] | Zeng Y W, Zhang H L, Wang L X, Pu X Y, Du J, Yang S M, Liu J F. 2010. Genotypic variation in element concentrations in brown rice from Yunnan landraces in China. Environ Geochem Health, 32(3): 165-177. |
[94] | Zhang C Q, Zhou L H, Zhu Z B, Lu H W, Zhou X Z, Qian Y T, Li Q F, Lu Y, Gu M H, Liu Q Q. 2016. Characterization of grain quality and starch fine structure of two japonica rice (Oryza sativa) cultivars with good sensory properties at different temperatures during the filling stage. J Agric Food Chem, 64(20): 4048-4057. |
[95] | Zhang C Y, Shen Y, Chen J, Xiao P, Bao J S. 2008. Nondestructive prediction of total phenolics, flavonoid contents, and antioxidant capacity of rice grain using near-infrared spectroscopy. J Agric Food Chem, 56(18): 8268-8272. |
[96] | Zhang R, Wang Y, Hussain S, Yang S, Li R K, Liu S L, Chen Y L, Wei H H, Dai Q G, Hou H Y. 2022. Study on the effect of salt stress on yield and grain quality among different rice varieties. Front Plant Sci, 13: 918460. |
[97] | Zhao Y T, Dai X G, Mackon E, Ma Y F, Liu P Q. 2022. Impacts of protein from high-protein rice on gelatinization and retrogradation properties in high- and low-amylose reconstituted rice flour. Agronomy, 12(6): 1431. |
[98] | Zheng C, Liu C T, Liu L, Tan Y N, Sheng X B, Yu D, Sun Z Z, Sun X W, Chen J, Yuan D Y, Duan M J. 2023. Effect of salinity stress on rice yield and grain quality: A meta-analysis. Eur J Agron, 144: 126765. |
[99] | Zhou Z K, Robards K, Helliwel S, Blanchard C. 2004. The distribution of phenolic acids in rice. Food Chem, 87: 401-406. |
[1] | Zhang Fengmin, Cao Zhenzhen, Zheng Xin, He Yuntao, Chen Mingxue, Lin Xiaoyan. Interaction Between Ustilaginoidea virens and Rice and Its Sustainable Control [J]. Rice Science, 2024, 31(3): 269-284. |
[2] | Hou Xinyue, Wang Yuping, Qian Qian, Ren Deyong. Molecular Mechanism of Rice Necrotic Lesion for Optimized Yield and Disease Resistance [J]. Rice Science, 2024, 31(3): 285-299. |
[3] | Maimunah Mohd Ali, Norhashila Hashim. Exploring Nutritional Compositions, Volatile Compounds, Health Benefits, Emerging Processing Technologies, and Potential Food Products of Glutinous Rice: A Review [J]. Rice Science, 2024, 31(3): 251-268. |
[4] | Li Dian, Duan Wenjing, Liu Qun’en, Wu Weixun, Zhan Xiaodeng, Sun Lianping, Zhang Yingxin, Cheng Shihua. Gapless Genome Assembly of ZH8015 and Preliminary Multi-Omics Analysis to Investigate ZH8015’s Responses Against Brown Planthopper Infestation [J]. Rice Science, 2024, 31(3): 317-327. |
[5] | Hong Weiyuan, Duan Meiyang, Wang Yifei, Chen Yongjian, Mo Zhaowen, Qi Jianying, Pan Shenggang, Tang Xiangru. Enriching Iodine and Regulating Grain Aroma, Appearance Quality, and Yield in Aromatic Rice by Foliar Application of Sodium Iodide [J]. Rice Science, 2024, 31(3): 328-342. |
[6] | Deng Bowen, Zhang Yanni, Zhang Fan, Wang Wensheng, Xu Jianlong, Zhang Yu, Bao Jinsong. Genome-Wide Association Study of Cooked Rice Textural Attributes and Starch Physicochemical Properties in indica Rice [J]. Rice Science, 2024, 31(3): 300-316. |
[7] | Ayut Kongpun, Tonapha Pusadee, Pennapa Jaksomsak, Kawiporn Chinachanta, Patcharin Tuiwong, Phukjira Chan-In, Sawika Konsaeng, Wasu Pathom-Aree, Suchila Utasee, Benjamaporn Wangkaew, Chanakan Prom-U-Thai. Abiotic and Biotic Factors Controlling Grain Aroma along Value Chain of Fragrant Rice: A Review [J]. Rice Science, 2024, 31(2): 142-158. |
[8] | Sujeevan Rajendran, Hyeonseo Park, Jiyoung Kim, Soon Ju Park, Dongjin Shin, Jong-Hee Lee, Young Hun Song, Nam-Chon Paek, Chul Min Kim. Methane Emission from Rice Fields: Necessity for Molecular Approach for Mitigation [J]. Rice Science, 2024, 31(2): 159-178. |
[9] | Zhu Chengqi, Ye Yuxuan, Qiu Tian, Huang Yafan, Ying Jifeng, Shen Zhicheng. Drought-Tolerant Rice at Molecular Breeding Eras: An Emerging Reality [J]. Rice Science, 2024, 31(2): 179-189. |
[10] | Wu Lijuan, Han Cong, Wang Huimei, He Yuchang, Lin Hai, Wang Lei, Chen Chen, E Zhiguo. OsbZIP53 Negatively Regulates Immunity Response by Involving in Reactive Oxygen Species and Salicylic Acid Metabolism in Rice [J]. Rice Science, 2024, 31(2): 190-202. |
[11] | Xie Shuwei, Shi Huanbin, Wen Hui, Liu Zhiquan, Qiu Jiehua, Jiang Nan, Kou Yanjun. Carbon Catabolite Repressor UvCreA is Required for Development and Pathogenicity in Ustilaginoidea virens [J]. Rice Science, 2024, 31(2): 203-214. |
[12] | Zheng Shaoyan, Chen Junyu, Li Huatian, Liu Zhenlan, Li Jing, Zhuang Chuxiong. Analysis of RNA Recognition and Binding Characteristics of OsCPPR1 Protein in Rice [J]. Rice Science, 2024, 31(2): 215-225. |
[13] | Liu Dan, Zhao Huibo, Wang Zi’an, Xu Jing, Liu Yiting, Wang Jiajia, Chen Minmin, Liu Xiong, Zhang Zhihai, Cen Jiangsu, Zhu Li, Hu Jiang, Ren Deyong, Gao Zhenyu, Dong Guojun, Zhang Qiang, Shen Lan, Li Qing, Qian Qian, Hu Songping, Zhang Guangheng. Leaf Morphology Genes SRL1 and RENL1 Co-Regulate Cellulose Synthesis and Affect Rice Drought Tolerance [J]. Rice Science, 2024, 31(1): 103-117. |
[14] | Wei Huanhe, Geng Xiaoyu, Zhang Xiang, Zhu Wang, Zhang Xubin, Chen Yinglong, Huo Zhongyang, Zhou Guisheng, Meng Tianyao, Dai Qigen. Grain Yield, Biomass Accumulation, and Leaf Photosynthetic Characteristics of Rice under Combined Salinity-Drought Stress [J]. Rice Science, 2024, 31(1): 118-128. |
[15] | Masoumeh Kordi, Naser Farrokhi, Martin I. Pech-Canul, Asadollah Ahmadikhah. Rice Husk at a Glance: From Agro-Industrial to Modern Applications [J]. Rice Science, 2024, 31(1): 14-32. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||