Rice Science ›› 2015, Vol. 22 ›› Issue (3): 116-122.DOI: 10.1016/S1672-6308(14)60284-5
• Orginal Article • Previous Articles Next Articles
Guan-fu Fu1, Cai-xia Zhang1, Yong-jie Yang1, Jie Xiong2, Xue-qin Yang1, Xiu-fu Zhang1, Qian-yu Jin1, Long-xing Tao1()
Received:
2014-08-08
Accepted:
2014-12-29
Online:
2015-05-28
Published:
2015-03-27
Guan-fu Fu, Cai-xia Zhang, Yong-jie Yang, Jie Xiong, Xue-qin Yang, Xiu-fu Zhang, Qian-yu Jin, Long-xing Tao. Male Parent Plays More Important Role in Heat Tolerance in Three-Line Hybrid Rice[J]. Rice Science, 2015, 22(3): 116-122.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ricesci.org/EN/10.1016/S1672-6308(14)60284-5
Line | Variety | No. of panicle per plant | No. of grains per panicle | Seed-setting rate (%) (%) | 1000-grain weight (g) | HSI | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Control | Heat stress | Control | Heat stress | Control | Heat stress | Control | Heat stress | ||||||
Maintainer line | K22B | 11.7 a | 9.4 b | 118.20 a | 82.68 b | 53.30 a | 42.73 b | 26.62 a | 19.91 b | 0.1984 | |||
Bobai B | 15.7 a | 12.2 b | 110.81 a | 78.82 b | 77.40 a | 56.46 b | 19.41 a | 17.43 a | 0.2705 | ||||
Neixiang 85B | 13.0 a | 8.2 b | 146.15 a | 117.39 b | 68.51 a | 19.18 b | 28.51 a | 17.19 b | 0.72 | ||||
Zhong 9B | 12.3 a | 13.1 a | 124.49 a | 127.33 a | 73.60 a | 7.43 b | 22.64 a | 14.46 b | 0.899 | ||||
Restorer line | Minghui 63 | 13.0 a | 13.7 a | 73.26 a | 86.49 b | 76.23 a | 39.76 b | 29.58 a | 20.76 b | 0.4784 | |||
R207 | 10.7 a | 8.0 b | 105.28 a | 130.58 b | 72.87 a | 33.82 b | 23.74 a | 9.79 b | 0.5359 | ||||
Chuannong 527 | 11.3 a | 14.7 b | 98.82 a | 53.58 b | 90.57 a | 0.38 b | 32.62 a | 13.08 b | 0.9958 | ||||
Milyang 46 | 12.0 a | 15.7 b | 75.64 a | 63.21 a | 78.77 a | 5.82 b | 28.21 a | 16.24 b | 0.9261 |
Table 1 Effects of heat stress on grain yield components of maintainer and restorer lines at flowering.
Line | Variety | No. of panicle per plant | No. of grains per panicle | Seed-setting rate (%) (%) | 1000-grain weight (g) | HSI | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Control | Heat stress | Control | Heat stress | Control | Heat stress | Control | Heat stress | ||||||
Maintainer line | K22B | 11.7 a | 9.4 b | 118.20 a | 82.68 b | 53.30 a | 42.73 b | 26.62 a | 19.91 b | 0.1984 | |||
Bobai B | 15.7 a | 12.2 b | 110.81 a | 78.82 b | 77.40 a | 56.46 b | 19.41 a | 17.43 a | 0.2705 | ||||
Neixiang 85B | 13.0 a | 8.2 b | 146.15 a | 117.39 b | 68.51 a | 19.18 b | 28.51 a | 17.19 b | 0.72 | ||||
Zhong 9B | 12.3 a | 13.1 a | 124.49 a | 127.33 a | 73.60 a | 7.43 b | 22.64 a | 14.46 b | 0.899 | ||||
Restorer line | Minghui 63 | 13.0 a | 13.7 a | 73.26 a | 86.49 b | 76.23 a | 39.76 b | 29.58 a | 20.76 b | 0.4784 | |||
R207 | 10.7 a | 8.0 b | 105.28 a | 130.58 b | 72.87 a | 33.82 b | 23.74 a | 9.79 b | 0.5359 | ||||
Chuannong 527 | 11.3 a | 14.7 b | 98.82 a | 53.58 b | 90.57 a | 0.38 b | 32.62 a | 13.08 b | 0.9958 | ||||
Milyang 46 | 12.0 a | 15.7 b | 75.64 a | 63.21 a | 78.77 a | 5.82 b | 28.21 a | 16.24 b | 0.9261 |
Combination | No. of panicle per plant | No. of grains per panicle | 1000-grain weight (g) | Seed-setting rate (%) | HSI | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Control | Heat stress | Control | Heat stress | Control | Heat stress | Control | Heat stress | |||||
H1 | 14.3 a | 14.5 a | 147.0 a | 146.8 a | 26.65 a | 24.80 b | 75.1 a | 37.4 b | 0.5024 | |||
H2 | 14.5 b | 16.3 a | 119.4 a | 117.7 a | 22.75 a | 22.30 a | 83.8 a | 74.9 b | 0.1064 | |||
H3 | 21.0 a | 18.1 b | 172.2 a | 161.5 b | 25.15 a | 24.65 b | 74.7 a | 67.8 b | 0.0922 | |||
H4 | 14.0 a | 14.6 a | 143.7 b | 165.7 a | 20.65 a | 19.75 b | 71.8 a | 59.9 b | 0.1659 | |||
H5 | 16.4 a | 15.8 a | 167.0 a | 129.0 b | 29.65 a | 26.35 b | 58.4 a | 14.9 b | 0.7456 | |||
H6 | 10.6 a | 11.3 a | 162.2 a | 145.4 b | 29.60 a | 30.20 a | 66.1 a | 26.2 b | 0.6038 | |||
H7 | 11.8 a | 9.3 b | 150.5 a | 124.5 b | 27.70 a | 28.45 a | 76.4 a | 14.8 b | 0.8062 | |||
H8 | 14.4 a | 13.1 a | 130.2 a | 128.7 a | 26.25 a | 26.45 a | 62.1 a | 21.9 b | 0.6477 | |||
H9 | 12.8 a | 6.6 b | 156.6 a | 158.8 a | 24.35 a | 24.65 a | 65.0 a | 26.4 b | 0.5933 | |||
H10 | 13.9 a | 8.1 b | 150.9 a | 142.5 a | 25.85 a | 24.65 b | 52.2 a | 18.0 b | 0.6548 |
Table 2 Effects of heat stress on grain yield components of F1 combinations at flowering.
Combination | No. of panicle per plant | No. of grains per panicle | 1000-grain weight (g) | Seed-setting rate (%) | HSI | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Control | Heat stress | Control | Heat stress | Control | Heat stress | Control | Heat stress | |||||
H1 | 14.3 a | 14.5 a | 147.0 a | 146.8 a | 26.65 a | 24.80 b | 75.1 a | 37.4 b | 0.5024 | |||
H2 | 14.5 b | 16.3 a | 119.4 a | 117.7 a | 22.75 a | 22.30 a | 83.8 a | 74.9 b | 0.1064 | |||
H3 | 21.0 a | 18.1 b | 172.2 a | 161.5 b | 25.15 a | 24.65 b | 74.7 a | 67.8 b | 0.0922 | |||
H4 | 14.0 a | 14.6 a | 143.7 b | 165.7 a | 20.65 a | 19.75 b | 71.8 a | 59.9 b | 0.1659 | |||
H5 | 16.4 a | 15.8 a | 167.0 a | 129.0 b | 29.65 a | 26.35 b | 58.4 a | 14.9 b | 0.7456 | |||
H6 | 10.6 a | 11.3 a | 162.2 a | 145.4 b | 29.60 a | 30.20 a | 66.1 a | 26.2 b | 0.6038 | |||
H7 | 11.8 a | 9.3 b | 150.5 a | 124.5 b | 27.70 a | 28.45 a | 76.4 a | 14.8 b | 0.8062 | |||
H8 | 14.4 a | 13.1 a | 130.2 a | 128.7 a | 26.25 a | 26.45 a | 62.1 a | 21.9 b | 0.6477 | |||
H9 | 12.8 a | 6.6 b | 156.6 a | 158.8 a | 24.35 a | 24.65 a | 65.0 a | 26.4 b | 0.5933 | |||
H10 | 13.9 a | 8.1 b | 150.9 a | 142.5 a | 25.85 a | 24.65 b | 52.2 a | 18.0 b | 0.6548 |
Fig. 1. Relationships between heat stress indices of F1 combinations with seed-setting rates of maintainer lines, restorer lines and F1 combinations under control and heat stress, respectively. A and B, Relationships between F1 combination and maintainer lines under control and heat stress, respectively; C and D, Relationships between F1 combinations and restorer lines under control and heat stress, respectively; E and F, Relationships between the heat stress index and seed-setting rates of F1 combinations under control and heat stress, respectively. * indicates the relationships are significant.
Fig. 2. Relationships in heat stress index between the F1 combinations and their parents. A, Relationship between F1 combinations and maintainer lines; B, Relationship between F1 combinations and restorer lines. * indicated the relationship was remarkable.
1 | Cao L Y, Zhao J G, Zhan X D, Li D L, He L B, Cheng S H.2003. Mapping QTLs for heat tolerance and correlation between heat tolerance and photosynthetic rate in rice.Chin J Rice Sci, 17(3): 223-227. (in Chinese with English abstract) |
2 | Carriger S, Vallee D.2007. More crop per drop.Rice Today, 6(2): 10-13. |
3 | Chauhan H, Khurana N, Nijhavan A, Khurana J P, Khurana P.2012. The wheat chloroplastic small heat shock protein (sHSP26) is involved in seed maturation and germination and imparts tolerance to heat stress.Plant Cell Environ, 35(11): 1912-1931. |
4 | Chen Q Q, Yu S B, Li C H, Mou T M.2008. Identification of QTLs for heat tolerance at flowering stage in rice. Sci Agric Sin, 41: 315-321. |
5 | Cheng L R, Wang J M, Uzokwei V, Meng L J, Wang Y, Sun Y, Zhu L H, Xu J L, Li Z K.2012. Genetic analysis of cold tolerance at seedling stage and heat tolerance at anthesis in rice (Oryza sativa L.).J Integr Agric, 11: 359-367. |
6 | Fu G F, Song J, Xiong J, Liao X Y, Zhang X F, Wang X, Le M K, Tao L X.2012. Thermal resistance of common rice maintainer and restorer lines to high temperature during flowering and early grain filling stages.Rice Sci, 19: 309-314. |
7 | Fukuoka S, Okuno K.2001. QTL analysis and mapping of pi21, a recessive gene for field resistance to rice blast in Japanese upland rice.Theor Appl Genet, 103: 185-190. |
8 | Galiba G, Quarrie S A, Sutka J, Morounov A, Snape J W.1995. RFLP mapping of the vernalization (Vrn1) and frost resistance (Fr1) genes on chromosome 5A of wheat.Theor Appl Genet, 90: 1174-1179. |
9 | Goff S A, Zhang Q F.2013. Heterosis in elite hybrid rice: Speculation on the genetic and biochemical mechanisms.Curr Opin Plant Biol, 16: 221-227. |
10 | Gong H B, Zhou Y W, Li C, Hu C M, Sheng S L, Diu L P, Jing D D, Lin T Z, Qian H F.2008. Effect of heat stress on the seed-setting rate of indica hybrid rice combinations widely planted in China.Jiangsu Agric Sci, (2): 23-25. (in Chinese) |
11 | Hall A E.1993. Physiology and breeding for heat tolerance in cowpea, and comparison with other crops. In: Kuo C G. Proceedings of the International Symposium on Adaptation of Food Crops to Temperature and Water Stress, Taiwan, 13-18 August, 1993. Asian Vegetable Research and Development Center: 271-284. |
12 | He X Y, Liu X Q, Wang L, Lin F, Cheng Y S, Hen Z M, Liao Y P, Pan Q H.2012. Identification of the novel recessive gene pi55(t) conferring esistance to Magnaporthe oryzae.Sci China: Life Sci, 55: 141-149. (in Chinese) |
13 | Hu W H, Hu G C, Han B.2009. Genome-wide survey and expression profiling of heat shock proteins and heat shock factors revealed overlapped and stress specific response under abiotic stresses in rice. Plant Sci, 176: 583-590. |
14 | Hu S B, Zhang Y P, Zhu D F, Lin X Q, Xiang J.2012. Evaluation of heat resistance in hybrid rice.Chin J Rice Sci, 26: 751-756. (in Chinese with English abstract) |
15 | IPCC (Intergovernmental panel on climate change). 2014. Mitigation of climate change. In: Edenhofer O, Pichs-Madruga R, Sokona Y, Farahani E, Kadner S, Seyboth K, Adler A, Baum I, Brunner S, Eickemeier P, B.Kriemann, Savolainen J, Schloer S, von Stechow C, Zwickel T, Minx J C. Climate Change 2014: Mitigation Pathways and Measures in the Context of Sustainable Development. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.Cambridge, United Kingdom and New York, NY, USA, Cambridge University Press, 1-26. |
16 | Jagadish S V K, Cairns J, Lafitte R, Wheeler T R, Price A H, Craufurd P Q.2010. Genetic analysis of heat tolerance at anthesis in rice.Crop Sci, 50: 1633-1641. |
17 | Kamphuis L G, Lichtenzveig J, Oliver R P, Ellwood S R.2008. Two alternative recessive quantitative trait loci influence resistance to spring black stem and leaf spot in Medicago truncatula.BMC Plant Biol, 8(1): 30. |
18 | Kuang H C, Wen S S, Liu G M.2002. Studies on the heat tolerance of Luhui 17 and its cross IIyou 7 at head sprouting.Southwest China J Agric Sci, (1): 106-108. (in Chinese) |
19 | Li J J, Xu M L, Peng G F, Lu J G, Mang G X.2004. Study of the high temperature tolerance and cold endurance of japonic hybrid rice.Acta Agric Zhejiang, 16: 162-166. (in Chinese with English abstract) |
20 | Ling Q H, Zhang H C, Ling L, Su Z F.1994. New Theory in Rice Production. Beijing, China: Science Press. (in Chinese) |
21 | Madan P, Jagadish S V K, Craufurd P Q, Fitzgerald M, Lafarge T, Wheeler T R.2012. Effect of elevated CO2 and high temperature on seed-set and grain quality of rice.J Exp Bot, 63: 3843-3852. |
22 | Maraseni T N, Mushtaq S, Maroulis J.2009. Greenhouse gas emissions from rice farming inputs: A cross-country assessment.J Agric Sci, 147: 117-126. |
23 | Marfo K O, Hall A E.1992. Heat tolerance in conferred by a single dominant gene in both Prima and TVu4552.Crop Sci, 32: 912-918. |
24 | Mason R E, Mondal S, Beecher F W, Pacheco A, Jampala B, Ibrahim A M H, Hays D B.2010. QTL associated with heat susceptible index in wheat (Triticum aestivum L.) under short-term reproductive stage heat stress.Euphytica, 174: 423-436. |
25 | Matsui T, OMASA K, Horie T.2000. High temperature at flowering inhibits swelling of pollen grains, a driving force for thecae dehiscence in rice (Oryza sativa L.).Plant Prod Sci, 3: 430-434. |
26 | Matsui T, Kobayasi K, Kagata H, Horie T.2005. Correlation between viability of pollination and length of basal dehiscence of the theca in rice under a hot and humid condition.Plant Prod Sci, 8: 109-114. |
27 | Milus E A, Line R F.1986. Gene action for inheritance of durable, high-temperature, adult-plant resistance to striple rust in wheat.Phytopathology, 76: 435-441. |
28 | Pan Z C, Dong W Z, Zhang K L, Chen Y X, Qian C W.2013. Analysis on the cause of super hybrid rice Yongyou 12 attained the grain yield of 15.4 t/hm2 in China.China Rice, 19: 31-32. (in Chinese) |
29 | Rainey K M, Griffiths P D.2005. Inheritance of heat tolerance during reproductive development in snap bean (Phaseolus vulgaris L.).J Am Soc Hort Sci, 130: 700-706. |
30 | Shah F, Huang J, Cui K, Nie L, Shah T, Chen C, Wang K.2011. Impact of high-temperature stress on rice plant and its traits related to tolerance. J Agric Sci, 149: 545-556. |
31 | Smith P, Olesen J E.2010. Synergies between the mitigation of, and adaptation to, climate change in agriculture.J Agric Sci, 148: 543-552. |
32 | Song Z P, Lu B R, Chen K J.2001. A study of pollen viability and longevity in Oryza rufipogon, O. sativa and their hybrids.Int Rice Res Notes, 26: 31-32. |
33 | Tang R S, Zheng J C, Jin Z Q, Zhang D D, Huang Y H, Chen L G.2008. Possible correlation between high temperature-induced floret sterility and endogenous levels of IAA, Gas and ABA in rice (Oryza sativa L.).Plant Growth Regul, 54: 37-43. |
34 | Tao L X, Tan H J, Wang X, Cao L Y, Song J, Cheng S H.2008. Effects of high temperature stress on flowering and grain-setting characteristics for Guodao 6. Acta Agron Sin, 34: 669-674. |
35 | Tao L X, Tan H J, Wang X, Cao L Y, Song J, Cheng S H.2009. Physiological effects of high temperature stress on grain-setting for Guodao 6 during flowering and filling stage.Acta Agron Sin, 35: 110-117. |
36 | Wang J, Yang J, Zhu J Y, Fan F J, Li W Q, Wang F Q, Huang Z Y, Zhong W G.2014. Development of a functional marker for rice blast resistance gene Pi-kh and natural variation at Pi-kh locus in japonica rice in Jiangsu Province, China.Chin J Rice Sci, 2014: 28(2): 141-147. |
37 | Wang W X, Vinocur B, Shoseyov O, Altman A.2004. Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response.Trends Plant Sci, 9: 244-252. |
38 | Wassmann R, Dobermann A.2007. Climate change adaptation through rice production in regions with high poverty levels.J Semi-Arid Tropical Agric Res, 4(1): 1-24. |
39 | Wu H C, Jinn T L.2012. Oscillation regulation of Ca2+/calmodulin and heat-stress related genes in response to heat stress in rice (Oryza sativa L.).Plant Signal Behav, 9: 1056-1057. |
40 | Xiao Y H, Pan Y, Luo L H, Zhang G L, Deng H B, Dai L Y, Liu X L, Tang W B, Chen L Y, Wang G L.2011. Quantitative trait loci associated with seed set under high temperature stress at the flowering stage in rice.Euphytica, 178: 331-338. |
41 | Xie H A, Zheng J T, Zhang S G, Lin M J.1996. Breeding theory and practice of ‘Shanyou 63’ the variety with the largest cultivated area in China.Fujian J Agric Sci, 11: 1-6. (in Chinese with English abstract) |
42 | Yamanouchi U, Yano M, Lin H X, Ashikari M, Yamada K.2002. A rice spotted leaf gene, Spl7, encodes a heat stress transcription factor protein.Proc Natl Acad Sci USA, 9: 7530-7535. |
43 | Ye C R, Argayoso M A, Redoña E D, Sierra S N, Laza M A, Dilla C J, Mo Y J, Thomson M J, Chin J, Delaviña C B, Diaz G Q, Hernandez J E.2012. Mapping QTL for heat tolerance at flowering stage in rice using SNP markers.Plant Breeding, 131: 33-41. |
44 | Zhang G L, Chen L Y, Xiao G Y, Xiao Y H, Chen X B, Zhang S T.2009. Bulked segregant analysis to detect QTL related to heat tolerance in rice (Oryza sativa L.) using SSR markers.Agric Sci China, 8: 482-487. |
45 | Zhang T, Yang L, Jiang K F, Huang M, Sun Q, Chen W, Zheng J.2008. QTL mapping for heat tolerance of the tassel period of rice.Mol Plant Breeding, 6: 867-873. |
46 | Zhou Y W, Gong H B, Li C, Hu C M, Lin T Z, Sheng S L.2009. Influence of thermal damage on seed-setting rate of 67 indica hybrid rice combinations.Acta Agric Jiangxi, 21: 23-26. (in Chinese with English abstract) |
[1] | LI Qianlong, FENG Qi, WANG Heqin, KANG Yunhai, ZHANG Conghe, DU Ming, ZHANG Yunhu, WANG Hui, CHEN Jinjie, HAN Bin, FANG Yu, WANG Ahong. Genome-Wide Dissection of Quan 9311A Breeding Process and Application Advantages [J]. Rice Science, 2023, 30(6): 7-. |
[2] | FAN Fengfeng, CAI Meng, LUO Xiong, LIU Manman, YUAN Huanran, CHENG Mingxing, Ayaz AHMAD, LI Nengwu, LI Shaoqing. Novel QTLs from Wild Rice Oryza longistaminata Confer Rice Strong Tolerance to High Temperature at Seedling Stage [J]. Rice Science, 2023, 30(6): 14-. |
[3] | Lu Xuedan, Li Fan, Xiao Yunhua, Wang Feng, Zhang Guilian, Deng Huabing, Tang Wenbang. Grain Shape Genes: Shaping the Future of Rice Breeding [J]. Rice Science, 2023, 30(5): 379-404. |
[4] | Vera Jesus Da Costa Maria, Ramegowda Yamunarani, Ramegowda Venkategowda, N. Karaba Nataraja, M. Sreeman Sheshshayee, Udayakumar Makarla. Combined Drought and Heat Stress in Rice: Responses, Phenotyping and Strategies to Improve Tolerance [J]. Rice Science, 2021, 28(3): 233-242. |
[5] | Jan Mehmood, Shah Gulmeena, Yuqing Huang, Xuejiao Liu, Peng Zheng, Hao Du, Hao Chen, Jumin Tu. Development of Heat Tolerant Two-Line Hybrid Rice Restorer Line Carrying Dominant Locus of OsHTAS [J]. Rice Science, 2021, 28(1): 99-108. |
[6] | Ngangkham Umakanta, Kumar Parida Swarup, Kumar Singh Ashok, Mohapatra Trilochan. Differential RNA Editing of Mitochondrial Genes in WA-Cytoplasmic Based Male Sterile Line Pusa 6A, and Its Maintainer and Restorer Lines [J]. Rice Science, 2019, 26(5): 282-289. |
[7] | Cheabu Sulaiman, Panichawong Nat, Rattanametta Prisana, Wasuri Boonthong, Kasemsap Poonpipope, Arikit Siwaret, Vanavichit Apichart, Malumpong Chanate. Screening for Spikelet Fertility and Validation of Heat Tolerance in a Large Rice Mutant Population [J]. Rice Science, 2019, 26(4): 229-238. |
[8] | Khlaimongkhon Sudthana, Chakhonkaen Sriprapai, Pitngam Keasinee, Ditthab Khanittha, Sangarwut Numphet, Panyawut Natjaree, Wasinanon Thiwawan, Mongkolsiriwatana Chareerat, Chunwongse Julapark, Muangprom Amorntip. Molecular Markers and Candidate Genes for Thermo-Sensitive Genic Male Sterile in Rice [J]. Rice Science, 2019, 26(3): 147-156. |
[9] | Yaliang Wang, Lei Wang, Jianxia Zhou, Shengbo Hu, Huizhe Chen, Jing Xiang, Yikai Zhang, Yongjun Zeng, Qinghua Shi, Defeng Zhu, Yuping Zhang. Research Progress on Heat Stress of Rice at Flowering Stage [J]. Rice Science, 2019, 26(1): 1-10. |
[10] | Cheabu Sulaiman, Moung-ngam Peerapon, Arikit Siwaret, Vanavichit Apichart, Malumpong Chanate. Effects of Heat Stress at Vegetative and Reproductive Stages on Spikelet Fertility [J]. Rice Science, 2018, 25(4): 218-226. |
[11] | Hong-guang Xie, Jia-huang Jiang, Yan-mei Zheng, Yong-sheng Zhu, Fang-xi Wu, Xi Luo, Qiu-hua Cai, Jian-fu Zhang, Hua-an Xie. Development of Hybrid Rice Variety FY7206 with Blast Resistance Gene Pid3 and Cold Tolerance Gene Ctb1 [J]. Rice Science, 2016, 23(5): 266-273. |
[12] | Zhi-yuan Huang, Bing-ran Zhao, Qi-ming Lv, Xi-qin Fu, Ye-yun Xin, Long-ping Yuan. Heterosis Expression of Hybrid Rice in Natural- and Short-Day Length Conditions [J]. Rice Science, 2015, 22(2): 81-88. |
[13] | J. Arasakesary S., Manonmani S., Pushpam R., Robin S.. New Temperature Sensitive Genic Male Sterile Lines with Better Outcrossing Ability for Production of Two-Line Hybrid Rice [J]. Rice Science, 2015, 22(1): 49-52. |
[14] | LIANG Yan, ZHANG Xue-mei, LI De-qiang, HUANG Fu, HU Pei-song, PENG Yun-liang. Integrated Approach to Control False Smut in Hybrid Rice in Sichuan Province, China [J]. RICE SCIENCE, 2014, 21(6): 354-360. |
[15] | Mohammad H. FOTOKIAN, Kayvan AGAHI. Biplot Analysis of Genotype by Environment for Cooking Quality in Hybrid Rice: A Tool for Line × Tester Data [J]. RICE SCIENCE, 2014, 21(5): 282-287. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||