Rice Science ›› 2023, Vol. 30 ›› Issue (5): 459-472.DOI: 10.1016/j.rsci.2023.03.017
• Research Papers • Previous Articles Next Articles
Md. Dhin Islam1,2(), Adam H. Price1, Paul D. Hallett1
Received:
2023-01-27
Accepted:
2023-03-31
Online:
2023-09-28
Published:
2023-08-14
Contact:
Md. Dhin Islam (Md. Dhin Islam, Adam H. Price, Paul D. Hallett. Effects of Root Growth of Deep and Shallow Rooting Rice Cultivars in Compacted Paddy Soils on Subsequent Rice Growth[J]. Rice Science, 2023, 30(5): 459-472.
Add to citation manager EndNote|Ris|BibTeX
Genotype | Soil structure treatment | Tiller number | Leaf number | Plant height (cm) | Shoot fresh weight (g) | Shoot dry weight (g) |
---|---|---|---|---|---|---|
Black Gora | Hard plough pan | 6.8 ± 0.6 | 25.0 ± 2.1 | 85.8 ± 3.1 | 23.00 ± 0.66 | 5.21 ± 0.11 |
Soft plough pan | 7.5 ± 0.3 | 27.5 ± 1.2 | 92.2 ± 4.0 | 23.00 ± 0.70 | 5.55 ± 0.17 | |
No plough pan | 8.3 ± 0.5 | 30.2 ± 1.0 | 89.0 ± 1.7 | 22.70 ± 0.73 | 5.94 ± 0.18 | |
IR64 | Hard plough pan | 6.8 ± 0.6 | 32.8 ± 3.6 | 58.0 ± 1.2 | 14.70 ± 1.20 | 4.02 ± 0.30 |
Soft plough pan | 7.8 ± 1.3 | 34.5 ± 2.4 | 61.8 ± 2.3 | 17.80 ± 0.69 | 4.68 ± 0.24 | |
No plough pan | 9.0 ± 0.4 | 38.2 ± 0.6 | 60.2 ± 1.3 | 18.80 ± 0.55 | 4.84 ± 0.19 | |
Analysis of variance | ||||||
Genotype (G) | NS | 19.89*** | 207.84*** | 81.20*** | 38.35*** | |
Soil structure (SS) | NS | NS | NS | NS | 0.29** | |
G × SS | NS | NS | NS | 4.15* | NS |
Table 1. Aboveground parameters for Black Gora and IR64 grown under different treatments in the first season (flooded).
Genotype | Soil structure treatment | Tiller number | Leaf number | Plant height (cm) | Shoot fresh weight (g) | Shoot dry weight (g) |
---|---|---|---|---|---|---|
Black Gora | Hard plough pan | 6.8 ± 0.6 | 25.0 ± 2.1 | 85.8 ± 3.1 | 23.00 ± 0.66 | 5.21 ± 0.11 |
Soft plough pan | 7.5 ± 0.3 | 27.5 ± 1.2 | 92.2 ± 4.0 | 23.00 ± 0.70 | 5.55 ± 0.17 | |
No plough pan | 8.3 ± 0.5 | 30.2 ± 1.0 | 89.0 ± 1.7 | 22.70 ± 0.73 | 5.94 ± 0.18 | |
IR64 | Hard plough pan | 6.8 ± 0.6 | 32.8 ± 3.6 | 58.0 ± 1.2 | 14.70 ± 1.20 | 4.02 ± 0.30 |
Soft plough pan | 7.8 ± 1.3 | 34.5 ± 2.4 | 61.8 ± 2.3 | 17.80 ± 0.69 | 4.68 ± 0.24 | |
No plough pan | 9.0 ± 0.4 | 38.2 ± 0.6 | 60.2 ± 1.3 | 18.80 ± 0.55 | 4.84 ± 0.19 | |
Analysis of variance | ||||||
Genotype (G) | NS | 19.89*** | 207.84*** | 81.20*** | 38.35*** | |
Soil structure (SS) | NS | NS | NS | NS | 0.29** | |
G × SS | NS | NS | NS | 4.15* | NS |
Flooded season genotype | Soil structure treatment | Plant height (cm) | Tiller number | Leaf number | Shoot fresh weight (g) | Shoot dry weight (g) |
---|---|---|---|---|---|---|
Black Gora (BG) | Hard plough pan | 63.0 ± 0.9 | 11.8 ± 0.5 | 48.5 ± 3.4 | 15.93 ± 0.61 | 5.24 ± 0.48 |
Soft plough pan | 64.2 ± 0.5 | 11.8 ± 0.5 | 49.0 ± 1.2 | 16.84 ± 0.44 | 6.04 ± 0.32 | |
No plough pan | 63.2 ± 0.5 | 12.5 ± 0.3 | 51.8 ± 0.9 | 16.49 ± 0.60 | 5.60 ± 0.14 | |
IR64 | Hard plough pan | 62.2 ± 1.1 | 11.5 ± 0.3 | 47.5 ± 2.2 | 18.02 ± 0.56 | 5.34 ± 0.30 |
Soft plough pan | 62.5 ± 0.6 | 12.0 ± 0.0 | 48.8 ± 0.5 | 17.65 ± 0.86 | 5.73 ± 0.40 | |
No plough pan | 64.5 ± 0.9 | 11.8 ± 0.5 | 48.2 ± 1.5 | 17.57 ± 0.71 | 6.16 ± 0.37 | |
Without plant | Hard plough pan | 62.2 ± 1.1 | 12.0 ± 0.9 | 49.2 ± 3.0 | 18.29 ± 0.48 | 5.46 ± 0.28 |
Soft plough pan | 66.3 ± 1.2 | 12.7 ± 0.3 | 51.3 ± 1.8 | 19.59 ± 0.62 | 6.65 ± 0.29 | |
No plough pan | 65.2 ± 1.1 | 12.8 ± 0.5 | 49.2 ± 1.6 | 18.20 ± 0.94 | 5.80 ± 0.38 | |
Analysis of variance | ||||||
Flooded season genotype (G) | NS | NS | NS | 8.00** | NS | |
Soil structure (SS) | NS | NS | NS | NS | NS | |
G × SS | NS | NS | NS | NS | NS | |
Preceding BG vs IR64 | NS | NS | NS | 7.18* | NS |
Table 2. Aboveground parameters for BRRI Dhan 28 grown under different treatments in the second season (upland).
Flooded season genotype | Soil structure treatment | Plant height (cm) | Tiller number | Leaf number | Shoot fresh weight (g) | Shoot dry weight (g) |
---|---|---|---|---|---|---|
Black Gora (BG) | Hard plough pan | 63.0 ± 0.9 | 11.8 ± 0.5 | 48.5 ± 3.4 | 15.93 ± 0.61 | 5.24 ± 0.48 |
Soft plough pan | 64.2 ± 0.5 | 11.8 ± 0.5 | 49.0 ± 1.2 | 16.84 ± 0.44 | 6.04 ± 0.32 | |
No plough pan | 63.2 ± 0.5 | 12.5 ± 0.3 | 51.8 ± 0.9 | 16.49 ± 0.60 | 5.60 ± 0.14 | |
IR64 | Hard plough pan | 62.2 ± 1.1 | 11.5 ± 0.3 | 47.5 ± 2.2 | 18.02 ± 0.56 | 5.34 ± 0.30 |
Soft plough pan | 62.5 ± 0.6 | 12.0 ± 0.0 | 48.8 ± 0.5 | 17.65 ± 0.86 | 5.73 ± 0.40 | |
No plough pan | 64.5 ± 0.9 | 11.8 ± 0.5 | 48.2 ± 1.5 | 17.57 ± 0.71 | 6.16 ± 0.37 | |
Without plant | Hard plough pan | 62.2 ± 1.1 | 12.0 ± 0.9 | 49.2 ± 3.0 | 18.29 ± 0.48 | 5.46 ± 0.28 |
Soft plough pan | 66.3 ± 1.2 | 12.7 ± 0.3 | 51.3 ± 1.8 | 19.59 ± 0.62 | 6.65 ± 0.29 | |
No plough pan | 65.2 ± 1.1 | 12.8 ± 0.5 | 49.2 ± 1.6 | 18.20 ± 0.94 | 5.80 ± 0.38 | |
Analysis of variance | ||||||
Flooded season genotype (G) | NS | NS | NS | 8.00** | NS | |
Soil structure (SS) | NS | NS | NS | NS | NS | |
G × SS | NS | NS | NS | NS | NS | |
Preceding BG vs IR64 | NS | NS | NS | 7.18* | NS |
Fig. 1. Number of roots at the bottom surface of plough pan counted from X-ray computed tomography images for Black Gora and IR64 grown under different treatments in flooded season. These roots were decomposed during the decomposition period which we assumed could provide root channels or biopores for the next season of upland rice. NPP, No plough pan; SPP, Soft plough pan; HPP, Hard plough pan. Error bars are standard error of the mean (n = 4). Different lowercase letters above the bars indicate significant difference at P < 0.05.
Fig. 2. Root length density (RLD) of BRRI Dhan 28 grown under different treatments in upland season. A, Overall RLD for whole soil cores. B?D, RLD in topsoil (B), plough pan (C) and subsoil layer (D) of soil cores. Genotype means preceding season treatments. WP, Without plant; NPP, No plough pan; SPP, Soft plough pan; HPP, Hard plough pan. Error bars are standard error of the mean (n = 4).
Soil layer | Root parameter | Flooded season treatment (F) | Soil structure (SS) | F × SS | Preceding Black Gora vs IR64 |
---|---|---|---|---|---|
Total | Root length density (cm/cm3) | 5.29* | NS | NS | NS |
Surface area (cm2) | 11.25*** | NS | NS | NS | |
Diameter (mm) | 47.48*** | 7.11** | 6.07** | NS | |
Volume (cm3) | 14.20*** | NS | 2.98* | NS | |
Root tip density (cm-3) | 4.82* | NS | NS | NS | |
Number of branches per plant | 7.16** | NS | NS | NS | |
Topsoil | Root length density (cm/cm3) | 9.64*** | NS | NS | 13.48** |
Surface area (cm2) | 7.65** | NS | NS | 9.34** | |
Diameter (mm) | 27.58*** | NS | 3.34* | NS | |
Volume (cm3) | 10.62*** | NS | 2.96* | 6.80* | |
Root tip density (cm-3) | 6.14** | NS | NS | NS | |
Number of branches per plant | 10.70*** | NS | NS | 16.21*** | |
Plough pan | Root length density (cm/cm3) | 10.67*** | 27.04*** | NS | NS |
Surface area (cm2) | 12.85*** | 12.63*** | NS | NS | |
Diameter (mm) | 5.37* | 50.10*** | 3.61* | NS | |
Volume (cm3) | 13.12*** | NS | NS | NS | |
Root tip density (cm-3) | 36.45*** | 53.09*** | NS | NS | |
Number of branches per plant | 10.51*** | 44.75*** | NS | NS | |
Root length density (cm/cm3) | 14.09*** | 45.91*** | NS | NS | |
Subsoil | Root length density (cm/cm3) | 12.64*** | NS | NS | 4.53* |
Surface area (cm2) | 22.96*** | NS | NS | 9.42** | |
Diameter (mm) | 33.01*** | NS | NS | 11.82** | |
Volume (cm3) | 29.29*** | NS | NS | 12.05** | |
Root tip density (cm-3) | 9.36*** | NS | NS | 3.41* | |
Number of branches per plant | 19.08*** | NS | NS | 7.12* | |
The flooded season treatments are no plant, Black Gora and IR64. For analysis of variance, values reported are the F-values and asterisks indicate the level of significance. NS means non-significant. ***, P < 0.001; **, P < 0.01; *, P < 0.05. |
Table 3. Statistical analysis of root parameters for BRRI Dhan 28 grown under three different soil structure treatments in the second season (upland).
Soil layer | Root parameter | Flooded season treatment (F) | Soil structure (SS) | F × SS | Preceding Black Gora vs IR64 |
---|---|---|---|---|---|
Total | Root length density (cm/cm3) | 5.29* | NS | NS | NS |
Surface area (cm2) | 11.25*** | NS | NS | NS | |
Diameter (mm) | 47.48*** | 7.11** | 6.07** | NS | |
Volume (cm3) | 14.20*** | NS | 2.98* | NS | |
Root tip density (cm-3) | 4.82* | NS | NS | NS | |
Number of branches per plant | 7.16** | NS | NS | NS | |
Topsoil | Root length density (cm/cm3) | 9.64*** | NS | NS | 13.48** |
Surface area (cm2) | 7.65** | NS | NS | 9.34** | |
Diameter (mm) | 27.58*** | NS | 3.34* | NS | |
Volume (cm3) | 10.62*** | NS | 2.96* | 6.80* | |
Root tip density (cm-3) | 6.14** | NS | NS | NS | |
Number of branches per plant | 10.70*** | NS | NS | 16.21*** | |
Plough pan | Root length density (cm/cm3) | 10.67*** | 27.04*** | NS | NS |
Surface area (cm2) | 12.85*** | 12.63*** | NS | NS | |
Diameter (mm) | 5.37* | 50.10*** | 3.61* | NS | |
Volume (cm3) | 13.12*** | NS | NS | NS | |
Root tip density (cm-3) | 36.45*** | 53.09*** | NS | NS | |
Number of branches per plant | 10.51*** | 44.75*** | NS | NS | |
Root length density (cm/cm3) | 14.09*** | 45.91*** | NS | NS | |
Subsoil | Root length density (cm/cm3) | 12.64*** | NS | NS | 4.53* |
Surface area (cm2) | 22.96*** | NS | NS | 9.42** | |
Diameter (mm) | 33.01*** | NS | NS | 11.82** | |
Volume (cm3) | 29.29*** | NS | NS | 12.05** | |
Root tip density (cm-3) | 9.36*** | NS | NS | 3.41* | |
Number of branches per plant | 19.08*** | NS | NS | 7.12* | |
The flooded season treatments are no plant, Black Gora and IR64. For analysis of variance, values reported are the F-values and asterisks indicate the level of significance. NS means non-significant. ***, P < 0.001; **, P < 0.01; *, P < 0.05. |
Fig. 3. Root diameter of BRRI Dhan 28 grown under different treatments in upland season. A, Average root diameter for whole soil cores. B?D, Root diameter in topsoil (B), plough pan (C) and subsoil layer (D) of soil cores. Genotype means preceding season treatments. WP, Without plant; NPP, No plough pan; SPP, Soft plough pan; HPP, Hard plough pan. Error bars are standard error of the mean (n = 4).
Fig. 4. Average root tip density of BRRI Dhan 28 grown under different treatments in upland season. A, Overall root tip density for soil cores. B?D, Root tip density in topsoil (B), plough pan (C) and subsoil layer (D) of soil cores. Genotype means preceding season treatments. WP, Without plant; NPP, No plough pan; SPP, Soft plough pan; HPP, Hard plough pan. Error bars are standard error of the mean (n = 4).
Fig. 5. Number of roots at the bottom surface of plough pan counted from camera images for BRRI Dhan 28 grown under different treatments in upland season. Genotype means preceding season treatments. WP, Without plant; NPP, No plough pan; SPP, Soft plough pan; HPP, Hard plough pan. Error bars are standard error of the mean (n = 4).
Soil core layer | Flooded season treatment | Soil structure treatment | Root surface area (cm2) | Root volume (cm3) | Number of root branches |
---|---|---|---|---|---|
Total | Black Gora | Hard plough pan | 1 796 ± 138 | 11.76 ± 1.20 | 362 949 ± 29 472 |
Soft plough pan | 2 184 ± 147 | 15.20 ± 1.22 | 413 069 ± 42 441 | ||
No plough pan | 2 098 ± 150 | 14.68 ± 1.57 | 396 717 ± 20 880 | ||
IR64 | Hard plough pan | 2 202 ± 80 | 16.48 ± 1.15 | 394 042 ± 8 765 | |
Soft plough pan | 1 670 ± 285 | 10.96 ± 2.02 | 333 285 ± 57 914 | ||
No plough pan | 2 178 ± 306 | 14.60 ± 2.71 | 454 041 ± 47 821 | ||
Without plant | Hard plough pan | 1 332 ± 97 | 7.57 ± 0.77 | 280 914 ± 21 327 | |
Soft plough pan | 1 676 ± 129 | 10.17 ± 0.92 | 345 521 ± 29 443 | ||
No plough pan | 1 267 ± 123 | 7.10 ± 0.70 | 275 699 ± 27 230 | ||
Topsoil | Black Gora | Hard plough pan | 685 ± 56 | 5.34 ± 0.63 | 121 094 ± 9 261 |
Soft plough pan | 753 ± 103 | 6.32 ± 1.04 | 119 706 ± 22 063 | ||
No plough pan | 691 ± 80 | 5.64 ± 0.90 | 113 066 ± 13 885 | ||
IR64 | Hard plough pan | 1 125 ± 72 | 10.24 ± 0.95 | 190 561 ± 10 312 | |
Soft plough pan | 811 ± 95 | 6.36 ± 0.94 | 148 830 ± 15 912 | ||
No plough pan | 919 ± 128 | 7.67 ± 1.41 | 165 587 ± 17 051 | ||
Without plant | Hard plough pan | 722 ± 63 | 4.62 ± 0.51 | 156 245 ± 13 412 | |
Soft plough pan | 876 ± 10 | 6.13 ± 0.35 | 181 367 ± 1 992 | ||
No plough pan | 670 ± 50 | 4.27 ± 0.44 | 140 267 ± 9 827 | ||
Plough pan | Black Gora | Hard plough pan | 145 ± 16 | 0.80 ± 0.09 | 21 370 ± 3 062 |
Soft plough pan | 179 ± 20 | 1.01 ± 0.10 | 26 260 ± 4 501 | ||
No plough pan | 240 ± 32 | 1.08 ± 0.13 | 55 474 ± 6 882 | ||
IR64 | Hard plough pan | 207 ± 41 | 1.29 ± 0.27 | 24 009 ± 5 420 | |
Soft plough pan | 180 ± 36 | 0.87 ± 0.19 | 31 136 ± 7 151 | ||
No plough pan | 283 ± 34 | 1.22 ± 0.17 | 68 111 ± 6 864 | ||
Without plant | Hard plough pan | 72 ± 15 | 0.37 ± 0.09 | 9 053 ± 1 883 | |
Soft plough pan | 91 ± 24 | 0.39 ± 0.08 | 13 495 ± 4 271 | ||
No plough pan | 128 ± 13 | 0.48 ± 0.04 | 31 813 ± 3 247 | ||
Subsoil | Black Gora | Hard plough pan | 965 ± 85 | 5.62 ± 0.63 | 220 484 ± 20 627 |
Soft plough pan | 1 252 ± 51 | 7.86 ± 0.43 | 267 102 ± 18 033 | ||
No plough pan | 1 167 ± 49 | 7.96 ± 0.57 | 228 176 ± 6 050 | ||
IR64 | Hard plough pan | 870 ± 38 | 4.84 ± 0.13 | 179 471 ± 18 125 | |
Soft plough pan | 679 ± 166 | 3.72 ± 1.00 | 153 318 ± 37 487 | ||
No plough pan | 976 ± 158 | 5.71 ± 1.21 | 220 342 ± 28 149 | ||
Without plant | Hard plough pan | 538 ± 74 | 2.57 ± 0.41 | 115 616 ± 17 576 | |
Soft plough pan | 709 ± 104 | 3.65 ± 0.59 | 150 659 ± 27 094 | ||
No plough pan | 470 ± 102 | 2.35 ± 0.57 | 103 618 ± 23 075 |
Table 4. Root parameters of BRRI Dhan 28 grown under three different soil structures and two genotype treatments in upland season.
Soil core layer | Flooded season treatment | Soil structure treatment | Root surface area (cm2) | Root volume (cm3) | Number of root branches |
---|---|---|---|---|---|
Total | Black Gora | Hard plough pan | 1 796 ± 138 | 11.76 ± 1.20 | 362 949 ± 29 472 |
Soft plough pan | 2 184 ± 147 | 15.20 ± 1.22 | 413 069 ± 42 441 | ||
No plough pan | 2 098 ± 150 | 14.68 ± 1.57 | 396 717 ± 20 880 | ||
IR64 | Hard plough pan | 2 202 ± 80 | 16.48 ± 1.15 | 394 042 ± 8 765 | |
Soft plough pan | 1 670 ± 285 | 10.96 ± 2.02 | 333 285 ± 57 914 | ||
No plough pan | 2 178 ± 306 | 14.60 ± 2.71 | 454 041 ± 47 821 | ||
Without plant | Hard plough pan | 1 332 ± 97 | 7.57 ± 0.77 | 280 914 ± 21 327 | |
Soft plough pan | 1 676 ± 129 | 10.17 ± 0.92 | 345 521 ± 29 443 | ||
No plough pan | 1 267 ± 123 | 7.10 ± 0.70 | 275 699 ± 27 230 | ||
Topsoil | Black Gora | Hard plough pan | 685 ± 56 | 5.34 ± 0.63 | 121 094 ± 9 261 |
Soft plough pan | 753 ± 103 | 6.32 ± 1.04 | 119 706 ± 22 063 | ||
No plough pan | 691 ± 80 | 5.64 ± 0.90 | 113 066 ± 13 885 | ||
IR64 | Hard plough pan | 1 125 ± 72 | 10.24 ± 0.95 | 190 561 ± 10 312 | |
Soft plough pan | 811 ± 95 | 6.36 ± 0.94 | 148 830 ± 15 912 | ||
No plough pan | 919 ± 128 | 7.67 ± 1.41 | 165 587 ± 17 051 | ||
Without plant | Hard plough pan | 722 ± 63 | 4.62 ± 0.51 | 156 245 ± 13 412 | |
Soft plough pan | 876 ± 10 | 6.13 ± 0.35 | 181 367 ± 1 992 | ||
No plough pan | 670 ± 50 | 4.27 ± 0.44 | 140 267 ± 9 827 | ||
Plough pan | Black Gora | Hard plough pan | 145 ± 16 | 0.80 ± 0.09 | 21 370 ± 3 062 |
Soft plough pan | 179 ± 20 | 1.01 ± 0.10 | 26 260 ± 4 501 | ||
No plough pan | 240 ± 32 | 1.08 ± 0.13 | 55 474 ± 6 882 | ||
IR64 | Hard plough pan | 207 ± 41 | 1.29 ± 0.27 | 24 009 ± 5 420 | |
Soft plough pan | 180 ± 36 | 0.87 ± 0.19 | 31 136 ± 7 151 | ||
No plough pan | 283 ± 34 | 1.22 ± 0.17 | 68 111 ± 6 864 | ||
Without plant | Hard plough pan | 72 ± 15 | 0.37 ± 0.09 | 9 053 ± 1 883 | |
Soft plough pan | 91 ± 24 | 0.39 ± 0.08 | 13 495 ± 4 271 | ||
No plough pan | 128 ± 13 | 0.48 ± 0.04 | 31 813 ± 3 247 | ||
Subsoil | Black Gora | Hard plough pan | 965 ± 85 | 5.62 ± 0.63 | 220 484 ± 20 627 |
Soft plough pan | 1 252 ± 51 | 7.86 ± 0.43 | 267 102 ± 18 033 | ||
No plough pan | 1 167 ± 49 | 7.96 ± 0.57 | 228 176 ± 6 050 | ||
IR64 | Hard plough pan | 870 ± 38 | 4.84 ± 0.13 | 179 471 ± 18 125 | |
Soft plough pan | 679 ± 166 | 3.72 ± 1.00 | 153 318 ± 37 487 | ||
No plough pan | 976 ± 158 | 5.71 ± 1.21 | 220 342 ± 28 149 | ||
Without plant | Hard plough pan | 538 ± 74 | 2.57 ± 0.41 | 115 616 ± 17 576 | |
Soft plough pan | 709 ± 104 | 3.65 ± 0.59 | 150 659 ± 27 094 | ||
No plough pan | 470 ± 102 | 2.35 ± 0.57 | 103 618 ± 23 075 |
Plough pan strength | Penetration resistance at -5 kPa | Penetration resistance at -20 kPa |
---|---|---|
No plough pan | 0.352 ± 0.041 | 0.855 ± 0.045 |
Soft plough pan | 1.030 ± 0.044 | 1.440 ± 0.049 |
Hard plough pan | 1.700 ± 0.020 | 2.800 ± 0.100 |
Table 5. Penetration resistance at plough pan for different treatments at different water contents. MPa
Plough pan strength | Penetration resistance at -5 kPa | Penetration resistance at -20 kPa |
---|---|---|
No plough pan | 0.352 ± 0.041 | 0.855 ± 0.045 |
Soft plough pan | 1.030 ± 0.044 | 1.440 ± 0.049 |
Hard plough pan | 1.700 ± 0.020 | 2.800 ± 0.100 |
[1] | Aggarwal G C, Sidhu A S, Sekhon N K, Sandhu K S, Sur H S. 1995. Puddling and N management effects on crop response in a rice-wheat cropping system. Soil Tillage Res, 36(3/4): 129-139. |
[2] | Ambassa-Kiki R, Aboubakar Y, Boulama T. 1996. Zero-tillage for rice production on Cameroonian Vertisols. Soil Tillage Res, 39(1/2): 75-84. |
[3] | Atkinson J A, Hawkesford M J, Whalley W R, Zhou H, Mooney S J. 2020. Soil strength influences wheat root interactions with soil macropores. Plant Cell Environ, 43(1): 235-245. |
[4] | Banglapedia. 2012. Rice. National Encyclopedia of Bangladesh. [2023-01-20]. https://en.banglapedia.org/index.php/Rice. |
[5] | Bauke S L, Landl M, Koch M, Hofmann D, Nagel K A, Siebers N, Schnepf A, Amelung W. 2017. Macropore effects on phosphorus acquisition by wheat roots: A rhizotron study. Plant Soil, 416(1): 67-82. |
[6] | Belder P, Bouman B M, Spiertz J J, Peng S, Castañeda A R, Visperas R M. 2005. Crop performance, nitrogen and water use in flooded and aerobic rice. Plant Soil, 273(1): 167-182. |
[7] | Bengough A G. 2003. Root growth and function in relation to soil structure, composition, and strength. In: de Kroon H, Visser E J W. Root Ecology. Berlin, Heidelberg: Springer: 151-171. |
[8] | Bengough A G. 2012. Root elongation is restricted by axial but not by radial pressures: So what happens in field soil. Plant Soil, 360(1): 15-18. |
[9] | Bertollo A M, de Moraes M T, Franchini J C, Soltangheisi A, Balbinot A A Jr, Levien R, Debiasi H. 2021. Precrops alleviate soil physical limitations for soybean root growth in an Oxisol from southern Brazil. Soil Tillage Res, 206: 104820. |
[10] | Bingham I J, Glyn Bengough A, Rees R M. 2010. Soil compaction- N interactions in barley: Root growth and tissue composition. Soil Tillage Res, 106(2): 241-246. |
[11] | Bouman B A M, Lampayan R M, Toung T P. 2007. Water Management in Irrigated Rice: Coping with Water Scarcity. Los Baños, the Philippines: International Rice Research Institute. |
[12] | Chen S, Xia G M, Zhao W M, Wu F B, Zhang G P. 2007. Characterization of leaf photosynthetic properties for no-tillage rice. Rice Sci, 14(4): 283-288. |
[13] | Colombi T, Braun S, Keller T, Walter A. 2017. Artificial macropores attract crop roots and enhance plant productivity on compacted soils. Sci Total Environ, 574(1): 1283-1293. |
[14] | Colombi T, Torres L C, Walter A, Keller T. 2018. Feedbacks between soil penetration resistance, root architecture and water uptake limit water accessibility and crop growth: A vicious circle. Sci Total Environ, 626: 1026-1035. |
[15] | Cresswell H P, Kirkegaard J A. 1995. Subsoil amelioration by plant-roots: The process and the evidence. Soil Res, 33(2): 221. |
[16] | Dexter A R. 1986. Model experiments on the behaviour of roots at the interface between a tilled seed-bed and a compacted sub-soil: II. Entry of pea and wheat roots into sub-soil cracks on JSTOR. Plant Soil, 95(1): 135-147. |
[17] | Elkins B C, Sickle V K. 1984. Punching holes in plowpans. Solutions, 28: 38-41. |
[18] | Fukai S, Cooper M. 1995. Development of drought-resistant cultivars using physiomorphological traits in rice. Field Crops Res, 40(2): 67-86. |
[19] | Gao W, Hodgkinson L, Jin K, Watts C W, Ashton R W, Shen J, Ren T, Dodd I C, Binley A, Phillips A L, Hedden P, Hawkesford M J, Whalley W R. 2016. Deep roots and soil structure. Plant Cell Environ, 39(8): 1662-1668. |
[20] | Gathala M K, Ladha J K, Saharawat Y S, Kumar V, Kumar V, Sharma P K. 2011. Effect of tillage and crop establishment methods on physical properties of a medium-textured soil under a seven-year rice-wheat rotation. Soil Sci Soc Am J, 75(5): 1851-1862. |
[21] | Gathala M K, Timsina J, Islam M S, Rahman M M, Hossain M I, Harun-Ar-Rashid M, Ghosh A K, Krupnik T J, Tiwari T P, McDonald A. 2015. Conservation agriculture based tillage and crop establishment options can maintain farmers’ yields and increase profits in South Asia’s rice-maize systems: Evidence from Bangladesh. Field Crops Res, 172: 85-98. |
[22] | Gregory A S, Watts C W, Whalley W R, Kuan H L, Griffiths B S, Hallett P D, Whitmore A P. 2007. Physical resilience of soil to field compaction and the interactions with plant growth and microbial community structure. Eur J Soil Sci, 58(6): 1221-1232. |
[23] | Guimarães C M, Moreira J A A. 2001. Soil compaction on upland rice. Pesqui Agropecu Bras, 36(4): 703-707. |
[24] | Han E, Kautz T, Köpke U. 2016. Precrop root system determines root diameter of subsequent crop. Biol Fertil Soils, 52(1): 113-118. |
[25] | Haque M E, Bell R W, Islam M A, Rahman M A. 2016. Minimum tillage unpuddled transplanting: An alternative crop establishment strategy for rice in conservation agriculture cropping systems. Field Crops Res, 185: 31-39. |
[26] | Hasegawa S, Thangaraj M, O’Toole J C. 1985. Root behavior: Field and laboratory studies for rice and non-rice crops. In: Soil Physics and Rice. Manila, the Philippines: International Rice Research Institute: 383-396. |
[27] | Huang C P, Ding D L. 1995. The effects of paddy upland rotation on crop yield and soil physical and chemical characteristics. Acta Agric Zhejiang, 7: 448-450. (in Chinese with English abstract) |
[28] | Huang M, Ibrahim M, Xia B, Zou Y. 2011. Significance, progress and prospects for research in simplified cultivation technologies for rice in China. J Agric Sci, 149(4): 487-496. |
[29] | Islam M D D, Price A H, Hallett P D. 2021. Contrasting ability of deep and shallow rooting rice genotypes to grow through plough pans containing simulated biopores and cracks. Plant Soil, 467(1/2): 515-530. |
[30] | Islam M S. 2016. Genetic mapping of rooting in rice: Exploiting a high throughput phenotyping in plants. Aberdeen, UK: University of Aberdeen. |
[31] | Kamboj B R, Yadav D B, Yadav A, Goel N K, Gill G, Malik R K, Chauhan B S. 2013. Mechanized transplanting of rice (Oryza sativa L.) in nonpuddled and no-till conditions in the rice-wheat cropping system in Haryana, India. Am J Plant Sci, 4(12): 2409-2413. |
[32] | Kautz T. 2014. Research on subsoil biopores and their functions in organically managed soils: A review. Renew Agric Food Syst, 30(4): 318-327. |
[33] | Kautz T, Köpke U. 2010. In situ endoscopy: New insights to root growth in biopores. Plant Biosyst, 144(2): 440-442. |
[34] | Kolb E, Hartmann C, Genet P. 2012. Radial force development during root growth measured by photoelasticity. Plant Soil, 360(1): 19-35. |
[35] | Ladha J K, Dawe D, Pathak H, Padre A T, Yadav R L, Singh B, Singh Y, Singh Y, Singh P, Kundu A L, Sakal R, Ram N, Regmi A P, Gami S K, Bhandari A L, Amin R, Yadav C R, Bhattarai E M, Das S, Aggarwal H P, Gupta R K, Hobbs P R. 2003. How extensive are yield declines in long-term rice-wheat experiments in Asia. Field Crops Res, 81(2/3): 159-180. |
[36] | Ladha J K, Pathak H, Tirol-Padre A, Dawe D, Gupta R K. 2015. Productivity trends in intensive rice-wheat cropping systems in Asia. In: Ladha J K, Hill J E, Duxbury J M, Gupta R K, Buresh R J. Improving the Productivity and Sustainability of Rice- Wheat Systems: Issues and Impacts. Madison, WI, USA: American Society of Agronomy. Crop Science Society of America, and Soil Science Society of America: 45-76. |
[37] | Li C K. 1992. Paddy Soils of China. Beijing, China: Science Press: 156-162. (in Chinese) |
[38] | Linh T B, Sleutel S, Guong V T, Khoa L V, Cornelis W M. 2015. Deeper tillage and root growth in annual rice-upland cropping systems result in improved rice yield and economic profit relative to rice monoculture. Soil Tillage Res, 154: 44-52. |
[39] | Lipiec J, Hatano R. 2003. Quantification of compaction effects on soil physical properties and crop growth. Geoderma, 116(1/2): 107-136. |
[40] | Materechera S A, Alston A M, Kirby J M, Dexter A R. 1992. Influence of root diameter on the penetration of seminal roots into a compacted subsoil. Plant Soil, 144(2): 297-303. |
[41] |
McNally K L, Childs K L, Bohnert R, Davidson R M, Zhao K Y, Ulat V J, Zeller G, Clark R M, Hoen D R, Bureau T E, Stokowski R, Ballinger D G, Frazer K A, Cox D R, Padhukasahasram B, Bustamante C D, Weigel D, MacKill D J, Bruskiewich R M, Rätsch G, Buell C R, Leung H, Leach J E. 2009. Genomewide SNP variation reveals relationships among landraces and modern varieties of rice. Proc Natl Acad Sci USA, 106(30): 12273-12278.
PMID |
[42] | Mishra V K, Saha R. 2008. Soil physical behaviour and rice (Oryza sativa) yield under different sources of organics, methods of puddling and zero tillage. Ind J Agric Sci, 78: 399-404. |
[43] |
Munasinghe M, Price A H. 2016. Genetic and root phenotype diversity in Sri Lankan rice landraces may be related to drought resistance. Rice, 9(1): 24.
PMID |
[44] | Muthert L W F, Izzo L G, van Zanten M, Aronne G. 2020. Root tropisms: Investigations on earth and in space to unravel plant growth direction. Front Plant Sci, 10: 1807. |
[45] | Narang M K, Chandel R, Dogra B, Manes G S. 2020. Development of mat nursery raising and uprooting techniques for paddy (Oryza Sativa L.) crop and their field evaluation with mechanical transplanter for South East Asia. AMA-Agric Mech Asia Afr Lat A, 51(2): 79-90. |
[46] | Peng S B, Bouman B, Visperas R M, Castañeda A, Nie L X, Park H K. 2006. Comparison between aerobic and flooded rice in the tropics: Agronomic performance in an eight-season experiment. Field Crops Res, 96(2/3): 252-259. |
[47] | Pfeifer J, Kirchgessner N, Walter A. 2014. Artificial pores attract barley roots and can reduce artifacts of pot experiments. J Plant Nutr Soil Sci, 177(6): 903-913. |
[48] | Piron D, Pérès G, Hallaire V, Cluzeau D. 2012. Morphological description of soil structure patterns produced by earthworm bioturbation at the profile scale. Eur J Soil Biol, 50: 83-90. |
[49] | Ramalingam P, Kamoshita A, Deshmukh V, Yaginuma S, Uga Y. 2017. Association between root growth angle and root length density of a near-isogenic line of IR64 rice with DEEPER ROOTING 1 under different levels of soil compaction. Plant Prod Sci, 20(2): 162-175. |
[50] | Rasse D P, Smucker A J M. 1998. Root recolonization of previous root channels in corn and alfalfa rotations. Plant Soil, 204(2): 203-212. |
[51] | Rosolem C A, Foloni J S S, Tiritan C S. 2002. Root growth and nutrient accumulation in cover crops as affected by soil compaction. Soil Tillage Res, 65(1): 109-115. |
[52] | Sanchez P A. 1973. Puddling tropical rice soils: 2. Effects of water losses. Soil Sci, 115(4): 303-308. |
[53] | Shrestha R, Al-Shugeairy Z, Al-Ogaidi F, Munasinghe M, Radermacher M, Vandenhirtz J, Price A H. 2014. Comparing simple root phenotyping methods on a core set of rice genotypes. Plant Biol, 16(3): 632-642. |
[54] |
Singh S P, Jain A, Anantha M S, Tripathi S, Sharma S, Kumar S, Prasad A, Sharma B, Karmakar B, Bhattarai R, Das S P, Singh S K, Shenoy V, Chandra Babu R, Robin S, Swain P, Dwivedi J L, Yadaw R B, Mandal N P, Ram T, Mishra K K, Verulkar S B, Aditya T, Prasad K, Perraju P, Mahato R K, Sharma S, Anitha Raman K, Kumar A, Henry A. 2017. Depth of soil compaction predominantly affects rice yield reduction by reproductive-stage drought at varietal screening sites in Bangladesh, India, and Nepal. Plant Soil, 417: 377-392.
PMID |
[55] | Steduto P, Faurès J M, Hoogeveen J, Winpenny J, Burke J J. 2012. Coping with Water Scarcity: An Action Framework for Agriculture and Food Security. Rome, Italy: Food and Agriculture Organization of the United Nations: 38. |
[56] | Stirzaker R J, Passioura J B, Wilms Y. 1996. Soil structure and plant growth: Impact of bulk density and biopores. Plant Soil, 185(1): 151-162. |
[57] | RStudio Team. 2020. RStudio: Integrated Development Environment for R. RStudio, PBC, Boston, MA, USA. http://www.rstudio.com/. |
[58] | Timsina J, Jat M L, Majumdar K. 2010. Rice-maize systems of South Asia: Current status, future prospects and research priorities for nutrient management. Plant Soil, 335(1): 65-82. |
[59] | Weller S, Janz B, Jörg L, Kraus D, Racela H S U, Wassmann R, Butterbach-Bahl K, Kiese R. 2016. Greenhouse gas emissions and global warming potential of traditional and diversified tropical rice rotation systems. Glob Change Biol, 22(1): 432-448. |
[60] | White R G, Kirkegaard J A. 2010. The distribution and abundance of wheat roots in a dense, structured subsoil: Implications for water uptake. Plant Cell Environ, 33(2): 133-148. |
[61] | Williams S M, Weil R R. 2004. Crop cover root channels may alleviate soil compaction effects on soybean crop. Soil Sci Soc Am J, 68(4): 1403-1409. |
[62] |
Yuan S, Stuart A M, Laborte A G, Rattalino Edreira J I, Dobermann A, Kien L V N, Thúy L T, Paothong K, Traesang P, Tint K M, San S S, Villafuerte M Q, Quicho E D, Pame A R P, Then R, Flor R J, Thon N, Agus F, Agustiani N, Deng N Y, Li T, Grassini P. 2022. Southeast Asia must narrow down the yield gap to continue to be a major rice bowl. Nat Food, 3(3): 217-226.
PMID |
[63] | Zhang Z B, Yan L, Wang Y K, Ruan R J, Xiong P, Peng X H. 2022. Bio-tillage improves soil physical properties and maize growth in a compacted vertisol by cover crops. Soil Sci Soc Am J, 86(2): 324-337. |
[64] | Zhao K Y, Tung C W, Eizenga G C, Wright M H, Ali M L, Price A H, Norton G J, Islam M R, Reynolds A, Mezey J, McClung A M, Bustamante C D, McCouch S R. 2011. Genome-wide association mapping reveals a rich genetic architecture of complex traits in Oryza sativa. Nat Commun, 2: 467. |
[65] | Zhou W, Lv T F, Chen Y, Westby A P, Ren W J.2014. Soil physicochemical and biological properties of paddy-upland rotation: A review. Sci World J, 2014: 856352. |
[1] | Sheikh Faruk Ahmed, Hayat Ullah, May Zun Aung, Rujira Tisarum, Suriyan Cha-Um, Avishek Datta. Iron Toxicity Tolerance of Rice Genotypes in Relation to Growth, Yield and Physiochemical Characters [J]. Rice Science, 2023, 30(4): 321-334. |
[2] | Yousef Alhaj Hamoud, Hiba Shaghaleh, Wang Ruke, Willy Franz Gouertoumbo, Amar Ali Adam hamad, Mohamed Salah Sheteiwy, Wang Zhenchang, Guo Xiangping. Wheat Straw Burial Improves Physiological Traits, Yield and Grain Quality of Rice by Regulating Antioxidant System and Nitrogen Assimilation Enzymes under Alternate Wetting and Drying Irrigation [J]. Rice Science, 2022, 29(5): 473-488. |
[3] | Chen Wei, Cai Yicong, Shakeel Ahmad, Wang Yakun, An Ruihu, Tang Shengjia, Guo Naihui, Wei Xiangjin, Tang Shaoqing, Shao Gaoneng, Jiao Guiai, Xie Lihong, Hu Shikai, Sheng Zhonghua, Hu Peisong. NRL3 Interacts with OsK4 to Regulate Heading Date in Rice [J]. Rice Science, 2022, 29(3): 237-246. |
[4] | Wang Rui, Zhang Dandan, Li Shengnan, Gao Jinlan, Han Liebao, Qiu Jinlong. Simple Bioassay for PAMP-Triggered Immunity in Rice Seedlings Based on Lateral Root Growth Inhibition [J]. Rice Science, 2022, 29(1): 67-75. |
[5] | Shuting Yuan, Chunjue Xu, Wei Yan, Zhenyi Chang, Xingwang Deng, Zhufeng Chen, Jianxin Wu, Xiaoyan Tang. Alternative Splicing of OsRAD1 Defines C-Terminal Domain Essential for Protein Function in Meiosis [J]. Rice Science, 2020, 27(4): 289-301. |
[6] | Vijayaraghavareddy Preethi, Xinyou Yin, C. Struik Paul, Makarla Udayakumar, Sreeman Sheshshayee. Responses of Lowland, Upland and Aerobic Rice Genotypes to Water Limitation During Different Phases [J]. Rice Science, 2020, 27(4): 345-354. |
[7] | Hussain Kashif, Yingxing Zhang, Anley Workie, Riaz Aamir, Abbas Adil, Hasanuzzaman Rani Md., Hong Wang, Xihong Shen, Liyong Cao, Shihua Cheng. Association Mapping of Quantitative Trait Loci for Grain Size in Introgression Line Derived from Oryza rufipogon [J]. Rice Science, 2020, 27(3): 246-254. |
[8] | Pandit Elssa, Kumar Panda Rajendra, Sahoo Auromeera, Ranjan Pani Dipti, Kumar Pradhan Sharat. Genetic Relationship and Structure Analysis of Root Growth Angle for Improvement of Drought Avoidance in Early and Mid-Early Maturing Rice Genotypes [J]. Rice Science, 2020, 27(2): 124-132. |
[9] | Stephan Nascente Adriano, Fernando Stone Luis. Cover Crops as Affecting Soil Chemical and Physical Properties and Development of Upland Rice and Soybean Cultivated in Rotation [J]. Rice Science, 2018, 25(6): 340-349. |
[10] | Nurdiani Dini, Widyajayantie Dwi, Nugroho Satya. OsSCE1 Encoding SUMO E2-Conjugating Enzyme Involves in Drought Stress Response of Oryza sativa [J]. Rice Science, 2018, 25(2): 73-81. |
[11] | Radhesh Krishnan Subramanian, Muthuramalingam Pandiyan, Pandian Subramani, Banupriya Ramachandradoss, Chithra Gunasekar, Ramesh Manikandan. Sprouted Sorghum Extract Elicits Coleoptile Emergence, Enhances Shoot and Root Acclimatization, and Maintains Genetic Fidelity in indica Rice [J]. Rice Science, 2018, 25(2): 61-72. |
[12] | Fernando Polesi Luís, Bruder Silveira Sarmento Silene, Guidolin Canniatti-Brazaca Solange. Starch Digestibility and Functional Properties of Rice Starch Subjected to Gamma Radiation [J]. Rice Science, 2018, 25(1): 42-51. |
[13] | Singh Bhupinder, Raja Reddy Kambham, Diaz Redoña Edilberto, Walker Timothy. Screening of Rice Cultivars for Morpho-Physiological Responses to Early-Season Soil Moisture Stress [J]. Rice Science, 2017, 24(6): 322-335. |
[14] | Jini D., Joseph B.. Physiological Mechanism of Salicylic Acid for Alleviation of Salt Stress in Rice [J]. Rice Science, 2017, 24(2): 97-108. |
[15] | Fernando Polesi Luís, Divino da Matta Junior Manoel, Bruder Silveira Sarmento Silene, Guidolin Canniatti-Brazaca Solange. Starch Digestibility and Physicochemical and Cooking Properties of Irradiated Rice Grains [J]. Rice Science, 2017, 24(1): 48-55. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||