Rice Science ›› 2019, Vol. 26 ›› Issue (2): 109-117.DOI: 10.1016/j.rsci.2018.11.001
• Short Communications • Previous Articles Next Articles
Yubing He1,2,3, Min Zhu1,2, Lihao Wang1,2, Junhua Wu1,2, Qiaoyan Wang1,2, Rongchen Wang1, Yunde Zhao1,4()
Received:
2018-09-25
Accepted:
2018-11-26
Online:
2019-03-04
Published:
2018-12-18
Yubing He, Min Zhu, Lihao Wang, Junhua Wu, Qiaoyan Wang, Rongchen Wang, Yunde Zhao. Improvements of TKC Technology Accelerate Isolation of Transgene-Free CRISPR/Cas9-Edited Rice Plants[J]. Rice Science, 2019, 26(2): 109-117.
Add to citation manager EndNote|Ris|BibTeX
T0 plant | Genotype of T1 plant | Sequence analysis | Segregation |
WT | WT | TCGAGTCGCGCCCGGAGTACCTGCAGGCGCCGCGGG | |
#1 | HO, -C/-C | TCGAGTCGCGCCCGGAGTAC-TGCAGGCGCCGCGGG | 100.00% (7/7) |
TCGAGTCGCGCCCGGAGTAC-TGCAGGCGCCGCGGG | |||
#11 | HO, -C/-C | TCGAGTCGCGCCCGGAGTAC-TGCAGGCGCCGCGGG | 10.00% (1/10) |
TCGAGTCGCGCCCGGAGTAC-TGCAGGCGCCGCGGG | |||
BI, -10/-C | TCGAGTCGCGCCCGG----------GGCGCCGCGGG | 70.00% (7/10) | |
TCGAGTCGCGCCCGGAGTA-CTGCAGGCGCCGCGGG | |||
HO, -10/-10 | TCGAGTCGCGCCCGG----------GGCGCCGCGGG | 20.00% (2/10) | |
TCGAGTCGCGCCCGG----------GGCGCCGCGGG | |||
#16 | BI, -ACCT/-CC | TCGAGTCGCGCCCGGAGT----GCAGGCGCCGCGGG | 75.00% (6/8) |
TCGAGTCGCGCCCGGAGTA--TGCAGGCGCCGCGGG | |||
HE, WT/-CC | TCGAGTCGCGCCCGGAGTACCTGCAGGCGCCGCGGG | 25.00% (2/8) | |
TCGAGTCGCGCCCGGAGTA--TGCAGGCGCCGCGGG | |||
#24 | HO, -C/-C | TCGAGTCGCGCCCGGAGTAC-TGCAGGCGCCGCGGG | 25.00% (4/16) |
TCGAGTCGCGCCCGGAGTAC-TGCAGGCGCCGCGGG | |||
HO, +T/+T | TCGAGTCGCGCCCGGAGTACCtTGCAGGCGCCGCGGG | 25.00% (4/16) | |
TCGAGTCGCGCCCGGAGTACCtTGCAGGCGCCGCGGG | |||
BI, +T/-C | TCGAGTCGCGCCCGGAGTAC-TGCAGGCGCCGCGGG | 43.75% (7/16) | |
TCGAGTCGCGCCCGGAGTACCtTGCAGGCGCCGCGGG | |||
BI, -TACCT/-C | TCGAGTCGCGCCCGGAG-----GCAGGCGCCGCGGG | 6.25% (1/16) | |
TCGAGTCGCGCCCGGAGTA-CTGCAGGCGCCGCGGG | |||
#27 | HO, -C/-C | TCGAGTCGCGCCCGGAGTAC-TGCAGGCGCCGCGGG | 100.00% (18/18) |
TCGAGTCGCGCCCGGAGTAC-TGCAGGCGCCGCGGG | |||
#29 | HO, -C/-C | TCGAGTCGCGCCCGGAGTAC-TGCAGGCGCCGCGGG | 13.33% (2/15) |
TCGAGTCGCGCCCGGAGTAC-TGCAGGCGCCGCGGG | |||
HO, -CC/-CC | TCGAGTCGCGCCCGGAGTA--TGCAGGCGCCGCGGG | 26.67% (4/15) | |
TCGAGTCGCGCCCGGAGTA--TGCAGGCGCCGCGGG | |||
BI, -C/-CC | TCGAGTCGCGCCCGGAGTAC-TGCAGGCGCCGCGGG | 60.00% (9/15) | |
TCGAGTCGCGCCCGGAGTA--TGCAGGCGCCGCGGG | |||
#32 | HO, -ACCT/-ACCT | TCGAGTCGCGCCCGGAGT----GCAGGCGCCGCGGG | 46.15% (6/13) |
TCGAGTCGCGCCCGGAGT----GCAGGCGCCGCGGG | |||
BI, -ACCT/-CC | TCGAGTCGCGCCCGGAGT----GCAGGCGCCGCGGG | 53.85% (7/13) | |
TCGAGTCGCGCCCGGAGTA--TGCAGGCGCCGCGGG | |||
#36 | HO, -C/-C | TCGAGTCGCGCCCGGAGTAC-TGCAGGCGCCGCGGG | 14.29% (1/7) |
TCGAGTCGCGCCCGGAGTAC-TGCAGGCGCCGCGGG | |||
HO, -CC/-CC | TCGAGTCGCGCCCGGAGTA--TGCAGGCGCCGCGGG | 14.29% (1/7) | |
TCGAGTCGCGCCCGGAGTA--TGCAGGCGCCGCGGG | |||
BI, -C/-CC | TCGAGTCGCGCCCGGAGTAC-TGCAGGCGCCGCGGG | 57.14% (4/7) | |
TCGAGTCGCGCCCGGAGTA--TGCAGGCGCCGCGGG | |||
BI, -ACCT/-C | TCGAGTCGCGCCCGGAGT----GCAGGCGCCGCGGG | 14.29% (1/7) | |
TCGAGTCGCGCCCGGAGTAC-TGCAGGCGCCGCGGG | |||
#42 | HO, -C/-C | TCGAGTCGCGCCCGGAGTAC-TGCAGGCGCCGCGGG | 25.00% (2/8) |
TCGAGTCGCGCCCGGAGTAC-TGCAGGCGCCGCGGG | |||
BI, -ACCT/-C | TCGAGTCGCGCCCGGAGT----GCAGGCGCCGCGGG | 75.00% (6/8) | |
TCGAGTCGCGCCCGGAGTAC-TGCAGGCGCCGCGGG | |||
#52 | HO, -C/-C | TCGAGTCGCGCCCGGAGTAC-TGCAGGCGCCGCGGG | 100.00% (10/10) |
TCGAGTCGCGCCCGGAGTAC-TGCAGGCGCCGCGGG | |||
#59 | HO, -C/-C | TCGAGTCGCGCCCGGAGTAC-TGCAGGCGCCGCGGG | 42.86% (6/14) |
TCGAGTCGCGCCCGGAGTAC-TGCAGGCGCCGCGGG | |||
HO, -CC/-CC | TCGAGTCGCGCCCGGAGTA--TGCAGGCGCCGCGGG | 7.14% (1/14) | |
TCGAGTCGCGCCCGGAGTA--TGCAGGCGCCGCGGG | |||
BI, -C/-CC | TCGAGTCGCGCCCGGAGTAC-TGCAGGCGCCGCGGG | 50.00% (7/14) | |
TCGAGTCGCGCCCGGAGTA--TGCAGGCGCCGCGGG | |||
WT, Wild-type Zhonghua 11 plant; HO, Homozygous mutation; HE, Heterozygous mutation; BI, Bi-allelic mutation. The underlined ‘AGG’ refers to the protospacer adjacent motif site required for Cas9 cleavage. ‘-’ refers to one base pair deletion. Lowercase letter ‘t’ in red refers to an insertion of a ‘T’. Number of plants for the genotype and the total number of the T1 plants from each T0 plant analyzed are shown in the parenthesis. |
Table 1. Mutations and segregation patterns of TKC1.1-LAZY1 T1 plants
T0 plant | Genotype of T1 plant | Sequence analysis | Segregation |
WT | WT | TCGAGTCGCGCCCGGAGTACCTGCAGGCGCCGCGGG | |
#1 | HO, -C/-C | TCGAGTCGCGCCCGGAGTAC-TGCAGGCGCCGCGGG | 100.00% (7/7) |
TCGAGTCGCGCCCGGAGTAC-TGCAGGCGCCGCGGG | |||
#11 | HO, -C/-C | TCGAGTCGCGCCCGGAGTAC-TGCAGGCGCCGCGGG | 10.00% (1/10) |
TCGAGTCGCGCCCGGAGTAC-TGCAGGCGCCGCGGG | |||
BI, -10/-C | TCGAGTCGCGCCCGG----------GGCGCCGCGGG | 70.00% (7/10) | |
TCGAGTCGCGCCCGGAGTA-CTGCAGGCGCCGCGGG | |||
HO, -10/-10 | TCGAGTCGCGCCCGG----------GGCGCCGCGGG | 20.00% (2/10) | |
TCGAGTCGCGCCCGG----------GGCGCCGCGGG | |||
#16 | BI, -ACCT/-CC | TCGAGTCGCGCCCGGAGT----GCAGGCGCCGCGGG | 75.00% (6/8) |
TCGAGTCGCGCCCGGAGTA--TGCAGGCGCCGCGGG | |||
HE, WT/-CC | TCGAGTCGCGCCCGGAGTACCTGCAGGCGCCGCGGG | 25.00% (2/8) | |
TCGAGTCGCGCCCGGAGTA--TGCAGGCGCCGCGGG | |||
#24 | HO, -C/-C | TCGAGTCGCGCCCGGAGTAC-TGCAGGCGCCGCGGG | 25.00% (4/16) |
TCGAGTCGCGCCCGGAGTAC-TGCAGGCGCCGCGGG | |||
HO, +T/+T | TCGAGTCGCGCCCGGAGTACCtTGCAGGCGCCGCGGG | 25.00% (4/16) | |
TCGAGTCGCGCCCGGAGTACCtTGCAGGCGCCGCGGG | |||
BI, +T/-C | TCGAGTCGCGCCCGGAGTAC-TGCAGGCGCCGCGGG | 43.75% (7/16) | |
TCGAGTCGCGCCCGGAGTACCtTGCAGGCGCCGCGGG | |||
BI, -TACCT/-C | TCGAGTCGCGCCCGGAG-----GCAGGCGCCGCGGG | 6.25% (1/16) | |
TCGAGTCGCGCCCGGAGTA-CTGCAGGCGCCGCGGG | |||
#27 | HO, -C/-C | TCGAGTCGCGCCCGGAGTAC-TGCAGGCGCCGCGGG | 100.00% (18/18) |
TCGAGTCGCGCCCGGAGTAC-TGCAGGCGCCGCGGG | |||
#29 | HO, -C/-C | TCGAGTCGCGCCCGGAGTAC-TGCAGGCGCCGCGGG | 13.33% (2/15) |
TCGAGTCGCGCCCGGAGTAC-TGCAGGCGCCGCGGG | |||
HO, -CC/-CC | TCGAGTCGCGCCCGGAGTA--TGCAGGCGCCGCGGG | 26.67% (4/15) | |
TCGAGTCGCGCCCGGAGTA--TGCAGGCGCCGCGGG | |||
BI, -C/-CC | TCGAGTCGCGCCCGGAGTAC-TGCAGGCGCCGCGGG | 60.00% (9/15) | |
TCGAGTCGCGCCCGGAGTA--TGCAGGCGCCGCGGG | |||
#32 | HO, -ACCT/-ACCT | TCGAGTCGCGCCCGGAGT----GCAGGCGCCGCGGG | 46.15% (6/13) |
TCGAGTCGCGCCCGGAGT----GCAGGCGCCGCGGG | |||
BI, -ACCT/-CC | TCGAGTCGCGCCCGGAGT----GCAGGCGCCGCGGG | 53.85% (7/13) | |
TCGAGTCGCGCCCGGAGTA--TGCAGGCGCCGCGGG | |||
#36 | HO, -C/-C | TCGAGTCGCGCCCGGAGTAC-TGCAGGCGCCGCGGG | 14.29% (1/7) |
TCGAGTCGCGCCCGGAGTAC-TGCAGGCGCCGCGGG | |||
HO, -CC/-CC | TCGAGTCGCGCCCGGAGTA--TGCAGGCGCCGCGGG | 14.29% (1/7) | |
TCGAGTCGCGCCCGGAGTA--TGCAGGCGCCGCGGG | |||
BI, -C/-CC | TCGAGTCGCGCCCGGAGTAC-TGCAGGCGCCGCGGG | 57.14% (4/7) | |
TCGAGTCGCGCCCGGAGTA--TGCAGGCGCCGCGGG | |||
BI, -ACCT/-C | TCGAGTCGCGCCCGGAGT----GCAGGCGCCGCGGG | 14.29% (1/7) | |
TCGAGTCGCGCCCGGAGTAC-TGCAGGCGCCGCGGG | |||
#42 | HO, -C/-C | TCGAGTCGCGCCCGGAGTAC-TGCAGGCGCCGCGGG | 25.00% (2/8) |
TCGAGTCGCGCCCGGAGTAC-TGCAGGCGCCGCGGG | |||
BI, -ACCT/-C | TCGAGTCGCGCCCGGAGT----GCAGGCGCCGCGGG | 75.00% (6/8) | |
TCGAGTCGCGCCCGGAGTAC-TGCAGGCGCCGCGGG | |||
#52 | HO, -C/-C | TCGAGTCGCGCCCGGAGTAC-TGCAGGCGCCGCGGG | 100.00% (10/10) |
TCGAGTCGCGCCCGGAGTAC-TGCAGGCGCCGCGGG | |||
#59 | HO, -C/-C | TCGAGTCGCGCCCGGAGTAC-TGCAGGCGCCGCGGG | 42.86% (6/14) |
TCGAGTCGCGCCCGGAGTAC-TGCAGGCGCCGCGGG | |||
HO, -CC/-CC | TCGAGTCGCGCCCGGAGTA--TGCAGGCGCCGCGGG | 7.14% (1/14) | |
TCGAGTCGCGCCCGGAGTA--TGCAGGCGCCGCGGG | |||
BI, -C/-CC | TCGAGTCGCGCCCGGAGTAC-TGCAGGCGCCGCGGG | 50.00% (7/14) | |
TCGAGTCGCGCCCGGAGTA--TGCAGGCGCCGCGGG | |||
WT, Wild-type Zhonghua 11 plant; HO, Homozygous mutation; HE, Heterozygous mutation; BI, Bi-allelic mutation. The underlined ‘AGG’ refers to the protospacer adjacent motif site required for Cas9 cleavage. ‘-’ refers to one base pair deletion. Lowercase letter ‘t’ in red refers to an insertion of a ‘T’. Number of plants for the genotype and the total number of the T1 plants from each T0 plant analyzed are shown in the parenthesis. |
T0 plant | Genotype of T1 plant | Sequence analysis | Segregation |
WT | WT | TCGAGTCGCGCCCGGAGTACCTGCAGGCGCCGCGGG | |
#3 | HO, -C/-C | TCGAGTCGCGCCCGGAGTAC-TGCAGGCGCCGCGGG | 100.00% (22/22) |
TCGAGTCGCGCCCGGAGTAC-TGCAGGCGCCGCGGG | |||
#4 | HO, -CC/-CC | TCGAGTCGCGCCCGGAGTA--TGCAGGCGCCGCGGG | 100.00% (9/9) |
TCGAGTCGCGCCCGGAGTA--TGCAGGCGCCGCGGG | |||
#5 | HO, -T/-T | TCGAGTCGCGCCCGGAGTACC-GCAGGCGCCGCGGG | 16.67% (3/18) |
TCGAGTCGCGCCCGGAGTACC-GCAGGCGCCGCGGG | |||
HO, -CCT/-CCT | TCGAGTCGCGCCCGGAGTA---GCAGGCGCCGCGGG | 33.33% (6/18) | |
TCGAGTCGCGCCCGGAGTA---GCAGGCGCCGCGGG | |||
BI, -CCT/-T | TCGAGTCGCGCCCGGAGTA---GCAGGCGCCGCGGG | 50.00% (9/18) | |
TCGAGTCGCGCCCGGAGTACC-GCAGGCGCCGCGGG | |||
#17 | HO, -C/-C | TCGAGTCGCGCCCGGAGTAC-TGCAGGCGCCGCGGG | 33.33% (3/9) |
TCGAGTCGCGCCCGGAGTAC-TGCAGGCGCCGCGGG | |||
HO, +C/+C | TCGAGTCGCGCCCGGAGTACCcTGCAGGCGCCGCGGG | 11.11% (1/9) | |
TCGAGTCGCGCCCGGAGTACCcTGCAGGCGCCGCGGG | |||
BI, -C/+C | TCGAGTCGCGCCCGGAGTAC-TGCAGGCGCCGCGGG | 33.33% (3/9) | |
TCGAGTCGCGCCCGGAGTACCcTGCAGGCGCCGCGGG | |||
WT | TCGAGTCGCGCCCGGAGTACCTGCAGGCGCCGCGGG | 22.22% (2/9) | |
TCGAGTCGCGCCCGGAGTACCTGCAGGCGCCGCGGG | |||
#22 | HO, -T/-T | TCGAGTCGCGCCCGGAGTACC-GCAGGCGCCGCGGG | 35.29% (6/17) |
TCGAGTCGCGCCCGGAGTACC-GCAGGCGCCGCGGG | |||
HO, +G/+G | TCGAGTCGCGCCCGGAGTACCgTGCAGGCGCCGCGGG | 23.53% (4/17) | |
TCGAGTCGCGCCCGGAGTACCgTGCAGGCGCCGCGGG | |||
BI, +G/-T | TCGAGTCGCGCCCGGAGTACCgTGCAGGCGCCGCGGG | 41.18% (7/17) | |
TCGAGTCGCGCCCGGAGTACC-GCAGGCGCCGCGGG | |||
Protospacer adjacent motif site AGG is underlined. Zhonghua 11 plants were used as wild-type (WT). ‘+’ refers to base pair insertion. ‘-’ refers to base pair deletion. Lowercase letter ‘c’ and ‘g’ in red refer to insertions of ‘C’ and ‘G’, respectively. Number of plants for the genotype and the total number of the T1 plants from each T0 plant analyzed are shown in the parenthesis. |
Table 2. Mutations and segregation analysis of the TKC1.2-LAZY1 T1 plants
T0 plant | Genotype of T1 plant | Sequence analysis | Segregation |
WT | WT | TCGAGTCGCGCCCGGAGTACCTGCAGGCGCCGCGGG | |
#3 | HO, -C/-C | TCGAGTCGCGCCCGGAGTAC-TGCAGGCGCCGCGGG | 100.00% (22/22) |
TCGAGTCGCGCCCGGAGTAC-TGCAGGCGCCGCGGG | |||
#4 | HO, -CC/-CC | TCGAGTCGCGCCCGGAGTA--TGCAGGCGCCGCGGG | 100.00% (9/9) |
TCGAGTCGCGCCCGGAGTA--TGCAGGCGCCGCGGG | |||
#5 | HO, -T/-T | TCGAGTCGCGCCCGGAGTACC-GCAGGCGCCGCGGG | 16.67% (3/18) |
TCGAGTCGCGCCCGGAGTACC-GCAGGCGCCGCGGG | |||
HO, -CCT/-CCT | TCGAGTCGCGCCCGGAGTA---GCAGGCGCCGCGGG | 33.33% (6/18) | |
TCGAGTCGCGCCCGGAGTA---GCAGGCGCCGCGGG | |||
BI, -CCT/-T | TCGAGTCGCGCCCGGAGTA---GCAGGCGCCGCGGG | 50.00% (9/18) | |
TCGAGTCGCGCCCGGAGTACC-GCAGGCGCCGCGGG | |||
#17 | HO, -C/-C | TCGAGTCGCGCCCGGAGTAC-TGCAGGCGCCGCGGG | 33.33% (3/9) |
TCGAGTCGCGCCCGGAGTAC-TGCAGGCGCCGCGGG | |||
HO, +C/+C | TCGAGTCGCGCCCGGAGTACCcTGCAGGCGCCGCGGG | 11.11% (1/9) | |
TCGAGTCGCGCCCGGAGTACCcTGCAGGCGCCGCGGG | |||
BI, -C/+C | TCGAGTCGCGCCCGGAGTAC-TGCAGGCGCCGCGGG | 33.33% (3/9) | |
TCGAGTCGCGCCCGGAGTACCcTGCAGGCGCCGCGGG | |||
WT | TCGAGTCGCGCCCGGAGTACCTGCAGGCGCCGCGGG | 22.22% (2/9) | |
TCGAGTCGCGCCCGGAGTACCTGCAGGCGCCGCGGG | |||
#22 | HO, -T/-T | TCGAGTCGCGCCCGGAGTACC-GCAGGCGCCGCGGG | 35.29% (6/17) |
TCGAGTCGCGCCCGGAGTACC-GCAGGCGCCGCGGG | |||
HO, +G/+G | TCGAGTCGCGCCCGGAGTACCgTGCAGGCGCCGCGGG | 23.53% (4/17) | |
TCGAGTCGCGCCCGGAGTACCgTGCAGGCGCCGCGGG | |||
BI, +G/-T | TCGAGTCGCGCCCGGAGTACCgTGCAGGCGCCGCGGG | 41.18% (7/17) | |
TCGAGTCGCGCCCGGAGTACC-GCAGGCGCCGCGGG | |||
Protospacer adjacent motif site AGG is underlined. Zhonghua 11 plants were used as wild-type (WT). ‘+’ refers to base pair insertion. ‘-’ refers to base pair deletion. Lowercase letter ‘c’ and ‘g’ in red refer to insertions of ‘C’ and ‘G’, respectively. Number of plants for the genotype and the total number of the T1 plants from each T0 plant analyzed are shown in the parenthesis. |
[1] | Burstein D, Harrington L B, Strutt S C, Probst A J, Anantharaman K, Thomas B C, Doudna J A, Banfield J F.2017. New CRISPR- Cas systems from uncultivated microbes.Nature, 542: 237-241. |
[2] | Casini A, Olivieri M, Petris G, Montagna C, Reginato G, Maule G, Lorenzin F, Prandi D, Romanel A, Demichelis F, Inga A, Cereseto A.2018. A highly specific SpCas9 variant is identified by in vivo screening in yeast. Nat Biotechnol, 36(3): 265-271. |
[3] | Cermak T, Baltes N J, Cegan R, Zhang Y, Voytas D F.2015. High-frequency, precise modification of the tomato genome.Genome Biol, 16: 232. |
[4] | Chu V T, Weber T, Wefers B, Wurst W, Sander S, Rajewsky K, Kuhn R.2015. Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells.Nat Biotechnol, 33(5): 543-548. |
[5] | Cong L, Ran F A, Cox D, Lin S L, Barretto R, Habib N, Hsu P D, Wu X B, Jiang W Y, Marraffini L A, Zhang F.2013. Multiplex genome engineering using CRISPR/Cas systems.Science, 339: 819-823. |
[6] | Cook M, Thilmony R.2012. The OsGEX2 gene promoter confers sperm cell expression in transgenic rice. Plant Mol Biol Rep, 30(5): 1138-1148. |
[7] | Dreissig S, Schiml S, Schindele P, Weiss O, Rutten T, Schubert V, Gladilin E, Mette M F, Puchta H, Houben A.2017. Live cell CRISPR-imaging in plants reveals dynamic telomere movements.Plant J, 91(4): 565-573. |
[8] | Fonfara I, Richter H, Bratovic M, Le Rhun A, Charpentier E.2016. The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA.Nature, 532: 517-521. |
[9] | Gallego-Bartolome J, Gardiner J, Liu W L, Papikian A, Ghoshal B, Kuo H Y, Zhao J M C, Segal D J, Jacobsen S E.2018. Targeted DNA demethylation of the Arabidopsis genome using the human TET1 catalytic domain. Proc Natl Acad Sci USA, 115(9): 2125-2134. |
[10] | Gao L, Cox D B T, Yan W X, Manteiga J C, Schneider M W, Yamano T, Nishimasu H, Nureki O, Crosetto N, Zhang F.2017. Engineered Cpf1 variants with altered PAM specificities.Nat Biotechnol, 35(8): 789-792. |
[11] | Gao X H, Chen J L, Dai X H, Zhang D, Zhao Y D.2016. An effective strategy for reliably isolating heritable and cas9-free Arabidopsis mutants generated by CRISPR/Cas9-mediated genome editing. Plant Physiol, 171(3): 1794-1800. |
[12] | Gaudelli N M, Komor A C, Rees H A, Packer M S, Badran A H, Bryson D I, Liu D R.2017. Programmable base editing of A*T to G*C in genomic DNA without DNA cleavage.Nature, 551: 464-471. |
[13] | Gibson D G, Young L, Chuang R Y, Venter J C, Hutchison C A, Smith H O.2009. Enzymatic assembly of DNA molecules up to several hundred kilobases.Nat Methods, 6(5): 343-345. |
[14] | Gilbert L A, Larson M H, Morsut L, Liu Z, Brar G A, Torres S E, Stern-Ginossar N, Brandman O, Whitehead E H, Doudna J A, Lim W A, Weissman J S, Qi L S.2013. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes.Cell, 154(2): 442-451. |
[15] | Hall T C, Kumpatla S P, Kharb P, Iyer L, Cervera M, Jiang Y, Wang T, Yang G, Teerawanichpan P, Narangajavana J, Dong J.2001. Gene silencing and its reactivation in transgenic rice. In: Rice Genetics IV. World Scientific: 465-481. |
[16] | He Y B, Wang R C, Dai X H, Zhao Y D.2017a. On improving CRISPR for editing plant genes: Ribozyme-mediated guide RNA production and fluorescence-based technology for isolating transgene-free mutants generated by CRISPR.Prog Mol Biol Transl, 149: 151-166. |
[17] | He Y B, Zhang T, Yang N, Xu M L, Yan L, Wang L H, Wang R C, Zhao Y D.2017b. Self-cleaving ribozymes enable the production of guide RNAs from unlimited choices of promoters for CRISPR/Cas9 mediated genome editing.J Genet Genom, 44(9): 469-472. |
[18] | He Y B, Zhu M, Wang L H, Wu J H, Wang Q Y, Wang R C, Zhao Y D.2018. Programmed self-elimination of the CRISPR/Cas9 construct greatly accelerates the isolation of edited and transgene-free rice plants.Mol Plant, 11(9): 1210-1213. |
[19] | Hiei Y, Ohta S, Komari T, Kumashiro T.1994. Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J, 6(2): 271-282. |
[20] | Hu J H, Miller S M, Geurts M H, Tang W, Chen L, Sun N, Zeina C M, Gao X, Rees H A, Lin Z, Liu D R.2018. Evolved Cas9 variants with broad PAM compatibility and high DNA specificity.Nature, 556: 57-63. |
[21] | Hua K, Tao X P, Yuan F T, Wang D, Zhu J K.2018. Precise A∙T to G∙C base editing in the rice genome.Mol Plant, 11(4): 627-630. |
[22] | Huang Y H, Su J Z, Lei Y, Brunetti L, Gundry M C, Zhang X T, Jeong M, Li W, Goodell M A.2017. DNA epigenome editing using CRISPR-Cas SunTag-directed DNMT3A.Genome Biol, 18(1): 176. |
[23] | Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna J A, Charpentier E.2012. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity.Science, 337: 816-821. |
[24] | Kleinstiver B P, Prew M S, Tsai S Q, Topkar V V, Nguyen N T, Zheng Z, Gonzales A P, Li Z, Peterson R T, Yeh J R, Aryee M J, Joung J K.2015. Engineered CRISPR-Cas9 nucleases with altered PAM specificities.Nature, 523: 481-485. |
[25] | Komor A C, Kim Y B, Packer M S, Zuris J A, Liu D R.2016. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage.Nature, 533: 420-424. |
[26] | Konermann S, Brigham M D, Trevino A E, Joung J, Abudayyeh O O, Barcena C, Hsu P D, Habib N, Gootenberg J S, Nishimasu H, Nureki O, Zhang F.2015. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex.Nature, 517: 583-588. |
[27] | Lei Y, Lu L, Liu H Y, Li S, Xing F, Chen L L.2014. CRISPR-P: A web tool for synthetic single-guide RNA design of CRISPR- system in plants.Mol Plant, 7(9): 1494-1496. |
[28] | Li J Y, Sun Y W, Du J L, Zhao Y D, Xia L Q.2017. Generation of targeted point mutations in rice by a modified CRISPR/Cas9 system.Mol Plant, 10(3): 526-529. |
[29] | Li J Y, Zhang X, Sun Y W, Zhang J H, Du W M, Guo X P, Li S Y, Zhao Y D, Xia L Q.2018. Efficient allelic replacement in rice by gene editing: A case study of the NRT1.1B gene. J Integr Plant Biol, 60(7): 536-540. |
[30] | Li P J, Wang Y H, Qian Q, Fu Z M, Wang M, Zeng D L, Li B H, Wang X J, Li J Y.2007. LAZY1 controls rice shoot gravitropism through regulating polar auxin transport.Cell Res, 17(5): 402-410. |
[31] | Li S Y, Li J Y, Zhang J H, Du W M, Fu J D, Sutar S, Zhao Y D, Xia L Q.2018a. Synthesis-dependent repair of Cpf1-induced double-strand DNA breaks enables targeted gene replacement in rice.J Exp Bot, 69(20): 4715-4721. |
[32] | Li S Y, Zhang X, Wang W S, Guo X P, Wu Z C, Du W M, Zhao Y D, Xia L Q.2018b. Expanding the scope of CRISPR/Cpf1- mediated genome editing in rice.Mol Plant, 11(7): 995-998. |
[33] | Li Z X, Zhang D D, Xiong X Y, Yan B Y, Xie W, Sheen J, Li J F.2017. A potent Cas9-derived gene activator for plant and mammalian cells.Nat Plants, 3: 930-936. |
[34] | Liu X S, Wu H, Ji X, Stelzer Y, Wu X B, Czauderna S, Shu J, Dadon D, Young R A, Jaenisch R.2016. Editing DNA methylation in the mammalian genome.Cell, 167(1): 233-247. |
[35] | Lu Y M, Zhu J K.2017. Precise editing of a target base in the rice genome using a modified CRISPR/Cas9 system.Mol Plant, 10(3): 523-525. |
[36] | Mali P, Yang L H, Esvelt K M, Aach J, Guell M, DiCarlo J E, Norville J E, Church G M.2013. RNA-guided human genome engineering via Cas9.Science, 339: 823-826. |
[37] | McElroy D, Zhang W G, Cao J, Wu R.1990. Isolation of an efficient actin promoter for use in rice transformation. Plant Cell, 2(2): 163-171. |
[38] | Murovec J, Pirc Z, Yang B.2017. New variants of CRISPR RNA-guided genome editing enzymes.Plant Biotechnol J, 15(8): 917-926. |
[39] | Ren B, Yan F, Kuang Y J, Li N, Zhang D W, Zhou X P, Lin H H, Zhou H B.2018. Improved base editor for efficiently inducing genetic variations in rice with CRISPR/Cas9-guided hyperactive hAID mutant. Mol Plant, 11(4): 623-626. |
[40] | Stepper P, Kungulovski G, Jurkowska R Z, Chandra T, Krueger F, Reinhardt R, Reik W, Jeltsch A, Jurkowski T P.2017. Efficient targeted DNA methylation with chimeric dCas9-Dnmt3a-Dnmt3L methyltransferase.Nucleic Acids Res, 45(4): 1703-1713. |
[41] | Sun Y W, Zhang X, Wu C Y, He Y B, Ma Y Z, Hou H, Guo X P, Du W M, Zhao Y D, Xia L Q.2016. Engineering herbicide- resistant rice plants through CRISPR/Cas9-mediated homologous recombination of acetolactate synthase.Mol Plant, 9(4): 628-631. |
[42] | Tak Y E, Kleinstiver B P, Nunez J K, Hsu J Y, Horng J E, Gong J Y, Weissman J S, Joung J K.2017. Inducible and multiplex gene regulation using CRISPR-Cpf1-based transcription factors.Nat Methods, 14(12): 1163-1166. |
[43] | Tanenbaum M E, Gilbert L A, Qi L S, Weissman J S, Vale R D.2014. A protein-tagging system for signal amplification in gene expression and fluorescence imaging.Cell, 159(3): 635-646. |
[44] | Vojta A, Dobrinic P, Tadic V, Bockor L, Korac P, Julg B, Klasic M, Zoldos V.2016. Repurposing the CRISPR-Cas9 system for targeted DNA methylation.Nucleic Acids Res, 44(12): 5615-5628. |
[45] | Wang M G, Lu Y M, Botella J R, Mao Y F, Hua K, Zhu J K.2017. Gene targeting by homology-directed repair in rice using a geminivirus-based CRISPR/Cas9 system.Mol Plant, 10(7): 1007-1010. |
[46] | Wang Z H, Zou Y J, Li X Y, Zhang Q Y, Chen L T, Wu H, Su D H, Chen Y L, Guo J X, Luo D, Long Y M, Zhong Y M, Liu Y G.2006. Cytoplasmic male sterility of rice with boro II cytoplasm is caused by a cytotoxic peptide and is restored by two related PPR motif genes via distinct modes of mRNA silencing.Plant Cell, 18(3): 676-687. |
[47] | Weinhold A, Kallenbach M, Baldwin I T.2013. Progressive 35S promoter methylation increases rapidly during vegetative development in transgenic Nicotiana attenuata plants. BMC Plant Biol, 13: 99. |
[48] | Wilkinson J E, Twell D, Lindsey K.1997. Activities of CaMV 35S and nos promoters in pollen: Implications for field release of transgenic plants.J Exp Bot, 48(2): 265-275. |
[49] | Xie X R, Ma X L, Zhu Q L, Zeng D C, Li G S, Liu Y G.2017. CRISPR-GE: A convenient software toolkit for CRISPR-based genome editing.Mol Plant, 10(9): 1246-1249. |
[50] | Yan F, Kuang Y J, Ren B, Wang J W, Zhang D W, Lin H H, Yang B, Zhou X P, Zhou H B.2018. Highly efficient A∙T to G∙C base editing by Cas9n-guided tRNA adenosine deaminase in rice.Mol Plant, 11(4): 631-634. |
[51] | Yoshihara T, Iino M.2007. Identification of the gravitropism- related rice gene LAZY1 and elucidation of LAZY1-dependent and -independent gravity signaling pathways. Plant Cell Physiol, 48(5): 678-688. |
[52] | Yu C C, Wang L L, Xu S L, Zeng Y F, He C L, Chen C, Huang W C, Zhu Y G, Hu J.2015. Mitochondrial ORFH79 is essential for drought and salt tolerance in rice.Plant Cell Physiol, 56(11): 2248-2258. |
[53] | Zetsche B, Gootenberg J S, Abudayyeh O O, Slaymaker I M, Makarova K S, Essletzbichler P, Volz S E, Joung J, van der Oost J, Regev A, Koonin E V, Zhang F.2015. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system.Cell, 163(3): 759-771. |
[54] | Zetsche B, Heidenreich M, Mohanraju P, Fedorova I, Kneppers J, DeGennaro E M, Winblad N, Choudhury S R, Abudayyeh O O, Gootenberg J S, Wu W Y, Scott D A, Severinov K, van der Oost J, Zhang F.2016. Multiplex gene editing by CRISPR-Cpf1 using a single crRNA array.Nat Biotechnol, 35: 31-34. |
[55] | Zhong Z H, Zhang Y X, You Q, Tang X, Ren Q R, Liu S S, Yang L J, Wang Y, Liu X P, Liu B L, Zhang T, Zheng X L, Le Y, Zhang Y, Qi Y P.2018. Plant genome editing using FnCpf1 and LbCpf1 nucleases at redefined and altered PAM sites.Mol Plant, 11(7): 999-1002. |
[56] | Zhou Y X, Wang P, Tian F, Gao G, Huang L, Wei W S, Xie X S.2017. Painting a specific chromosome with CRISPR/Cas9 for live-cell imaging.Cell Res, 27: 298-301. |
[1] | LIU Tingting, ZOU Jinpeng, YANG Xi, WANG Kejian, RAO Yuchun, WANG Chun. Development and Application of Prime Editing in Plants [J]. Rice Science, 2023, 30(6): 3-. |
[2] | Muduli Lakesh, Kumar Pradhan Sukanta, Mishra Abinash, Nath Bastia Debendra, Chandra Samal Kailash, Kumar Agrawal Pawan, Dash Manasi. Understanding Brown Planthopper Resistance in Rice: Genetics, Biochemical and Molecular Breeding Approaches [J]. Rice Science, 2021, 28(6): 532-546. |
[3] | Mishra Rukmini, Zheng Wei, Kumar Joshi Raj, Kaijun Zhao. Genome Editing Strategies Towards Enhancement of Rice Disease Resistance [J]. Rice Science, 2021, 28(2): 133-145. |
[4] | Yuyu Chen, Aike Zhu, Pao Xue, Xiaoxia Wen, Yongrun Cao, Beifang Wang, Yue Zhang, Liaqat Shah, Shihua Cheng, Liyong Cao, Yingxin Zhang. Effects of GS3 and GL3.1 for Grain Size Editing by CRISPR/Cas9 in Rice [J]. Rice Science, 2020, 27(5): 405-413. |
[5] | Hossain Prodhan Zakaria, Qingyao Shu. Rice Aroma: A Natural Gift Comes with Price and the Way Forward [J]. Rice Science, 2020, 27(2): 86-100. |
[6] | Matías Romero Fernando, Gatica-Arias Andrés. CRISPR/Cas9: Development and Application in Rice Breeding [J]. Rice Science, 2019, 26(5): 265-281. |
[7] | Yunyan Fei, Jie Yang, Fangquan Wang, Fangjun Fan, Wenqi Li, Jun Wang, Yang Xu, Jinyan Zhu, Weigong Zhong. Production of Two Elite Glutinous Rice Varieties by Editing Wx Gene [J]. Rice Science, 2019, 26(2): 118-124. |
[8] | Shufen Chao, Yicong Cai, Baobing Feng, Guiai Jiao, Zhonghua Sheng, Ju Luo, Shaoqing Tang, Jianlong Wang, Peisong Hu, Xiangjin Wei. Editing of Rice Isoamylase Gene ISA1 Provides Insights into Its Function in Starch Formation [J]. Rice Science, 2019, 26(2): 77-87. |
[9] | Songmei Liu, Jie Jiang, Yang Liu, Jun Meng, Shouling Xu, Yuanyuan Tan, Youfa Li, Qingyao Shu, Jianzhong Huang. Characterization and Evaluation of OsLCT1 and OsNramp5 Mutants Generated Through CRISPR/Cas9-Mediated Mutagenesis for Breeding Low Cd Rice [J]. Rice Science, 2019, 26(2): 88-97. |
[10] | Bo Wang, Zhaohui Zhong, Huanhuan Zhang, Xia Wang, Binglin Liu, Lijia Yang, Xiangyan Han, Deshui Yu, Xuelian Zheng, Chunguo Wang, Wenqin Song, Chengbin Chen, Yong Zhang. Targeted Mutagenesis of NAC Transcription Factor Gene, OsNAC041, Leading to Salt Sensitivity in Rice [J]. Rice Science, 2019, 26(2): 98-108. |
[11] | Jun Ren, Xixun Hu, Kejian Wang, Chun Wang. Development and Application of CRISPR/Cas System in Rice [J]. Rice Science, 2019, 26(2): 69-761. |
[12] | Srivastava Deepti, Shamim Md, Kumar Mahesh, Mishra Anurag, Pandey Pramila, Kumar Deepak, Yadav Prashant, Harrish Siddiqui Mohammed, Narayan Singh Kapildeo. Current Status of Conventional and Molecular Interventions for Blast Resistance in Rice [J]. Rice Science, 2017, 24(6): 299-321. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||